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Modelling Adaptive Learning 
Behaviours for Consensus 
Formation in Human Societies
Chao Yu1, Guozhen Tan1, Hongtao Lv1, Zhen Wang2,3, Jun Meng1, Jianye Hao4 & Fenghui Ren5

Learning is an important capability of humans and plays a vital role in human society for forming 
beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion 
formation in social networks. A novel learning model is proposed, in which agents can dynamically 
adapt their learning behaviours in order to facilitate the formation of consensus among them, 
and thus establish a consistent social norm in the whole population more efficiently. In the model, 
agents adapt their opinions through trail-and-error interactions with others. By exploiting historical 
interaction experience, a guiding opinion, which is considered to be the most successful opinion in the 
neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending 
on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether 
its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the 
population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures 
the essential features of people’s adaptive learning behaviours during the evolution and formation of 
opinions. Experimental results show that the proposed model can facilitate the formation of consensus 
among agents, and some critical factors such as size of opinion space and network topology can have 
significant influences on opinion dynamics.

Opinion dynamics is an attempt at understanding the evolution and formation of social opinions achieved 
through microscopic interactions between individuals in a multiagent society1–4. Researchers from a variety of 
disciplines including statistical physics, econophysics, sociophysics and computer science have made signifi-
cant contributions to this field5–7. By using theoretical models and experimental methods, socially macroscopic 
phenomena such as global consensus (i.e., social norm), polarization, or anarchy (diversity of opinions) can be 
observed and analyzed, providing us a comprehensive understanding of the dynamics of evolution and formation 
of opinions8–10, social conventions and rules11,12, as well as languages13,14 in human societies.

In the literature, a number of opinion dynamics models, such as the classic voter model15, the Galam model16, 
the social impact model17, the Sznajd model18, the Deffuant model19 and the Kraus-Hegselmanmodel model20, 
have been proposed and extensively analyzed. Other models have focused on investigating the influence of social 
factors such as information sharing or exchange on the evolution of opinions21,22. Also, there is abundant of 
research in the area of evolutionary game theory to investigate how opinions (i.e., defection and cooperation) 
evolve based on their interaction performance23. In most opinion dynamics models, each individual is consid-
ered to be an agent holding continuous or discrete opinions in favor of one decision or choice (accept/reject, or 
cooperate/defect), and each individual interacts with others and tries to persuade or impact others through his/
her opinion. The focus is on investigating macroscopic phenomenon achieved through local dynamics that are 
based on simple social learning rules, such as local majority and conformity8,24, imitating a neighbor23,25, or the 
coupling of these two rules26,27.

In real-life situations, however, people’s decision making is far more complex than simple imitation or voting. 
Rather, people usually learn through trail-and-error interactions with others when facing uncertainties about 
their decisions or choices. This kind of experience-based learning is an essential capability of human and plays a 
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vital role in human society for facilitating coordination and cooperation among individuals and thus sustaining 
global social order in the society28,29. In this sense, the observed macroscopic consistency of human behavior 
is essentially an outcome of a local learning process. Understanding how global consensus can be achieved 
through each individual’s local learning experience thus becomes a critical problem in the research of opinion 
dynamics.

In this paper, we try to investigate the impact of learning from local interactions on the dynamics of opinion 
formation in a population of networked agents. Specially, we focus on analysing how adaptive behaviors during 
learning can facilitate the establishment of global consensus among agents. In the model, each agent is associated 
with a number of discrete opinions and try to reach an agreement about their opinions through interactions with 
other agents in its neighbourhood. Each agent evaluates the effect of its expressed opinion based on the positive 
or negative outcome of the interaction with other agents and tries to choose the opinion with the best perfor-
mance. This process can be realized through a reinforcement learning (RL) process30, which provides a general 
approach to model how an agent can achieve an optimal performance through trail-and-error interactions with 
its environment. The learning experience in terms of expressed opinion with its corresponding outcome is stored 
in a memory with certain length. The historical learning experience of each agent is then synthesised into a 
strategy that competes with other strategies in the neighbourhood. The strategy that has better performance is 
more likely to survive and thus be accepted by other agents as a guiding opinion to adapt their own opinions. This 
competing process can be carried out through a social learning process based on the principle of Evolutionary 
Game Theory (EGT)23,25, which provides a powerful methodology to model how strategies evolve overtime based 
on their performance. Based on the consistency between the agent’s chosen opinion and the guiding opinion, the 
agent can dynamically adapt its learning behavior (in terms of learning and/or exploration rate) using a simple 
heuristic of “Win-or-Learn-Fast”. In this way, agents’ learning behaviours can be dynamically adapted according 
to the varying situations during the process of opinion formation. Extensive experiment has been carried out to 
investigate the dynamics of consensus formation under the proposed model, compared against a static learning 
(denoted as SL thereafter) model proposed in31,32. In SL model, each agent interacts with one of its neighbours and 
adapts its opinion directly based on the outcome of that interaction. Comparing with this model thus enables to 
demonstrate the merits of the adaptive learning behavior of agents in influencing the consensus formation among 
agents. In order to provide a comprehensive verification of the proposed learning model, three evaluation criteria 
are considered. They are: (1) Effectiveness (i.e., possibility of achieving a consensus), denoting the percentage of 
runs in which a consensus can be successfully established; (2) Efficiency (i.e., convergence speed of achieving a 
consensus), indicating how many steps are needed for a consensus formation; and (3) Efficacy (i.e., level of con-
sensus), indicating the ratio of agents in the population that can achieve the consensus. Note that, although the 
default meaning of consensus indicates that all the agents should have reached an agreement, we consider that the 
consensus can only be achieved at different levels in this paper. This is because achieving 100% consensus through 
local learning interactions is an extremely challenging issue due to the widely recognized existence of subnorms 
in the network, as reported in previous studies12,28. We consider three different kinds of topologies to represent an 
agent society. They are regular square lattice networks, small-world networks33 and scale-free networks34. Results 
show that the proposed model can facilitate the consensus formation among agents and some critical factors such 
as the size of opinion space and network topology can have significant influences on the dynamics of consensus 
formation among agents.

