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Research on residual GM 
optimization based on PEMEA‑BP 
correction
Junhang Duan1*, Ling Zhu2, Wei Xing3, Xi Zhang4, Zhong Peng4 & Huating Gou4

With the advantages of small samples and high accuracy, Grey Model (GM) still has two major 
problems need to be addressed, high input data requirements and large margin of error. Hence, this 
paper proposes an algorithm based on Populational Entropy Based Mind Evolutionary Algorithm-
Error Back Propagation Training Artificial Neural Algorithm to modify GM residual tail, which will 
not only keep the advantages of GM, but also expand its scope of use to various non-linear and 
even multidimensional objects. Meanwhile, it can avoid defects of other algorithms, such as slow 
convergence and easy to fall into the local minimum. In small samples data experiments, judging from 
SSE, MAE, MSE, MAPE, MRE and other indicators, this new algorithm has significant advantage over 
GM, BP algorithm and combined genetic algorithm in terms of simulation accuracy and convergence 
speed.

The development of forecasting technology over the last decade contributed to the construction of approximately 
150 forecasting methods, including the method based on market research analysis, Delphi method based on 
expert opinion, time series method based on similarity, regression analysis, grey prediction model and artificial 
neural network methods, etc. Among them, the grey prediction model is based on the grey systems theory, mainly 
designed to solve the uncertainty problems of “small samples” and “poor information” which are difficult for 
probability theory statistics and fuzzy mathematics. Grey systems theory use 3 colors, black, grey and white to 
describe the state of a system. According to the degree of its inaccuracy due to the lack of information, the system 
can be described from black through grey to white—from completely missed information to completely known 
information. Since in reality inaccuracy is inevitable, black and white situations seldom occur. Most situations fall 
somewhere in between, i.e., we have only partial information, which we call “grey”. Based on this understanding, 
the grey systems theory advocates that fragment information can also be used to speculate about the unknown 
information and the whole picture; it is not regarding the perfect speculation, it is concerning the development 
and patterns analysis and description of the system. It is similar to difference-differential equation model, which 
is compatible with difference, differential, index, and can be considered as a time-varying function. The biggest 
advantage of grey prediction model is that it does not require the support of a large amount of data, nor does it 
require the data to be subject to typical distribution to achieve better prediction results.

Literature and review.  Debnath and Mourshed1 has summarized 50 different prediction methodsin their 
previous study, they found that artificial neural network (ANN) model was the most widely used one, and the 
second was support vector machine (SVM), followed by autoregressive integrated moving average (ARIMA) 
method, fuzzy logic (FL), linear regression (LR) and GM. However, predicted results of these single models are 
not as ideal as those of the mixed mode2. Rana et al.3 in their research proposed a way of two-dimensional (2D) 
interval forecasts. Their algorithm uses support vector regression method to carry out 2D interval forecasting 
solar energy. Currently, a considerable amount of researches were conducted on grey models, but primarily focus 
on the optimization of the model, the improvement of its simulation and prediction effects. The grey prediction 
model has developed rapidly, it has been widely used in prediction of pollutant, new energy industry4, electric 
power forecasting and petroleum production5. Wang et al.6 proposed a GM based on buffer operators. He used 
the buffer operator to identify the structural variation data. GA has been used to optimize the parameters. The 
method efficiently elevated the prediction accuracy. Sun et al.7 put forward a new algorithm using weighted 
Markov chain and grey model to obtain seasonal index of data. This algorithm aims to gain high-accuracy 
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prediction in energy generation. Zheng8 utilized the Monte-Carlo simulation method to compare the discrete 
grey model (DGM) and traditional GM, finding that the predictive capabilities of the two models for random 
sequences conforming to normal distribution are nearly equivalent. However, the predictive capabilities of 
DGM for the other aspects of random sequences are all superior to those of GM. Ma et al.9 proposed a fractional 
time delayed grey model to solve the time delayed effect and improve fractional GM. In order to optimize the 
value and grey derivatives, Tan10 improved background value and redefined the solution formula for background 
value. Bo and Wei11 established a new GM with a higher prediction capability by using the weighted mean of 
forward and backward difference quotients as the whitening value of grey derivative of GM model. Yuan et al.12 
established a hybrid model by combining autoregressive integrated moving average (ARIMA) model with GM 
model to predict the energy consumption of China. Gatabazi et al.13 combined the grey model and Lotka–Volt-
erra model to assess the interaction between cryptocurrencies. Zeng et al.14 established a new grey dynamic pre-
diction model, a linear correction term, and a random disturbance term to the traditional GM (1, N) model to 
improve the prediction accuracy. In order to predict the non-equidistant sequences with integral range or digital 
range, Yao et al.15 proposed a generalized discrete grey model. By adopting background value optimization and 
central-point triangular whitenization weight function in GM and Markov chain, Ye et al.16 built an improved 
Grey–Markov forecasting model. Jeffrey Ofosu-Adarkwa17 develops an interval grey number-based approach 
to calculate the relative uncertainty. The proposed model, V-GM (1, N), is found to give the high accuracy in 
simulating the actual cement industry CO2 emissions data from 2005 to 2018. Xu18 proposed a new forecasting 
method to forecast greenhouse gas emissions in China from 2020 to 2025. Their model was a combination of the 
rolling grey prediction model and a buffered rolling method. Also there are other research outcomes such as Luo 
Youxin’s research on non-equal spacing sequence modeling, Liu Sifeng’s19 on the basic form and scope of GM (1, 
1), Salmeron’s, Jose L., and Zhang Qishan’s on the improvement of model accuracy through combining the grey 
systems and other soft computing methods, Wang Zhengxin’s20 on the periodic GM (1,1) of power consump-
tion, Wang Jianzhou’s5 on a multi-objective Ant Lion Optimizer to improve GM, Wang Qiang’s21 on a nonlinear 
dynamic GM to predicts oil consumption, and Zhang Q’s22 on metabolic GM and so on.

