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ABSTRACT Salmonella enterica subsp. enterica serotype Choleraesuis is a foodborne
pathogen with zoonotic potential. We report the draft genome sequence and a
closed plasmid sequence from a plant-internalized S. Choleraesuis strain that was iso-
lated from the pulp of a Spanish Galia melon purchased from a German supermarket
in 2015.

S almonella enterica subsp. enterica serotype Choleraesuis bacteria are host adapted
to pigs. However, human infections do occur and typically result in invasive disease

(1). Transmission to humans might result from fecal contamination of plants that are
grown close to the ground and consumed raw, such as salad, spinach, or melons (2–4).
Several foodborne outbreaks caused by melons contaminated with Salmonella spp.
have been reported (5, 6), and internalization into plants has been described for
Salmonella spp. (7–9). This may offer the pathogen a growth advantage and therefore
increase the risk to consumers. Strain 11-Galia-2015 was isolated from the pulp of a
Galia melon (8) and serotyped at the German Federal Institute for Risk Assessment
(BfR). Here, we present the draft whole-genome sequence of this strain.

Genomic DNA was extracted from a liquid culture grown in LB medium using the
PureLink genomic DNA minikit (Themo Fisher Scientific, Germany). A sequencing
library was created with the Nextera DNA Flex library prep kit (Illumina, USA) and
sequenced using 2� 201-bp format on a MiSeq benchtop sequencer with v3 600-cycle
chemistry (Illumina), resulting in 1,585,934 total reads and 630-fold coverage. The gen-
erated paired-end reads (Q30 base fraction, 0.95) were trimmed and quality controlled
using fastp v0.19.5 (10) with default parameters (except --length_required 15) and de
novo assembled using Shovill v1.1.0 (10, 11) using SPAdes as the assembly method
(with the options --noreadcorr --depth 100 and otherwise default parameters). The
minimal contig size was set to 200 bp. Annotation of S. Choleraesuis with the antigenic
profile 7:c:1,5 (SeqSero v1.2 Server [11]) was performed using PGAP (12). However,
serological subtyping according to the White-Kauffmann-Le Minor scheme (13)
resulted in the antigenic profile 6,7:2:1,5.

The assembled S. Choleraesuis genome sequence comprised 79 contigs with a total
length of 4,723,419 bp, an N50 value of 216,747 bp, and 52.2% GC content. In total,
4,386 coding genes were predicted in the chromosome, including 23 rRNAs (5S, 16S,
and 23S), 79 tRNAs, and 10 noncoding RNAs (ncRNAs).

In silico Multi-Locus Sequence Typing (MLST) v2.0 (14) (https://cge.cbs.dtu.dk/
services/MLST/) identified this strain as sequence type 145, and cgMLSTFinder v1.1 (15)
(https://cge.cbs.dtu.dk/services/cgMLSTFinder/) identified it as core genome sequence
type (cgST) 168374.

PlasmidFinder (16) identified one complete circular multireplicon IncFIB(S)-FII(S)

Citation Esteban-Cuesta I, Fischer J, Guldimann C.
2021. Draft genome sequence of a Salmonella
enterica subsp. enterica serotype Choleraesuis strain
isolated from the pulp of muskmelons. Microbiol
Resour Announc 10:e00009-21. https://doi.org/
10.1128/MRA.00009-21.

Editor Vincent Bruno, University of Maryland
School of Medicine

Copyright © 2021 Esteban-Cuesta et al. This is
an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to Irene Esteban-Cuesta,
irene.esteban@ls.vetmed.uni-muenchen.de.

Received 12 January 2021
Accepted 17 February 2021
Published 11 March 2021

Volume 10 Issue 10 e00009-21 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0002-5004-9529
https://cge.cbs.dtu.dk/services/MLST/
https://cge.cbs.dtu.dk/services/MLST/
https://cge.cbs.dtu.dk/services/cgMLSTFinder/
https://doi.org/10.1128/MRA.00009-21
https://doi.org/10.1128/MRA.00009-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00009-21&domain=pdf&date_stamp=2021-3-11


plasmid (p11-Galia-2015), with 49,465 bp and 52.2% GC content. ResFinder v4.1 (17,
18) found the aminoglycoside resistance gene aac(69)-laa against amynoglycosides,
not located on the plasmid.

A total of 111 virulence factors were identified using ABRicate v1.0.1 (https://github
.com/tseemann/abricate) (with the parameters --minid 80 and --mincov 50). Among
them, major virulence determinants belonging to Salmonella pathogenicity island 1
(SPI-1; e.g., inv, sip, sptP, sopA, and sic), SPI-2 (e.g., ssa, ssc, sse, spiC, sifA, pipB, and
sopD2), and SPI-3 (mgtCB and misL) were found. Also, genes coding for virulence fac-
tors, such as sodCI, which protects against phagocytic superoxide during infection (19),
Peyer’s patch-specific virulence factors (lpfA-E), and the toxin-coding genes spvB or
mig-14, responsible for resistance to antimicrobial peptides, were identified (20, 21).

Data availability. These sequences are available at GenBank (accession number
JADWDF000000000 for the genome) and the SRA (accession number SRR13399484).
The version described in this paper is the first version, JADWDF010000000.
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