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Abstract: Testosterone has historically been linked to sexual dysfunction; however, it has recently
been shown to affect other physical and mental attributes. We attempted to determine whether
changes in serum testosterone could play a role in chronic or degenerative diseases. We used two
separate genetic instruments comprising of variants from JMJD1C and SHBG regions and conducted
a two-sample Mendelian randomization for type II diabetes (T2D), gout, rheumatoid arthritis (RA),
schizophrenia, bipolar disorder, Alzheimer’s disease and depression. For the JMJD1C locus, one
unit increase in log transformed testosterone was significantly associated with RA (OR = 1.69,
p = 0.02), gout (OR = 0.469, p = 0.001) and T2D (OR = 0.769, p = 0.048). Similarly, one unit increase
in log transformed testosterone using variants from the SHBG locus was associated with depression
(OR = 1.02, p = 0.001), RA (OR = 1.32, p < 0.001) and T2D (OR = 0.88, p = 0.003). Our results show that
low levels of serum testosterone levels may cause gout and T2D, while higher than normal levels of
testosterone may result in RA and depression. Our findings suggest that fluctuations in testosterone
levels may have severe consequences that warrant further investigation.

Keywords: Mendelian randomization (MR); testosterone; schizophrenia (SCZ); Alzheimer’s disorder
(AD); type II diabetes (T2D); gout

1. Introduction

Testosterone is a universally known hormone which is responsible for the development of primary,
as well as secondary male characteristics, such as genitalia, beards and muscle mass [1]. Historically,
the role of testosterone was thought to be limited to the development of male characteristics and
sexual function; however, recently it has come to light that the role of testosterone may be multifarious.
Research has reported testosterone to be essential to male health, with some studies showing mortality
rates to be as much as 40% higher in individuals with extremely low testosterone levels [2,3].
Studies conducted over the previous decades have discovered that testosterone has the potential to
influence men both physically and psychologically, affecting the overall health of the male population.

Male hypogonadism is defined by The Endocrine Society as the inability to produce physiological
levels of testosterone and is clinically defined as an early morning testosterone concentration of
250–300 ng/dL or below [4]. Hypogonadism can be present at any phase of life, from fetal development
to old age; however, it is known that serum testosterone levels steadily decrease as men age [5,6] and
is symptomized by decreased libido, erectile dysfunction, decreased muscle mass and bone mineral
density, all of which were previously dismissed as a natural consequence of aging. Testosterone
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levels begin to naturally decrease between the ages of 20 and 30 in males, at a rate of about 1.3% per
year [7], and by the age of 45, about 39% of men have serum testosterone levels below 300 ng/dL [8].
An investigation into testosterone tests undertaken by individuals in United Kingdom and the United
States, from the years 2000 to 2011, shows that male hypogonadism is quite common, with an excess of
20% of tests displaying a low level of serum testosterone (< 300 mg/dL). This phenomenon is not only
restricted to the elderly, as up to 76% of participants were between the ages of 40 and 64 [9].

Increasing awareness of hypogonadism and its association with common conditions such as
type II diabetes mellitus, obesity and metabolic syndrome, ultimately gave rise to testosterone
replacement therapy (TRT) in an attempt to reverse the effects of hypogonadism. A recent meta-analysis
randomized control trial (RCT) reports that TRT can improve quality of life, libido, depression and
erectile dysfunction [10]; further studies report the positive effects of TRT on obesity, lipid profile
and cardiovascular risk factors [11]. The safety of testosterone supplement usage has been called
into question, with increased incidents of cardiovascular events observed in patients undergoing
therapy [12]. Two large-scale observational studies have since confirmed increased occurrence of
cardiovascular events as a result of TRT [13,14], leading Health Canada and the US Food and Drug
Administration (FDA) to place labels on TRT products in an attempt to warn the public of the potentially
adverse cardiological effects of TRT.

Testosterone has also been shown to greatly influence male behavior, particularly aggressive
behaviors which can termed as antisocial, while also stimulating generosity when it can serve to
increase the male’s dominance [15,16]. Over the past few decades, testosterone has been consistently
linked to cognitive decline, particularly in the elderly [17]. Results from several epidemiological
studies have suggested that testosterone acts as a metabolic hormone in males, as there is a negative
correlation between testosterone levels (both free as well as SHBG bound) and obesity across all age
groups [18–21].