Methods and innovations.  Similar to other methods, the grey model method also bears the limitation 
of insufficient accuracy and large error. Hence, the issue of improving the accuracy on the premise of multiple 
types of input has received considerable critical attention from researchers dedicated to GM. An effective way 
to correct and improve the simulation accuracy, which is called residual grey model, is to set a model for actual 
sequence value x(0)(k) and the residual sequence ε(0)(k) of analog sequence value x̂(0)(k) . Although the residual 
grey model simulation is known for its high accuracy, it is set under restricted conditions, that is, the tail segment 
eligible for modeling is linear with the same symbol. However, in reality, most sequences are in wave form or 
highly non-linear23–25. It is impossible to construct grey models for them to use the method of the residual tail. 
This paper proposes a new method based on Populational Entropy Based Mind Evolutionary Algorithm-Error 
Back Propagation Training Artificial Neural Algorithm (PEMEA-BP) to correct the residual tail segment to solve 
this problem. The basic idea is as follows: (a) Using the BP neural network to realize the mapping from N dimen-
sion to M dimension space and the ability to imitate multiple functions without having to assume that there is 
a certain relationship between data26–28. Take the residual tail as sample, enter it into the trained BP artificial 
neural network model, and obtain the effective residual sequence prediction value ε̂(0)(i) ; (b) To solve the prob-
lems that the BP artificial neural network is apt to fall into the local minimum and has low convergence speed, 
this new method adopt the Populational Entropy Based Mind Evolutionary Algorithm (PEMEA) to modify and 
output optimal connection value; (c) Obtain the final predicted value through residual grey model theory. The 
improved algorithm has the advantage of small GM residual model sample, high advantages of accuracy and 
the expanded the use scale which even covers the various nonlinear and multidimensional object. The practical 
application demonstrated that is algorithm is superior to other mainstream algorithms not only in analog accu-
racy but also in convergence speed.

In brief, this paper contributes in two aspects: (a) Our algorithm extends the use of the grey residual model, 
mainly expands the applicable scope of tail-segment data to include data with different sign and non-linear data. 
(b) We bring forward an algorithm to rectify the disruptive nature of BP via PEMEA, that is its tendency toward 
local optimality and slow convergence.

Residual grey model
Grey model is among the most widely used model of the grey prediction theory, especially the mean value GM (1, 
1) model proposed by Professor Deng Julong. When the mean G M (1, 1) modeled fail to meet the requirements, 
the residual model is adopted and amend it. The construction process of mean G M (1, 1) model is as follows:

1.	 Construct the 1-AGO sequence of X sequence29.

 Set sequence X(0) = (x(0)(1), x(0)(2) . . . , x(0)(n)), wherein x(0)(k) ≥ 0, k = 1, 2 . . . , n. And X(1) is the 1-AGO 
sequence of X(0) : X(1) = (x(1)(1), x(1)(2) . . . , x(1)(n)) , among which

2.	 Set the mean sequence Z(1) of the 1− AGO sequence

(1)x(1)(k) =
k

∑

i=1

x(0)(i), k = 1, . . . n
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 Z(1) = (z(1)(2), z(1)(3) . . . , z(1)(n)) , among which

The above two steps are to “whiten” the existing data by constructing the 1-AGO sequence and the mean value 
sequence respectively, so as to fully explore its inherent laws and information. 