Model
In the model, agents have No discrete opinions to choose from and try to coordinate their opinions through 
interactions with other agents in the neighbourhood. Initially, agents have no bias regarding which opinion they 
should choose. This means that the opinions are equally chosen by the agents at first. During each interaction, 
agent i and agent j choose opinion oi and opinion oj from their opinion space, respectively. If their opinions match 
each other (i.e., oi =​ oj), they will get an immediate positive payoff of 1, and −​1 otherwise. The payoff is then 
used as an appraisal to evaluate the expected reward of the opinion adopted by the agent, which can be realized 
through a reinforcement learning (RL) process30. There are a variety of RL algorithms in the literature, among 
which Q-learning35 is the most widely used one. In Q-learning, an agent makes a decision through estimation of 
a set of Q-values, which are updated by:

α γ← + + ′ ′ −
′

Q s a Q s a r s a Q s a Q s a( , ) ( , ) [ ( , ) max ( , ) ( , )] (1)
t

a

In Equation 1, αt ∈​ (0, 1] is learning rate of agent at step t, and γ ∈​ [0, 1) is a discount factor, r(s, a) and Q(s, a) 
are the immediate and expected reward of choosing action a in state s at time step t, respectively, and Q(s′​, a′​) is 
the expected discounted reward of choosing action a′​ in state s′​ at time step t +​ 1. Q-values of each state-action 
pair are stored in a table for a discrete state-action space. At each time step, agent i chooses the best-response 
action with the highest Q-value based on the corresponding Q-values with a probability of 1 −​ ε (i.e., exploita-
tion), or chooses other actions randomly with a probability of ε (i.e., exploration). In our model, action a in Q(s, a)  
represents the opinion adopted by the agent and the value of Q(s, a) represents the expected reward of choos-
ing opinion a. As we do not model state transitions of agents, the stateless version of Q-learning is used. Thus, 
Equation 1 can be reduced to Q(o) ←​ Q(o) +​ αt[r(o) −​ Q(o)], where Q(o) is the Q-value of opinion o, and r(o) is 
the immediate reward of interaction using opinion o.
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Based on Q-learning, interaction protocol under the proposed model (given by Algorithm 1) is briefly 
described as follows:

1.	 At each time step t, agent i chooses action (i.e., opinion) oi
t with the highest Q-value or randomly chooses 

an opinion with an exploration probability εi
t (Line 3). Agent i then interacts with a randomly selected 

neighbor j and receives a payoff of ri
t (Line 4). The learning experience in terms of action-reward pair 

o r( , )i
t

i
t  is then stored in a certain length of memory (Line 5);

2.	 The past learning experience (i.e., a list of action-reward pairs) contains the information of how often a 
certain opinion has been chosen and how this opinion performs in terms of its average reward achieved. 
Agent i then synthesises its learning experience into a most successful opinion ′oi  based on two proposed 
approaches (Line 7). This synthesising process will be described in detail in the following text. Agent i then 
interacts with one of its neighbours using ′oi , and generates a guiding opinion in terms of the most 
successful opinion in the neighbourhood based on the EGT (Line 8);

3.	 Based on the consistency between the agent’s chosen opinion and the guiding opinion, agent i adjusts its 
learning behaviours in terms of learning rate αi

t and/or the exploration rate εi
t accordingly (Line 9);

4.	 Finally, agent i updates its Q-value using the new learning rate α +i
t 1 by Equation (1) (Line 10).

In this paper, the proposed model is simulated in a synchronous manner, which means that all the agents 
conduct the above interaction protocol concurrently.

Each agent is equipped with a capability to memorize a certain period of interaction experience in terms of the 
opinion expressed and the corresponding reward. Assuming a memory capability is well justified in social sci-
ence, not only because it is more compliant with real scenarios (i.e., humans do have memories), but also because 
it can be helpful in solving challenging puzzles such as emergence of cooperative behaviours in social dilem-
mas36,37. Let M denote an agent’s memory length. At step t, the agent can memorize the historical information in 
the period of M steps prior to t. A memory table of agent i at time step t, MTi

t, then can be denoted as 
= ...− + − + − −MT o r o r o r{( , ), ,( , ), ( , )}i

t
i
t M

i
t M

i
t

i
t

i
t

i
t1 1 1 1 . Based on the memory table, agent i then synthesises its past 

learning experience into two tables TO o( )i
t  and TR o( )i

t . TO o( )i
t  denotes the frequency of choosing opinion o in the 

last M steps and TR o( )i
t  denotes the overall reward of choosing opinion o in the last M steps. Specifically, TO o( )i

t  
is given by:

∑ δ=
=

=
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where δ − +o o( , )i
t j 1  is the Kronecker delta function, which equals to 1 if = − +o oi

t j 1, and 0 otherwise.
Table TO o( )i

t  stores the historical information of how often opinion o has been chosen in the past. To exclude 
those actions that have never been chosen, a set X(i, t, M) is defined to contain all the opinions that have been 
taken at least once in the last M steps by agent i, i.e., = >X i t M o TO o( , , ) { ( ) 0}i

t . The average reward of choosing 
opinion o, TR o( )i

t , then can be given by:
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The past learning experience in terms of table TO o( )i
t  and TR o( )i

t  indicates how successful the strategy of 
choosing opinion o is in the past. This information is exploited by the agent in order to generate a guiding opin-
ion. To realize the guiding opinion generation, each agent learns from other agents by comparing their learning 
experience. The motivation of this comparison comes from the EGT, which provides a powerful methodology to 
model how strategies evolve overtime based on their performance. In the context of EGT, an individual’s payoff 
represents its fitness or social success. The dynamics of strategy change in a population is governed by social 
learning, that is, the most successful agents will tend to be imitated by the others. Two different approaches are 
proposed in this model to realize the EGT concept, depending on how to define the competing strategy and the 
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corresponding performance evaluation criteria (i.e., fitness) in EGT. They are performance-driven approach and 
behavior-driven approach, respectively:

•	 Performance-driven approach: This approach is inspired by the fact that agents are aiming at maximizing their 
own rewards. If an opinion has brought about the highest reward among all the opinions in the past, this 
opinion is the most profitable one and thus should be more likely to be imitated by the others in the popula-
tion. Therefore, the strategy in EGT is represented by the most profitable opinion, and the fitness is repre-
sented by the corresponding reward of that opinion. Let ′oi  denote the most profitable opinion. It can be given 
by:

′ = ∈o arg max TR o( ) (4)i o X i t M i( , , )

•	 Behavior-driven approach: In the behavior-driven approach, if an agent has chosen the same opinion all the 
time, it considers this opinion to be the most successful one (being the norm accepted by the population). 
Therefore, behavior-driven approach considers the opinion which has been most adopted in the past to be the 
strategy in EGT, and the corresponding reward of that opinion to be the fitness in EGT. Let ′oi  denote the most 
adopted opinion. It can be given by:

′ = ∈o arg max TO o( ) (5)i o X i t M i( , , )

After synthesising the historical learning experience, agent i then gets an opinion of ′oi  and its corresponding 
fitness of ′TR o( )i i . It then interacts with other agents through social learning based on the Proportional Imitation 
(PI)23 rule in EGT, which can be realized by the famous Fermi function:

β
=
+ 

 −
′ − ′ 


→p

exp TR o TR o
1

1 ( ( ) ( )) (6)
i j

i
t

i j
t
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where pi→j denotes the probability that agent i switches to the opinion of agent j (i.e., agent i remains opinion 
′oi  with a probability of 1 −​ pi→j), and β is a parameter to control the selection bias.