Mendelian randomization provides us with a technique that can uncover causal relationships
without the extensive costs incurred by randomized control trials, and is becoming increasingly more
viable as data from numerous large genome wide association studies (GWAS) investigating a diverse
range of conditions over the past decade are now publicly available. Early Mendelian randomization
studies involving testosterone were performed in small samples and were subsequently met with little
success [22–24]; recent studies that shifted to the use of large-scale GWAS to source associations of
variant with exposure and outcome have reported significant findings regarding testosterone levels and
the risk of stroke, cardiovascular disease, polycystic ovary syndrome, as well as breast, endometrial
and prostate cancer [25,26].

It is now obvious that the functions of testosterone extend well beyond the sexual domain,
especially in men, affecting both physiological and mental aspects of life. Hypogonadism is widespread
and inevitable; however, it is difficult to conduct studies to ascertain the full extent of testosterone
influence, which has been hypothesized to play a role in a range of common metabolic, immune and
psychiatric diseases [27–33].

In this study, we aim to determine the effect of testosterone on previously associated common
diseases, namely, type II diabetes (T2D), rheumatoid arthritis (RA), gout, depression, bipolar disorder
(BP), schizophrenia (SCZ) and Alzheimer’s disorder (AD) [27–33], by conducting a two-sample
Mendelian randomization study in an effort to determine whether testosterone could potentially play
a causative role in these disorders. To our knowledge, this is the first Mendelian randomization study
looking into the relationship between testosterone and common diseases.

2. Materials and Methods

2.1. Genetic Instruments (Genetic Associations with Testosterone)

The genetic instruments for testosterone were created using data from the REDUCE study, where
3225 men of European descent between the ages of 50 and 75 years had consented to additional genetic
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testing [34]. The only variants significantly associated with serum testosterone at a genome-wide
association level were present at 10q21, 17p13, Xp22, and were henceforth referred to as the JMJD1C,
SHBG and FAM9B loci, respectively. Variants from the FAM9B locus were not included in our analysis
since genetic variants in outcome data did not include the sex chromosomes. The SHBG, also known
as sex hormone binding globulin, has a mechanistic link to all sex hormones and testosterone is no
different, while the JMJD1C locus is associated with testosterone levels independent of SHBG.

Genetic instruments were created for both JMJD1C and SHBG loci separately, and a total of
661 and 325 variants were reported for the JMJD1C and SHBG loci, respectively. The genetic instrument
for the JMJD1C locus was created based on a single genome-wide significant variant while the
instrument for the SHBG locus was created using a step-wise selection procedure similar to the one
used in a previous Mendelian randomization study [26]. In brief, for the SHBG locus, from the list
of 325 variants, the strongest variant in terms of p-value was selected, and all other variants that
were in linkage disequilibrium (defined as having an r2 value of > 0.40) were removed, after which
the process was repeated for the next most significant variant, resulting in a set of variants with low
pair-wise correlations.

2.2. Genetic Association with Outcomes

Genetic association data for the selected outcomes were sourced from the GWAS catalogue.
In this study, we investigated the association of the genetic instrument with various outcomes,
namely, type 2 diabetes (T2D), gout, rheumatoid arthritis (RA), depression, schizophrenia, bipolar
disorder and Alzheimer’s disorder. The genetic associations for T2D were extracted from a recently
published meta-analysis of GWA studies that comprised approximately 16 million variants and
included 62,892 cases along with 596,424 controls of European descent [35]. This meta-analysis was
comprised of data from DIAGRAM, GERA and UK Biobank data sets.

The second outcome was derived from a study by Tin et al. [36], who performed a transancestry
meta-analysis of serum urate levels (457,690 individuals) and made a subsequent prediction of gout
in a separate cohort of 334,880 individuals from the UK Biobank. For RA, the genetic associations
were extracted from a meta-analysis of GWA studies that evaluated approximately 10 million single
nucleotide polymorphisms (SNPs), with total sample size >100,000 individuals (of European and Asian
descent) comprising 29,880 and 73,758 cases and controls, respectively [37].

For depression, we used the genetic associations from the UK biobank [38], which has divided
depression into three distinct phenotypes, mainly broad depression, probable major depressive disorder
(MDD) and MDD as defined by the International Classification of Diseases (ICD). Here we selected
genetic associations for broad depression as the outcome measure, as it most closely related to general
depression experienced by most individuals. The UK Biobank depression GWAS was comprised of
322,580 participants. Genetic associations for schizophrenia were extracted from the GWAS published
by the schizophrenia working group of the Psychiatric Genomics Consortium (PGC) [39], which is the
largest GWAS performed on a European population today, comprising 36,989 cases and 113,075 controls.