3.	 Construct and solve the whitening differential equation.

 Set x(0)(k)+ az(1)(k) = b as the mean value form of G M (1, 1), hence the whitening differential equation 
would be:

Set the parameter vector as â = (a, b)T , therefore least squares method could be used to estimate

4.	 Calculate the response time.

 Parameter vector â could be calculated from (4) and (5), therein—a is development coefficient, which reflects 
the development trend of x̂(1) and x(0) , and b is the gray action. The time response of x̂(1)(k) would be:

From (6), the reduced reduction equation would be:

And the analog sequence would be obtained from (8).

5.	 Calculate error.

 The prediction results are evaluated by square sum error (SSE), mean absolute error (MAE), mean square error 
(MSE), mean absolute percentage error (MAPE), and mean relative error (MRE), as in Eqs. (9) to (13):

(2)z(1)(k) = 1

2
(x(1)(k)− (x(1)(k − 1))

(3)dx(1)

dt
+ ax(1) = b

(4)â =(BTB)−1BTY

(5)Y =











x(0)(2)

x(0)(3)
...

x(0)(n)











,B =











−z(1)(2) 1

−z(1)(3) 1
...

...

−z(1)(n) 1











(6)x̂(1)(k) =
(

x(0)(1)− b

a

)

e−a(k−1) + b

a
, k = 1, 2 . . . , n

(7)x̂(0)(k) =x̂(1)(k)− x̂(1)(k − 1), k = 1, 2 . . . , n

(8)x̂(0)(k) =(1− ea)

[(

x(0)(1)− b

a

)

e−a(k−1)

]

, k = 1, 2 . . . , n

(9)SSE =
n

∑

i=1

(x(0)(i)− x̂(0)(i))
2

(10)MAE = 1

n

n
∑

i=1

∣

∣

∣
x(0)(i)− x̂(0)(i)

∣

∣

∣

(11)MSE = 1

n

n
∑
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(x(0)(i)− x̂(0)(i))
2

(12)MAPE =
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n
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∣

∣

∣
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n
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6.	 Construct residual sequence and conduct conditional decision.

If the accuracy is not up to the requirement, the residual tail segment method is used for correction. The 
residual sequence is defined as:

If ∀k ≥ k0 , the symbol of k0 is the same as that of ε(0)(k) and n− k0 ≥ 4 , then

is modellable residual segment, which can be constructed according to steps (1) to (4). Its response time after 
the reduced reduction correction is:

That is, the analog value of the G M (1, 1) model is used as the prediction result before k0 , and the simulated 
value after the residual segment compensation is used as the prediction result after k0 . Then perform the error 
test again and put it into use.

BP artificial neural algorithm and thinking evolutionary algorithm based 
on population evolution entropy
BP artificial neural algorithm.  Artificial neural network can simulate human brain to guide the pro-
cess some highly complex nonlinear problems through simple algorithms. It is a complex network system that 
reflects the essential characteristics of human brain30. Artificial neural network has the characteristics of dis-
tributed storage, parallelism and adaptability, etc. which can effectively deal with some uncertain and ambigu-
ous problems, because it is an operational model31. BP neural network is the most widely used artificial neural 
network, which mainly trained by error back propagation, usually descent method32, i.e., the correction is com-
pleted in accordance with the direction of the negative gradient of the error function. It includes the following 
two directions: (a) Signal forward propagation. The sample data enters the input layer, passes through the hidden 
layer, and outputs the result at the output layer. The output data is compared with the expected value, and if the 
expected value is met, end the process. Otherwise, it will be returned in the reverse direction. (b) Error back 
propagation. If the output value greatly differentiates from the expected value, the error signal would propagate 
backwards, from the output layer to the hidden layer to the input layer, the value and threshold are continuously 
modified during the propagation process to minimize the error value.

Taking the three-layer BP neural network as an example, the input vector is X = (x1, x2 . . . , xi , . . . xn)
T , the hid-

den layer input vector is Y = (y1, y2 . . . , yj , . . . ym)
T , the output layer output vector is o = (o1, o2 . . . , ok , . . . ol)

T , 
the expected output vector is D = (d1, d2 . . . , dj , . . . dl)

T , the value matrix of the training sample from the input 
layer to the hidden layer is V = (v1, v2 . . . , vj , . . . vm)

T , wherein vj represents the neuron value vector of j in the 
hidden layer, the value matrix of hidden layer to the output layer is W = (w1,w2 . . . ,wk , . . .wl)

T , in which wk 
represents the neuron value vector of k in output layer .