Based on the principle of EGT, a guiding opinion represented as the new opinion ′oi  is generated. The new 
opinion ′oi  indicates the most successful opinion in the neighborhood and therefore should be integrated into the 
learning process in order to entrench its influence. By comparing its opinion at time step t (i.e., oi

t) with the guid-
ing opinion ′oi , agent i can evaluate whether it is performing well or not so that its learning behavior can be 
dynamically adapted to fit the guiding opinion. Depending on the consistency between the agent’s opinion and 
the guiding opinion, the agent’s learning process can be adapted according to the following three mechanisms:
•	 SLR (Supervising Learning Rate α): In RL, the learning performance heavily depends on the learning rate 

parameter, which is difficult to tune. This mechanism adapts the learning rate α in the learning process. When 
agent i has chosen the same opinion with the guiding opinion, it decreases its learning rate to maintain its 
current state, otherwise, it increases its learning rate to learn faster from its interaction experience. Formally, 
learning rate αi

t can be adjusted according to:

α
λ α

λ α λ
=
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where λ ∈​ [0, 1] is a parameter to control the adaption rate;
•	 SER (Supervising Exploration Rate ε): Exploration-exploitation trade-off has a crucial impact on the learning 

process. Therefore, this mechanism adapts the exploration rate ε in the learning process. The motivation of 
this mechanism is that an agent needs to explore more of the environment when it is performing poorly and 
explore less otherwise. Similarly, the exploration rate εt

t can be adjusted according to:

ε
λ ε

λ ε λ ε
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in which εi  is a variable to confine the exploration rate to a small value in order to indicate a small probability 
of exploration in RL;

•	 SBR (Supervising Both Rates): This mechanism adapts the learning rate and the exploration rate at the same 
time based on SLR and SER.

Learning rate and exploration rate are two fundamental tuning parameters in RL. Heuristic adaption of these 
two parameters thus models the adaptive learning behavior of agents. The proposed mechanisms are based on the 
concept of “winning” and “losing” in the well-known MAL algorithm WoLF (Win-or-Learn-Fast)38. Although 
the original meaning of “winning” or “losing” in WoLF and its variants is to indicate whether an agent is doing 
better or worse than its Nash-Equilibrium policy, this heuristic is gracefully introduced into the proposed model 
to evaluate the agent’s performance against the guiding opinion. Specifically, an agent is considered to be winning 
(i.e., performing well) if its opinion is the same with the guiding opinion and losing (i.e., performing poorly) oth-
erwise. The different situations of “winning” or “losing” thus indicate whether the agent’s opinion is complying 
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with the norm in the society. If an agent is in a losing state (i.e., its action is against the norm in the society), it 
needs to learn faster or explores more of the environment in order to escape from this adverse situation. On the 
contrary, it should decrease its learning and/or exploration rate to stay in the winning state.

Results
The dynamics of consensus formation in three different kinds of networks using static learning approach SL, 
and adaptive learning approaches SER, SLR and SBR are plotted in Fig. 1. The Watts-Strogatz model33 is used to 
generate a small-world network, with parameter p indicating the randomness of the network and k indicating the 
average number of neighours of agents. The Barabasi-Albert model34 is used to generate a scale-free network, with 
an initial population of 5 agents and a new agent with 2 edges added to the network at every time step. The results 
in Fig. 1 show that the three adaptive learning approaches under the proposed model outperform the static learn-
ing approach in all three networks in terms of a higher level of consensus and a faster convergence speed (except 
that SLR performs as well as SL in the scale-free network). Through dynamically adapting their learning behav-
iours during the opinion formation process, agents are able to reach an agreement more easily using the proposed 
adaptive learning approaches. In all networks, approach SBR is the most efficient approach, followed by SER and 
then SLR. This pattern of results demonstrates that a consensus can be further facilitated when agents adapt their 
learning rate and exploration rate simultaneously. The bottom row of Fig. 1 shows the dynamics of the agents’ 
opinions using adaptive learning approach SBR in the three networks. As can be seen, initially, the four opinions 
are adopted by the agents equally. As interactions proceed, the proportions of three opinions decrease gradually 
and one remaining opinion emerges as the consensus of the agents. It can also be observed that the different kinds 
of networks can produce various dynamics of consensus formation using the four learning approaches. Clearly, 
the scale-free network is the most efficient network for achieving high level of consensus compared with the 
other two networks. Previous studies have shown that this effect is due to the small graph diameter of scale-free 
networks11,39–41.

Figure 2 plots the comparison of efficacy (i.e., the average ratio of agents in the population that can achieve the 
consensus) of the four learning approaches in three different networks. The three adaptive learning approaches 
outperform the static learning approach in all three networks. For example, in square-lattice network, SL can only 
enable averagely 86.1% agents in the population to achieve a consensus. This performance is upgraded to as high 
as 92.2%, 91.9% and 95.7% using the three adaptive learning approaches, respectively. The scale-free network can 
bring about the highest level of consensus among the three networks, confirming that scale-free network is the 
most efficient network for forming consensus. Note that in scale-free networks, the efficacy of SER and SBR is a 
little below 1 due to the exploration process in these two approaches.