The genetic associations for bipolar disorder were extracted from a recent GWAS that was
published in 2019, comprising 20,352 and 31,358 cases and controls, which was followed up with
a separate group of an additional 9412 cases and 137,760 controls. A recently published meta-analysis
of Alzheimer’s disorder studies comprising 67,614 cases was used to extract genetic associations with
Alzheimer’s disorder. This meta-analysis combined data from the UK Biobank and International
Genomics of Alzheimer’s Project (IGAP)

2.3. Statistical Analysis

Mendelian randomization is a technique that can be used to determine causal exposure–outcome
relationships. Since alleles are randomly assigned at birth, genetic variants that are associated with
an increase in exposure can be used to determine whether the said exposure could cause disease, while
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being completely randomized for confounders such as smoking or education, similar to a randomized
control trial.

The genetic associations and outcomes were harmonized before the Mendelian randomization
analysis, which was performed separately from the two loci (SHBG and JMJD1C). The Mendelian
randomization analysis was performed using the inverse variance (IVW) method: if the genetic
instrument is comprised of a single variant then the resulting causal estimate is simply the ratio of
association of variant with outcome and exposure. If the genetic instrument consists of more than
one variant, then the causal estimate is calculated by pooling the ratio estimates using an inverse
variance meta-analysis.

Mendelian randomization analysis requires that genetic instruments utilized are associated with
the outcome of interest only via the exposure, and is not associated with other exposures or confounders.
In simple terms, Mendelian randomization requires that the genetic instrument used does not display
pleiotropy; a test directional pleiotropy can be performed using the MR-Egger intercept estimate [40].
Two-sided p-values were reported for all analyses and significant casual estimates were defined as
estimates with a p-value of < 0.05. Additional sensitivity analyses were performed using the weighted
median method, which is capable of providing a consistent estimate even if up to 50% of the genetic
instrument is invalid. All analyses were performed using the Mendelian randomization package in R.

3. Results

3.1. Genetic Instruments

After accounting for linkage disequilibrium, the genetic instrument for the JMJD1C locus was
comprised of a single SNP (rs10822184), while the SHBG locus comprised of 20 variants (Table 1);
however, a different set of variants was used depending on availability in the outcome data set.
The exact composition of the genetic instruments and the pairwise correlations of the included variants
can be found in the supplementary files (Figures S1–S3 and Tables S1–S3).

Table 1. Detailed composition of the genetic variants used in the Mendelian randomization analysis.

JMJD1C Locus

SNP Position Beta Beta (se) p-Value EA OA
rs10822184 65007159 −0.058 0.01 1.12 × 10−8 T C

SHBG Locus
SNP Position Beta Beta (se) p-Value EA OA

rs727428 7478517 −0.073 0.01 1.26 × 10−12 T C
rs1799941 7474148 0.082 0.012 1.39 × 10−12 A G
rs17806566 7292887 −0.168 0.03 2.61 × 10−8 C T
rs9913778 7474626 −0.106 0.019 3.05 × 10−8 T C
rs9900162 7387788 −0.07 0.013 6.13 × 10−8 G A
rs35894069 7335900 0.054 0.011 5.74 × 10−7 A G
rs9908275 7367048 −0.065 0.014 1.59 × 10−6 T C
rs4511593 7396260 0.051 0.011 1.73 × 10−6 C T
rs55784804 7477185 −0.075 0.018 2.25 × 10−5 T G
rs3853818 7287026 −0.044 0.01 2.36 × 10−5 T C
rs12944954 7425855 −0.181 0.043 2.88 × 10−5 G A
rs55894190 7323962 −0.042 0.01 6.90 × 10−5 C T
rs8069501 7335692 −0.087 0.023 1.52 × 10−4 G A
rs858517 7474996 −0.091 0.026 4.44 × 10−4 C T

rs2955611 7490299 −0.053 0.016 9.08 × 10−4 C A
rs12942088 7423503 −0.033 0.01 1.59 × 10−3 C T
rs2302762 7299585 −0.034 0.011 3.06 × 10−3 T C
rs12936934 7441490 −0.036 0.014 9.74 × 10−3 T C
rs4968211 7399786 −0.063 0.026 1.4 × 10−2 A G
rs4796305 7276779 −0.037 0.019 4.6 × 10−2 G T
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3.2. Mendelian Randomization of the JMJD1C Locus