For the hidden layer:

For the output layer to satisfy:

The activation function of each layer can be a unipolar, bipolar Sigmoid or linear function. For a three-layer 
BP artificial neural network (one input layer, one hidden layer, and one output layer), its algorithm process is: 

1.	 Initialization. Initialize the value matrix W and V , assign them with random numbers. The learning rate 
η ∈ (0, 1) , and training precision Emin is positive decimal.

2.	 Input P training sample XP , calculate each component of Y and O.
3.	 Calculate the network error. 

4.	 Check the error signal δok and δyj  of each layer. 

(14)ε(0) = (ε(0)(1), ε(0)(2), . . . , ε(0)(n)) = (x(0)(1)− x̂(0)(1), x(0)(2)− x̂(0)(2), . . . , x(0)(n)− x̂(0)(n))

(15)
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(16)x̂(0)(k + 1) =


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5.	 Adjust the values of each layer, calculate each component of W and V. 

6.	 Check whether the training process can be ended, including the times of completed training and accuracy 
requirements.

7.	 Make predictions.

Populational entropy based mind evolutionary algorithm (PEMEA).  Mind Evolutionary Algo-
rithm (MEA) is an evolutionary algorithm simulating the human mind evolutionary progress, which mainly 
uses convergence and alienation to replace the individual optimization by group optimization and avoid the 
defects of genetic algorithm. The convergence operation is the process of becoming the winner through indi-
vidual competition within the group, while the alienation operation is the process of sub-group competition. 
This process ensures that new points are continuously explored throughout the solution space. Convergence and 
alienation operations are iteratively performed until the algorithm termination condition is met. The positive 
feedback mechanism in MEA is conducive to the development of the group to survive, the negative feedback 
mechanism to prevent the algorithm premature and avoid falling into the local optimal solution. Structurally 
speaking, the parallelism of MEA has high search efficiency and is also exceedingly robust to interference33.

PEMEA introduces the thermodynamic entropy concept to form an entropy based sampling optimization 
method to estimate the search space, making exploration more adequate and more purposeful34. When solving 
the optimization problem, the MEA algorithm first randomly generates the initial population of the scale N in 
the solution space, performs local search in the vicinity of each individual through the convergence operation, 
and then a new individual is generated globally by the alienation operation to supplement the eliminated partial 
solution. As evolution progresses, population progress gradually approaches the optimal solution. The population 
evolution entropy characterizes the degree to which the population is close to the optimal solution. At the begin-
ning of evolution, the distribution is completely random, and the optimal solution is completely undetermined. 
At this time, the entropy value H is the largest. As the evolution progresses, the population gradually grasps 
the change of the optimal solution, and slowly determines it until it is completely affirmed. From the change of 
entropy value, the higher the position of the optimal solution is, the smaller the search range of the algorithm is. 
The efficiency of the algorithm becomes higher and the entropy value H gradually reduces. When the popula-
tion is already distributed in the limited range of optimal solution, the entropy value H reaches a minimum. In 
the PEMEA algorithm, the alienation operation ensures the global traversal of the population, avoiding local 
optimization, and the convergence operation achieves the task of “fine search”. Therefore, linking the change of 
evolutionary entropy with the convergence search width will improve the searching efficiency of MEA.

Set σi as the i generation of convergence variance, M as population size, mi represents the individual in the 
population which is assigned to the interval i, p̂i represents the probability that an individual appears in interval 
i. ĤP(i) is the evolutionary entropy estimate of the i generation population, and the relationship between σi and 
ĤP(i) is expressed as follows:

Evolutionary entropy as:

The steps of the PEMEA algorithm are as follows: 

(20)δok =(dk − ok)ok(1− ok)

(21)δ
y
j =

(

l
∑

k=1

δokwjk

)

yj(1− yj)

(22)�wjk = η(dk − ok)ok(1− ok)yj

(23)�vij = η

(

l
∑

k=1

δokwjk

)

yj(1− y)xi

(24)
{

w′
jk=wjk+�wjk

v′ ij=vij+�vij

(25)σ 2
i =C · ĤP(i)

(26)C = 1

lnM

(27)ĤP(i) =−
r

∑

i=1

p̂i ln p̂i

(28)p̂i =
mi

M
(i = 1, 2, . . . , r)
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1.	 Initialization. The initial population is randomly generated in the solution space, and the score is calculated. 
The score function is the reciprocal of the mean square error of the sample. Select NS highest individuals 
to form the winner sub-population, publish it on the global bulletin board and sort them, and the rest are 
temporary sub-populations, which are randomly distributed to form NT temporary sub-populations.