Table 1 summarizes the final performance of the different approaches in 10000 independent runs. In order to 
better demonstrate the different performance of these approaches, we also include the results when 100% agents 
have achieved the final consensus. Achieving 100% level of consensus is an extremely challenging issue due to the 

Figure 1.  Dynamics of consensus formation in three different kinds of networks. The above is average 
reward of agents in the network and the bottom are the results of the frequency of agents’ opinions using 
approach SBR. Each agent has 4 opinions to choose from and a memory length of 4 steps. Behaviour-driven 
approach is used for the guiding opinion generation method. In the small-world network, p =​ 0.1 and K =​ 12. In 
Q-learning, α =​ 0.1, ε =​ 0.01, and ε = .0 3i . β in Equation 6 is 0.1 and λ in Equation 7 and 8 is 0.1. The agent 
population is 100 and the curves are averaged over 10000 Monte Carlo runs.
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widely recognized existence of subnorms formed in difference areas in the network. Clearly, the adaptive learning 
approaches outperform the static learning approach in all aspect of comparison. For example, in the square-lattice 
network, the possibility that a norm can successfully emerge (i.e., effectiveness) using SL is quite low (i.e., 55.0% 
for 90% convergence, and 46.6% for 100% convergence). The adaptive learning approaches, however, can greatly 
increase the possibility of norm emergence (e.g., 86.7% for 90% and 100% convergence using SBR). As for effi-
ciency, it takes averagely 4288 steps for 100% convergence using SL, against 4113, 1180 and 1029 steps using the 
three adaptive learning approaches, respectively. To sum up, the adaptive learning approaches can achieve more 
robust formation of consensus among agents with fewer steps, compared with the static learning approach. The 
same pattern of results can also be observed in the small-world network and the scale-free network. The only 
difference is that SL can already perform very well in the scale-free network. The proposed three approaches, 
however, can further increase the performance to nearly 100% convergence in two different convergence levels.

The performance of the two different kinds of approaches to generate a guiding opinion is shown in Fig. 3. As 
can be seen, the performance-driven approach outperforms the behaviour-driven approach in terms of a higher 
level of convergence and a faster convergence speed. This result implies that it is more reasonable to use the most 
profitable opinion rather than the most adopted opinion in the past as the competing strategy in EGT. This is due 
to the fact that agents are aiming at maximizing their own rewards. If an opinion has brought about the highest 
reward among all the opinions in the past, this opinion is the most profitable one and thus can be more likely to 
be imitated by the others. Dissemination of this kind of profit opinions will increase the consistency of agents’ 
opinions, which will further increase the performance of these opinions. Thus, the consensus formation process 
can be promoted accordingly.

To have a better understanding of the dynamics under the proposed model, it is necessary to see how the crit-
ical learning parameters of learning rate and exploration rate evolve during the process of consensus formation. 

Figure 2.  Efficacy of the four learning approaches in different kinds of networks. The parameter settings are 
the same as in Fig. 1.

Square-lattice

C90% C100%

Effectiveness Efficiency Effectiveness Efficiency

SER 74.7% 1087 74.7% 1180

SLR 74.8% 1509 66.1% 4113

SBR 86.7% 970 86.7% 1029

SL 55.0% 1617 46.6% 4288

Small-world
90% convergence 100% convergence

Effectiveness Efficiency Effectiveness Efficiency

SER 91.7% 1692 91.6% 1735

SLR 84.2% 1969 71.6% 4077

SBR 98.4% 818 98.4% 862

SL 54.9% 2212 46.5% 4450

Scale-free
90% convergence 100% convergence

Effectiveness Efficiency Effectiveness Efficiency

SER 100% 181 100% 246

SLR 99.9% 183 93.1% 3075

SBR 100% 114 100% 162

SL 99.1% 331 90.4% 3204

Table 1.   Comparison of Effectiveness and Efficiency in the three networks using the four learning 
approaches.
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The dynamics of ε and α using the proposed learning approaches with different sizes of opinion space are shown 
in Fig. 4. In both cases of opinion space, the values of α and ε increase sharply at the beginning, and then drop 
gradually to nearly zero. This is because the whole agent system is still in chaos at the beginning of learning as 
agents are not sure which opinion is the best and thus express their opinions randomly. In this case, it is more 
likely that the agents are in a “losing” state caused by failed interactions among the agents. In order to get over 
the “losing” state, agents would increase their learning rate and/or exploration rate to learn faster and/or explore 
more from the interactions. As the process moves on, each agent’s opinion choice is more and more consistent 
with its guiding opinion. Thus, ε and α decrease accordingly to indicate a “winning” state of the agents. The dif-
ference between Fig. 4(a,b) indicates that, in 10-opinion scenario, the values change more drastically at first and 
then it takes a longer time for these values to decrease to zero. This is because agents are more likely to choose 
the same opinion for achieving a consensus in a smaller size of opinion space. When the number of opinions gets 
larger, the probability to find the right opinion as the consensus is greatly reduced. The large number of conflicts 
among the agents thus cause the agents to be in a “losing” state more often in a larger opinion space, and thus the 
consensus formation process is greatly prolonged.

Parameter εi  is a crucial factor in affecting the dynamics of consensus formation using SER and SBR, due to its 
functionality of confining the exploration rate to a predefined maximal value. It can be expected that, with differ-
ent sizes of opinion space, different values of εi  may have diverse impacts on the learning dynamics as agents can 
have different numbers of opinions to explore during learning. Figure 5 shows the dynamics of ε and correspond-
ing learning curves of consensus formation using SER when εi  is chosen from a set of {0.2, 0.4, 0.6, 0.8, 1}. Four 
cases are considered to indicate different sizes of opinion space, from small size of 4 opinions to large size of 100 
opinions. In case of 4 opinions, the dynamics of ε share the same patterns under different values of εi . The values 
spike sharply at the beginning process of learning, and then drop gradually to zero. The peaks of ε, however, differ 

Figure 3.  Comparison of the two different approaches to generate a guiding opinion in the model. The 
network topology is a small-world network, with p =​ 0.1 and K =​ 12. Other parameter settings are the same as in 
Fig. 1.