The results of the Mendelian randomization or the JMJD1C locus (Table 2) showed that genetically
predicted testosterone was negatively associated with gout (estimate = −0.757, 95% CI = −1.189, −0.324,
p = 0.001) (Figure 1) and T2D (estimate = −0.262, 95% CI = −0.522, −0.002, p = 0.048) (Figure 2).
Each increase in SD for genetically determined serum testosterone levels was positively associated with
RA (estimate = 0.525, 95% CI = 0.083, 0.967, p = 0.020) (Figure 3). There was no association between
genetically predicted testosterone and the following outcomes: Alzheimer disorder, bipolar disorder,
schizophrenia and depression. Since the genetic instrument for the JMJD1C locus was comprised of
only a single variant, it was not possible to conduct the sensitivity analyses (weighted median and
MR-Egger methods).

Table 2. Mendelian Randomization (MR) using variants from the JMJD1C Locus—Inverse Variance
Weighted (IVW) Method.

Outcome OR Estimate (se) p-Value

Alzheimer’s Disorder 0.875 −0.133 (0.145) 0.359
Bipolar Disorder 1.402 0.338 (0.234) 0.149

Schizophrenia 1.132 0.124 (0.182) 0.496
Depression 0.984 −0.016 (0.020) 0.437

Rheumatoid Arthritis 1.690 0.525 (0.226) 0.020
Gout 0.469 −0.757 (0.221) 0.001

Type 2 Diabetes 0.769 −0.262 (0.133) 0.048
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Figure 3. Genetic association of rheumatoid arthritis (RA) against genetic association of testosterone
(JMJD1C locus). The slope (dark blue line) represents the causal association of testosterone with RA
(generated via inverse variance weighted Mendelian randomization), while the point on the plot and
the lights around it (light blue lines) represent the SNP and its confidence intervals.

3.3. Mendelian Randomization of the SHBG Locus

Results of the Mendelian randomization analysis of predictors of testosterone from the SHBG region
(Table 3) showed that genetically predicted testosterone was positively associated with depression
and RA, while negatively associated with T2D. Each SD increase in genetically predicted testosterone
was associated with a 1.02-fold increased risk of depression (estimate = 0.021, 95% CI = 0.008, 0.031,
p = 0.001) (Figure 5). During the sensitivity analysis, the weighted median method showed similar
results to the IVW analysis (estimate = 0.016, p = 0.040), while there was no evidence for pleiotropy
(MR-Egger intercept = 0.002, p = 0.092). For RA, each SD increase in testosterone resulted in a 1.33-fold
increase in the risk of RA (estimate = 0.285, 95% CI = 0.141, 0.429, p < 0.001) (Figure 6), which was
similar to the estimates from the weighted median method sensitivity analysis (estimate = 0.368,
p < 0.001) without any evidence of horizontal pleiotropy (MR-Egger intercept = 0.022, 95% CI = −0.006,
0.049, p = 0.120). Each SD increase in testosterone correlated to a 0.887-fold increase in the risk of
T2D (estimate = −0.119, 95% CI = −0.203, −0.035, p = 0.005) (Figure 7), which was mirrored by the
weighted median method analysis (estimate = −0.107, 95% CI = −0.219, −0.005, p = 0.062), without any
horizontal pleiotropy detected (MR-Egger intercept estimate = 0.003, p = 0.219). Genetic association
of genetically predicted testosterone with SCZ, BP, T2D and AD were null; however, the direction of
effect for T2D was in agreement with that of the significant effect found in the JMJD1C analysis.
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Table 3. Mendelian Randomization (MR) using variants from the SHBG Locus—Inverse Variance
Weighted (IVW) Method.