Figure 4.  Dynamics of ε and α using the proposed learning approaches. The network topology is a small-
world network with 100 agents, each having averagely 12 neighbours. Other parameter settings are the same as 
in Fig. 1.



www.nature.com/scientificreports/

8Scientific Reports | 6:27626 | DOI: 10.1038/srep27626

from each other, from around 0.1 when εi  =​ 0.2 to around 4.4 when εi  =​ 1. This is because a larger εi  enables the 
agents to explore more opinion choices during learning. Higher exploration accordingly causes more failed inter-
actions among the agents, and thus the exploration rate ε will increase further to indicate a “losing” state of the 
agent. The corresponding learning curves in terms of average rewards of agents indicate that the consensus for-
mation process is hindered when using a small value of εi . The same pattern of dynamics can be observed when 
the agents have 10 opinions. The only difference is that the peak values are higher than those in case of 4 opinions, 
and it takes a longer time for these values to decline to zero. The dynamics patterns, however, are quite different 
in cases of 50 and 100 opinions. In these two scenarios of large size of opinion space, the values of ε cannot con-
verge to zero when εi  =​ 1 and 0.8 in 104 time steps. This is because agents have a large number of alternatives to 
explore during the learning process, which can cause the agents to be in a state of “losing” consistently. This 
accordingly increases the values of ε until reaching the maximal values of εi . As a result, a consensus cannot be 
achieved among the agents, which can also be observed from the low level of average rewards at the bottom low 
of Fig. 5(c,d). Although ε can gradually decline to zero when εi  =​ 0.6, 0.4, and 0.2, the dynamics of consensus 
formation in these three cases vary a bit. The consensus formation processes are slower at first when ε = .0 6i , but 
then catch up with those when ε = .0 4i  and 0.2, and then keep faster afterwards. The general results revealed in 
Fig. 5 can be summarized as follows: (1) in a relatively small size of opinion space (e.g., 4 opinions and 10 opin-
ions), the values of ε under various εi  can converge to zero after reaching the maximal points, and a larger εi  in 
this case can bring about a more efficient process of consensus formation among the agents; and (2) when the size 
of opinion space becomes larger (e.g., 50 opinions and 100 opinions), a higher value of εi  can greatly hinder the 
process of consensus formation. A tipping point of εi  exists between promoting the consensus formation and 
prolonging it.

The results between SL and the adaptive learning approach SBR with different sizes of opinion space is given 
by Fig. 6(a). It can be seen that a larger number of available opinions results in a delayed convergence of consen-
sus among the agents. This is because a larger number of opinions are more likely to produce local clusters of 
conflicting opinions (i.e., sub-norms), leading to diversity across the population. It thus takes a longer time for 
the agents to eliminate this diversity and achieve a global consensus, and accordingly the process of consensus 
formation is prolonged throughout the network. In all cases, the adaptive learning approach SBR performs better 
than approach SL in terms of a faster convergence speed and a higher convergence level. In situations of 100 and 
200 opinions, the consensus formation process is still converging after 10000 steps when using SBR. This result 
shows that the proposed adaptive learning model is indeed effective for achieving consensus in a large opin-
ion space. The influence of population size on dynamics of consensus formation is shown in Fig. 6(b). In both 
approaches of SL and SBR, the convergence process is hindered as the population is growing larger. This result 
occurs because the larger the society, the more difficult to diffuse the effect of local learning to the whole society. 
This phenomenon can be observed in human societies where small groups can more easily establish social norms 
than larger groups31. The proposed adaptive learning approach SBR, however, can greatly facilitate consensus for-
mation in different population sizes. In cases of 100, 500 and 1000 population size, SBR can achieve almost 100% 

Figure 5.  Dynamics of ε and consensus formation with varying εi  in different sizes of opinion space. The 
top are the dynamics of ε in four cases of opinion space, and the bottom are the corresponding learning 
dynamics of consensus formation in each case. Parameter settings are the same as in Fig. 1.
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convergence, which is a great promotion from the low convergence levels using SL. In a population of 5000 agents, 
the consensus formation process is steadily facilitated to a level of 90% during 10000 steps using SBR, against a 
convergence level close to 70% using SL.

Figure 7 presents the performance of 100% consensus formation (i.e., all the agents reaching a consensus) 
using the four learning approaches in small-world networks with various randomness. As can be seen, it is more 
efficient for a consensus to emerge in a network with higher randomness. This is because increasing random-
ness can reduce the network diameter (i.e., the largest number of hops in order to traverse from one vertex to 
another37), and it is more efficient for a network to achieve a consensus in a network with smaller diameter11. The 
results also show that a minor increase of rewiring possibility p from 0 to 0.1, especially from 0.01 to 0.1, can bring 
about significant improvement of consensus formation, while further increasing the rewiring possibility from 
0.2 to 1.0 cannot cause a further significant improvement. This is due to the fact that the network randomness is 
already quite high when the rewiring possibility p is in-between [0.01, 0.1]. In all scenarios, the proposed learning 
approaches outperform the static learning approach in all three comparison criteria. Specially, when the random-
ness is high, approach SER and SBR can achieve a consensus with 100% possibility. This robust norm emergence, 
however, only takes very short converging time (e.g., 117 and 112 steps for SER and SBR, respectively, compared 
with 2984 steps for SL, when p =​ 1.0.).

Figure 8 shows the influence of number of neighbours K on consensus formation in small-world networks. 
The results imply that, in all scenarios, consensus formation is steadily promoted when the average number of 
neighbors increases. This effect is due to the clustering coefficient of the network, which is a measure of degree to 
which nodes in a graph tend to cluster together42. When the average number of neighbors increases, the clustering 
coefficient also increases. Therefore, agents located in different parts of the network only need a smaller number 

Figure 6.  Influence of sizes of opinion space (a) and population (b) on dynamics of consensus formation in 
small-world networks, comparing adaptive learning approach SBR with static learning approach SL. In the 
small-world networks, p =​ 0.1 and K =​ 12. In (a), the population size is 100, and in (b), the size of opinion space 
is 4. Other parameters are set to the default values as in Fig. 1.

Figure 7.  Influence of network randomness on consensus formation (100% convergence) in small-world 
networks. The rewiring possibility p is a parameter in the Watts-Strogatz model33 to indicate different levels 
of network randomness. When p =​ 0, the network is reduced to a regular ring lattice. Increasing rewiring 
probability p produces a network with increasing randomness. When p =​ 1, the network becomes a fully 
random network. The network population is 100 with each agent having averagely 12 neighbours (i.e., K =​ 12). 
Other parameter settings are the same as in Fig. 1.
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of interactions to reach a consensus. On the other hand, when agents have a smaller neighborhood size, they only 
interact with their fewer neighbors, which account for a smaller proportion of the whole population. This results 
in clusters of diverse opinions formed at different regions of the network. Such contradictory opinions conflict 
with each other in the network, and thus more interactions are needed to solve these conflicts and achieve a uni-
form consensus for the whole society. In all cases of neighborhood sizes, the three adaptive learning approaches 
can bring about more robust formation of consensus with a faster convergence speed and a higher convergence 
level than the static learning approach. As for effectiveness, the percentage of runs in which all the agents can 
achieve a consensus using SL is 1.8%, 22%, 46.5%, 59.8%, 77.0%, when K =​ {4, 8, 12, 16, 20}, respectively. The 
three adaptive learning approaches, however, can greatly increase the likelihood of consensus formation (e.g. 
{38.9%, 90.6%, 98.4%, 100%, 100%} for corresponding neighbourhood size using SBR). With the increase of K, 
the steps needed for achieving a consensus are reduced (from 6336 steps to 3832 when K increases from 4 to 20).  
In each case of neighbourhood size, the adaptive learning approaches require fewer steps for achieving a con-
sensus than SL. The improvement is more distinct using SBR and SER when K becomes larger. For example, 
when K =​ 20, it only takes 325 steps to achieve a consensus using SBR, which is against 3832 steps using SL. This 
demonstrates the benefits of adapting learning, especially adapting exploration rates, in boosting the efficiency 
of consensus formation. As for efficacy, the proportion of agents achieving the same consensus is {0.794, 0.827, 
0.871, 0.897, 0.932} using SL, respectively. This level of consensus can be increased to {0.907, 0.976, 0.992, 0.997, 
0.997} respectively using SBR, which implies that a much higher level of consensus can be achieved using the 
adaptive learning approaches.

We have also investigated how the average number of neighbours affects consensus formation in scale-free 
networks. The general result pattern is similar to that in small-world networks, i.e., the increase of average num-
ber of agents can boost the consensus formation among agents. As an example, Fig. 9 plots the dynamics of con-
sensus formation against the average number of neighbours in terms of parameter m (i.e., the number of edges 
connected to an existing node at each step in the Barabasi-Albert model) using adaptive learning approach SER. 
The result shows that as the average number of neighbours increases, the consensus formation process is greatly 
facilitated. In more detail, when m =​ 1, the effectiveness is 3%, which means that there are only 3% percentage 
of runs in which a 100% consensus can be achieved, and this consensus takes an average of 6032 steps to be 
established. When m is increased to 2, 3, 4, the effectiveness is greatly upgraded to 100%. This robust consensus 
formation, however, only takes an average of 228, 128, 112 steps, respectively.

Discussion
In general, two exclusive research paradigms, i.e., individual learning versus social learning, coexist in the lit-
erature for studying opinion dynamics in social networks, focusing on different perspectives of agent learning 
behaviours. The “individual learning” perspective considers that an agent learns from trail-and-error interactions 
solely based on its individual experience31, while the “social learning” perspective enables individuals to obtain 
information and update their beliefs and opinions as a result of their own experiences, their observations of oth-
ers’ actions and experiences, as well as the communication with others about their beliefs and behavior24,43. In 
this sense, the broad literature in statistics, especially statistical physics and social physics, has studied dynamics 
and evolution of opinions from a social learning perspective, focusing on macroscopic phenomenon achieved 
through local dynamics that are based on simple social learning rules, such as local majority or imitating a neigh-
bor7,20,25. Social learning can be conducted through either a Bayesian or a non-Bayaeian learning process, depend-
ing on whether agents update their opinions or beliefs given an underlying model of the problem24.

On the other hand, there is abundant work in the multiagent systems (MASs) community to investigate con-
sensus formation from individual learning perspective12,31,44. In this area, consensus is usually termed as social 
norm, and the process of consensus formation is thus alternated by the phrase of emergence of social norms. The 

Figure 8.  Influence of number of neighbours on consensus formation (100% convergence) in small-world 
networks. The network population is 100 and rewiring probability p is 0.1. Other parameter settings are the 
same as in Fig. 1.
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focus of studies in this area is to examine general mechanisms behind efficient consensus formation (i.e., norm 
emergence) while agents interact with each other using basic individual learning (particularly RL) methods. For 
example, Sen et al.31,45 proposed a framework for the emergence of social norms through random learning based 
on private local interactions. This work is significant because it indicates that agents’ private random learning is 
sufficient for emergence of social norms in a well-mixed agent population; Villatoro et al.12,37,42 investigated the 
effects of memory of past activities during learning on the emergence of social norms in different network struc-
tures, and used two social instruments to facilitate norm emergence in networked agent societies; More recently, 
authors in28,44,46 proposed a collective learning framework for norm emergence in social networks in order to 
model the collective decision making process in humans. Although these studies provide valuable insights into 
understanding efficient mechanisms of consensus formation, they share the same limitation to answer a criti-
cal question, that is, how can agent learning behaviours directly influence the process of consensus formation? 
In other words, learning parameters in these studies are often fine-tuned by hand and thus cannot be adapted 
dynamically during the process of consensus formation. This assumption is against the essence of human deci-
sion making in real-life, when people can dynamically adapt their learning behaviours during interaction and 
exchange of their opinions, rather than simply follow a fixed learning schedule. Our work, thus, takes a different 
perspective from the above studies by investigating the impact of adaptive behaviours during learning on consen-
sus formation. The main conclusion is that apart from various previous reported mechanisms such as collective 
interaction protocols and utilization of topological knowledge, learning itself can play a vital role in facilitating 
consensus formation among agents.

The highlight of the proposed model in this paper is the integration of social learning into the local individ-
ual learning in order to dynamically adapt agents’ learning behaviours for a better performance of consensus 
formation. Our work thus bridges the gap between the two distinct research paradigms for opinion dynamics by 
coupling a social learning process (through imitation in EGT) with a local individual learning process (i.e., RL). 
Although it can be expected that requiring communication among agents or additional information through 
social learning can facilitate formation of consensus, this is not straightforward in the proposed model as the 
synthesised information used in social learning is generated from trail-and-error individual learning interactions, 
and this information is then utilized as a guide to heuristically adapt the local learning further. Tight coupling 
between these two learning processes can make the whole learning system rather dynamic. However, by synthe-
sising the individual learning experience into competing strategies in EGT and adapting local learning behav-
iours based on the principle of “Win-or-Learn-Fast”, our work has illustrated that this kind of interplay between 
individual learning and social learning is indeed helpful in facilitating the formation of consensus among agents.