Outcome OR Beta (se) p-Value MR-Egger Intercept
Estimate (p-Value)

Alzheimer’s Disorder 0.998 −0.002 (0.029) 0.935 0.013 (0.015)
Bipolar Disorder 0.991 −0.009 (0.085) 0.920 0.007 (0.664)

Schizophrenia 1.038 0.038 (0.053) 0.176 −0.004 (0.672)
Depression 1.02 0.020 (0.006) 0.001 0.002 (0.092)

Rheumatoid Arthritis 1.329 0.285 (0.060) <0.001 0.022 (0.120)
Gout 0.971 −0.029 (0.064) 0.649 0.005 (0.683)

Type 2 Diabetes 0.887 −0.119 (0.030) 0.003 −0.027 (0.607)

4. Discussion

Serum testosterone levels naturally decrease over the course of a man’s life or could be reduced
as a result of hypogonadism. In this study, we aimed to explore the possible effects of this decrease
on common diseases by Mendelian randomization, using genetically predicted testosterone levels
derived from two gene regions significantly associated with serum testosterone levels. Mendelian
randomization analyses were performed separately on the two instruments; results from the JMJD1C
and SHBG loci showed significant associations with three outcomes each. We investigated a total of
seven diseases, namely, T2D, SCZ, BP, AD, gout, RA and depression, of which four outcomes displayed
significant associations with genetically predicted testosterone levels. Analyses of both loci supported
significant associations of genetically predicted testosterone with RA and T2D, while also displaying
the same direction of effect.

The results of our study show that an increase in serum testosterone has a protective effect on
the risk of developing T2D, with both loci displaying significant results with consistent direction
of effect. Existing literature has extensively studied the relationship between serum testosterone
and T2D, and found testosterone can directly regulate glucose metabolism [41]; additionally, low
levels of serum testosterone were also associated with reduced insulin sensitivity [42]. Testosterone
plays an important role in glucose metabolism as it has been shown to increase expression of insulin
receptors as well modify the glucose transporter (GLUT4) [43]. Testosterone could also regulate glucose
homeostasis and glucose uptake via androgen receptor (AR)-dependent pathways in brain, adipose and
pancreatic tissues, as well as AR-independent pathways, for example, by activating the LKB1/AMPK
signaling pathway in adipocytes [44]. Impairment of the AMPK pathway has been observed in T2D
patients, activation of which results in improved uptake of glucose [45]. Interestingly, activation of
the LKB1/AMPK pathway has been shown to result in greater amyloid-β generation [46]. A recent
meta-analysis investigating the relationship between low serum testosterone and risk of AD concluded
that low serum testosterone was significantly associated with increased risk of AD [33]; however,
this may be a characteristic of disease progression rather than a causal relationship. Alternatively,
LKB1/AMPK activation via testosterone earlier in life could potentially cause the build-up of amyloid-β
plaques and cause AD. T2D and AD share a common pathology to some extent, as both diseases
display insulin signaling defects and resistance [47], while testosterone may play a crucial role in the
pathogenesis of both these disorders. Additionally, hyperglycaemia, which could result, has also been
shown to reduce serum testosterone levels [48,49], which indicates that these relationships are not as
straight forward as one may think, as elevated glucose levels result in an increase in adipose tissue,
which in turn result in a reduction in testosterone production [50].

Historically low levels of serum testosterone have been regularly associated with RA [51,52], and
the hypothalamic–pituitary–adrenal axis has been shown to be affected by RA [53], potentially leading
to patients affected by RA to display aberrant testosterone levels [54]. In our analysis, we show that
increased serum testosterone increases the risk of developing RA, and a recent study investigating
the future risk of developing RA in men concluded that low serum testosterone is associated with
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a rheumatoid factor (RF) negative prediction [29], suggesting the low levels of testosterone may provide
protection against development of RA.

Hypogonadism has been linked to depression in males [55,56], while testosterone has potential
antidepressive properties [57]; our results surprisingly suggest that increased testosterone may actually
slightly increase the risk of depression.

5. Conclusions

In conclusion, our Mendelian randomization study assessed the effect of testosterone on the risk
of several common diseases. We report that testosterone has a protective effect on the risk of T2D and
gout, while having adverse effects on depression and RA. There were, however, a few limitations of our
study, first and foremost being that the genetic instruments used in our Mendelian randomization were
sourced from variant testosterone associations measured in men; therefore, our findings are largely
relevant to common diseases in men. Another limitation of our study was the use of variants in the
SHBG region to genetically predict testosterone. SHBG can bind to free testosterone, thereby affecting
the concentrations of testosterone in the blood; though SHBG can be linked to testosterone levels
mechanistically, it is difficult to distinguish between the effects of testosterone from that of SHBG.

Our findings, along with previous Mendelian randomization studies on the effect of testosterone
on obesity and adverse cardiac events, highlight the importance of testosterone in overall health and
well-being, particularly in males. The results of our study show that further research into the effects of
testosterone is required, especially in light of the increasing utilization of testosterone therapy.
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