The long term goal of this research is to gain a deeper understanding of the role of individual learning and 
social learning in facilitating consensus formation in social networks. Although we only focus on EGT as the 
social learning strategy and Q-learning as the individual learning strategy in this paper, there are various kinds 
of individual learning as well as social learning strategies in the literature. For example, social learning can be 
conducted as a majority voting process, a strategy diffusion process47,48, an epidemics infection process49, or a 
crowd herding process7. It thus would be interesting to test the proposed framework using other types of learning 
strategies in the model in order to analyze their influence on the dynamics of opinions. Moreover, although the 
model proposed in this paper is just a theoretical one, the idea of coupling an individual learning process with a 
social learning process in the evolution process of opinions would provide some useful insights into experimental 
investigations of human’s adaptive behaviours in real scenarios. Such insights could thus be helpful to interpret 
fundamental mechanisms of consensus formation in human societies.

Figure 9.  Influence of number of neighbours on consensus formation in scale-free networks. The scale-
free networks are generated according to the Barabasi-Albert model, starting from 5 nodes and a new node 
with m =​ 2 edges connected to an existing node at each step. This will yield a network with an average degree of 
2m. The figure plots how the parameter of m affects the consensus formation process using adaptive learning 
approach SER in a network population of 100 agents.
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In the model, two main challenging technical issues are: (1) how to generate guiding opinions simply based 
on agents’ own historical learning experience? and (2) how to adapt agents’ local learning behaviors based on 
the generated guiding opinions? To solve the former problem, the historical learning experience of each agent is 
synthesised into a strategy that competes with other strategies in the population based on the principle of EGT. 
The strategies that have better performance are more likely to survive and thus be accepted by other agents. For 
the latter, the concept of “winning” or “losing” in the well-known Multi-Agent Learning (MAL) algorithm WoLF 
(Win-or-Learn-Fast)38 is elegantly borrowed to indicate whether an agent’s behavior is consistent with the guid-
ing opinion. According to the “winning” or “losing” situation, agents then can dynamically adapt their learning 
behaviors in local layer learning. It should be noted that the WoLF heuristic applied in the model is a quite general 
mechanism that has been widely used in different forms by previous studies. For example, in the study50, the 
winning or losing concept is analogous to whether the strategy of a player is the same as that of the majority of 
other players. If the player’s strategy is the same as that of the majority of its neighbours, the player is considered 
to be in a winning state and thus its learning activity will be low. Conversely, if the strategy is different from that 
of the majority (i.e., it is losing), the learning activity of the player will be high. It has been shown that this kind 
of simple heuristic is effective for achieving consensus of cooperation in social dilemmas. Another example is the 
well-known “win-stay, lose-shift” (WSLS) strategy51, which has also been shown to be an effective mechanism for 
solving cooperation problems in social dilemmas. Using WSLS, an agent repeats the previous move if the result-
ing payoff has met its aspiration level and changes otherwise. Although the WoLF heuristic in our model is real-
ized in a different way from the the above models, the main principle embodied in them is quite similar, namely, 
an agent should act (e.g., learn, copy or transform it behaviours) slowly when it is performing well and fast oth-
erwise. We therefore expect the WoLF principle to be a general and effective mechanism for modelling human’s 
adaptive behaivours in resolving conflicts in human societies. Further empirical investigations are needed to ver-
ify this hypothesis as this could lead to new interesting results in both behavioral economics and social sciences.

References
1.	 Quattrociocchi, W., Caldarelli, G. & Scala, A. Opinion dynamics on interacting networks: media competition and social influence. 

Sci. Rep. 4, 4938 (2014).
2.	 Zhang, W., Lim, C. C., Korniss, G. & Szymanski, B. K. S. Opinion dynamics and influencing on random geometric graphs. Sci. Rep. 

4, 5568 (2014).
3.	 Vilone1, D., Ramasco1, J. J., Sanchez, A. & Miguell, M. S. Social and strategic imitation: the way to consensus. Sci. Rep. 2, 686 (2012).
4.	 Yang, H. X. & Huang, L. Opinion percolation in structured population. Computer Physics Communications 192, 124–129 (2015).
5.	 Stauffer, D. Sociophysics simulations ii: opinion dynamics. Modeling Cooperative Behavior in the Social Sciences. 56–68 (2005).
6.	 Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 

(2006).
7.	 Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009).
8.	 Javarone, M. A. Social influences in opinion dynamics: The role of conformity. Phys. A 414, 19–30 (2014).
9.	 Galam, S. Rational group decision making: A random field Ising model at T =​ 0. Phys. A 238, 66–80 (1997).

10.	 Gekle, S., Peliti, L. & Galam, S. Opinion dynamics in a three-choice system. Phys. Cond. Matt. 45, 569–575 (2005).
11.	 Delgado, J. Emergence of social conventions in complex networks. Artificial intelligence 141, 171–185 (2002).
12.	 Villatoro, D., Sabater-Mir, J. & Sen, S. Robust convention emergence in social networks through self-reinforcing structures 

dissolution. ACM Transactions on Autonomous and Adaptive Systems 8, 2–20 (2013).
13.	 Javarone, M. A. Competitive dynamics of lexical innovations in multi-layer networks. Int. J. Mod. Phys. C 25 (2014).
14.	 Yang, H. X. & Wang, B. H. Disassortative mixing accelerates consensus in the naming game. Journal of Statistical Mechanics Theory 

& Experiment 0100 (2015).
15.	 Holley, R. A. & Liggett, T. M. Ergodic theorems for weakly interacting infinite systems and the voter model. Annals of Probability 3, 

643–663 (1975).
16.	 Galam, S. Minority opinion spreading in random geometry. The European Physical Journal B-Condensed Matter and Complex 

Systems 25, 403–406 (2002).
17.	 Nowak, A., Szamrej, J. & Latané, B. From private attitude to public opinion: A dynamic theory of social impact. Psych. Rev. 97, 362 

(1990).
18.	 Sznajd-Weron, K. & Sznajd, J. Opinion evolution in closed community. I. J. Mod. Phys. C 11, 1157–1165 (2000).
19.	 Deffuant, G., Neau, D., Amblard, F. & Weisbuch, G. Mixing beliefs among interacting agents. Advances in Complex Systems 3, 87–98 

(2000).
20.	 Hegselmann, R. & Krause, U. Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial 

Societies and Social Simulation 5 (2002).
21.	 Deng, L., Liu, Y. & Zeng, Q. A. How information influences an individual opinion evolution. Phys. A 391, 6409–6417 (2012).
22.	 Szolnoki, A. & Perc, M. Information sharing promotes prosocial behaviour. New J. Phys. 15, 053010 (2013).
23.	 Szabo, G. & Fáth, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
24.	 Acemoglu, D. & Ozdaglar, A. Opinion dynamics and learning in social networks. Dynamic Games and Applications 1, 3–49 (2011).
25.	 Perc, M. & Szolnoki, A. Coevolutionary games–a mini review. BioSystems 99, 109–125 (2010).
26.	 Gargiulo, F. & Ramasco, J. J. Influence of opinion dynamics on the evolution of games. PLoS ONE 7, e48916–e48916 (2012).
27.	 Szolnoki, A. & Perc, M. Conformity enhances network reciprocity in evolutionary social dilemmas. J. R. Soc. Interface 12, 20141299 

(2015).
28.	 Yu, C., Zhang, M., Ren, F. & Luo, X. Emergence of social norms through collective learning in networked agent societies. Proc. of 

AAMAS2013, pp. 475–482 (2013).
29.	 Maity, S. K., Porwal, A. & Mukherjee, A. Understanding how learning affects agreement process in social networks. 2013 

International Conference on Social Computing (SocialCom), pp. 228–235 (2013).
30.	 Sutton, R. & Barto, A. Reinforcement learning: An introduction (The MIT press, 1998).
31.	 Sen, S. & Airiau, S. Emergence of norms through social learning. Proc. of 20th IJCAI, pp. 1507–1512 (2007).
32.	 Airiau, S., Sen, S. & Villatoro, D. Emergence of conventions through social learning. Autonomous Agents and Multi-Agent Systems 

28, 779–804 (2014).
33.	 Watts, D. & Strogatz, S. Collective dynamics of small-world networks. Nature 393, 440–442 (1998).
34.	 Barabási, A. & Albert, R. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
35.	 Watkins, C. & Dayan, P. Q-learning. Mach. Learn. 8, 279–292 (1992).
36.	 Javarone, M. A. Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents. Eur. Phys. J. B 89, 1–6 (2016).



www.nature.com/scientificreports/

13Scientific Reports | 6:27626 | DOI: 10.1038/srep27626

37.	 Villatoro, D., Sen, S. & Sabater-Mir, J. Topology and memory effect on convention emergence. Proc. of WI-IAT’09, pp. 233–240 
(2009).

38.	 Bowling, M. & Veloso, M. Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215–250 (2002).
39.	 Hasan, M. R., Raja, A. & Bazzan, A. Fast convention formation in dynamic networks using topological knowledge. In Proc. of 29th 

AAAI, pp. 2067–2073 (2015).
40.	 Shibusawa, R. & Sugawara, T. Norm emergence via influential weight propagation in complex networks. 2014 European Network 

Intelligence Conference. pp. 30–37 (2014).
41.	 Sugawara, T. Emergence of conventions for efficiently resolving conflicts in complex networks. Proc. of WI-IAT’14. pp. 222–229 

(2014).
42.	 Villatoro, D., Sabater-Mir, J. & Sen, S. Social instruments for robust convention emergence. Proc. of 22nd IJCAI, pp. 420–425 (2011).
43.	 Laland, K. N. Social learning strategies. Learning and Behavior 32, 4–14 (2004).
44.	 Yu, C., Zhang, M. & Ren, F. Collective learning for the emergence of social norms in networked multiagent systems. IEEE 

Transactions on Cybernetics 44, 2342–2355 (2014).
45.	 Mukherjee, P., Sen, S. & Airiau, S. Norm emergence under constrained interactions in diverse societies. Proc. of 7th AAMAS, pp. 

779–786 (2008).
46.	 Hao, J., Sun, J., Huang, D., Cai, Y. & Yu, C. Heuristic collective learning for efficient and robust emergence of social norms. Proc. of 

14th AAMAS, pp. 1647–1648 (2015).
47.	 Watts, D. J. & Dodds, P. S. Influentials, networks, and public opinion formation. Journal of consumer research 34, 441–458 (2007).
48.	 Moreno, Y., Nekovee, M. & Pacheco, A. F. Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, 066130 (2004).
49.	 Hethcote, H. W. The mathematics of infectious diseases. SIAM review 42, 599–653 (2000).
50.	 Szolnoki, A., Wang, Z. & Perc, M. Wisdom of groups promotes cooperation in evolutionary social dilemmas. Sci. Rep. 2, 576 (2012).
51.	 Nowak, M. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 

56–58 (1993).

Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant 61502072, 61572104 
and 61403059, and Post-Doctoral Science Foundation of China under Grants 2014M561229 and 2015T80251.

Author Contributions
C.Y. proposed the model and wrote the main manuscript text; J.H. gave constructive discussions about the model; 
H.L. did the experiments and prepared all the figures. Z.W., J.M., F.R. and G.T. help proofreading the manuscript. 
All authors have reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yu, C. et al. Modelling Adaptive Learning Behaviours for Consensus Formation in 
Human Societies. Sci. Rep. 6, 27626; doi: 10.1038/srep27626 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

	Model

	Results

	Discussion

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Dynamics of consensus formation in three different kinds of networks.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Efficacy of the four learning approaches in different kinds of networks.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Comparison of the two different approaches to generate a guiding opinion in the model.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Dynamics of ε and α using the proposed learning approaches.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Dynamics of ε and consensus formation with varying in different sizes of opinion space.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Influence of sizes of opinion space (a) and population (b) on dynamics of consensus formation in small-world networks, comparing adaptive learning approach SBR with static learning approach SL.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Influence of network randomness on consensus formation (100% convergence) in small-world networks.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Influence of number of neighbours on consensus formation (100% convergence) in small-world networks.
	﻿Figure 9﻿﻿.﻿﻿ ﻿ Influence of number of neighbours on consensus formation in scale-free networks.
	﻿Table 1﻿﻿. ﻿  Comparison of Effectiveness and Efficiency in the three networks using the four learning approaches.



 
    
       
          application/pdf
          
             
                Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27626
            
         
          
             
                Chao Yu
                Guozhen Tan
                Hongtao Lv
                Zhen Wang
                Jun Meng
                Jianye Hao
                Fenghui Ren
            
         
          doi:10.1038/srep27626
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep27626
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep27626
            
         
      
       
          
          
          
             
                doi:10.1038/srep27626
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27626
            
         
          
          
      
       
       
          True
      
   