2.	 Convergence. The convergence operation is carried out in the above two sub-populations, and the progeny 
individuals are randomly generated centering on the parent sub-population, and the production process is 
as shown in (29). Then, the local search and competition are conducted among the winners to generate the 
new winners are generated. The individual information will be published on the local bulletin board, and 
the score of each sub-population winner is the score of the sub-population. 

wherein r is the random number generated by the standard normal distribution N(0, 1) . Equations (25) to 
(29) indicate that as the entropy value becomes smaller and smaller, the search width becomes smaller and 
smaller, the search accuracy would become finer and finer, and the search efficiency also increases.

3.	 Alienation. The alienation operation is carried out in a global scope, and the sub-populations with low scores 
are replaced by sub-populations with high scores, and the sub-populations that are replaced are redistributed 
in space to form new temporary sub-populations.

4.	 Judgment convergence. If the conditions to end the process is not reached, repeat (25) to (29).

Residual GM network model based on BP‑PEMEA correction
Reasons behind BP‑PEMEA.  Since its inception, GM has become essential for a wide range of fields and 
achieved considerable promising application results. But it is not perfect. The biggest challenges are its large pre-
diction bias and narrow scope of application35. The modellable residual tail segment can effectively correct GM 
to improve the prediction accuracy, but it strictly limited the conditions that at least more than 4 tail segments 
should have the same residual sign. Geometrically speaking, the whole simulated sequence tail segment must be 
adjusted above or below the actual sequence segment and to be corrected through providing reverse adjustment. 
However, such a situation is not shared in practical applications; most practical situations present the feature of 
volatility or alternation, which can greatly limit the application of GM.

This paper includes BP artificial neural network to modify the tail segment mainly due to its three character-
istics: (a) Its capability of simulating a variety of functions, such as nonlinear functions, piecewise functions, etc. 
(b) It does not require to assume in advance that there is a certain type of functional relationship between the 
data, and the artificial neural network can establish the correlation relationship according to the provided train-
ing data and its own attributes without designing the parameter distribution in advance. (c) It can realize high 
information utilization and effectively avoid the loss of information triggered by positive and negative offset in 
the data processing process. Therefore, the artificial neural network is particularly suitable for residual correction 
of the GM (1, 1) model and effectively provide the required “supplemental amount”. However, BP artificial neural 
network also has its own shortcomings, the most crucial drawbacks are: (a) The learning speed of convergence 
is slow. Gradient descent method is the core of BP algorithm. Because of the complex and variable nonlinearity 
of its processing, the appearance of “zigzag phenomenon” is inevitable. In the flat area of the error surface, the 
error gradient will have some small changes. Even with a larger value adjustment, the error reduction is still 
slow. (b) It is easy to get a local minimum. After the initial value is given to the network, the value is adjusted 
according to the forward direction and error reversed. If the initial value is improperly assigned, it may fall into a 
local minimum. Therefore, the BP algorithm needs to be further modified. According to the current mainstream 
algorithms, the BP model based on genetic algorithm (GA-BP) has higher accuracy, but its convergence speed 
is slower, and it is not guaranteed to obtain the global maximum. This is because the GA algorithm’s crossover 
and mutation operations can produce both good genes and inferior disruptive genes, indicating that evolution 
is not oriented in genetic algorithms. To solve the above-mentioned problems, we use PEMEA to amend the BP 
artificial neural networks. Unlike genetic algorithms, MEA records the competition information of individual 
and sub-populations for each iteration, allowing evolution to move in a favorable direction. In other words, 
evolution is directional in MEA. Meanwhile, the convergence and dissimilation operations in MEA algorithm 
represent the selection within the sub-population and the whole group respectively, and the two processes are 
developed in parallel to improve the global search efficiency of the whole system. On the basis of MEA, the 
meaning of information entropy is introduced, that is, with the development of evolution, the position change 
of the population to the optimal solution is determined from complete uncertainty to final affirmation and the 
search range becomes smaller and more detailed. Linking the change in information entropy to the search width 
also further improves search efficiency36–38.

The procedure of residual GM based on PEMEA‑BP correction.  After PEMEA algorithm output 
the optimal connection value to the BP artificial neural network, the residual BP sequence will be simulated by 
a trained BP artificial neural network to provide the “replenishment amount” required for the entire GM model. 
In this way, it can not only have the advantages of GM to simulate small samples with high precision, but also 
expand the scope of use to various nonlinear or even multi-dimensional objects. Moreover, it can avoid the 
defects that BP artificial neural network converges slowly and is easy to fall into local minimum. The specific 
steps are as follows: 

(29)xk = N(xk−1, σ k) = xk−1 + σ k · r
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	 1.	 Establish a system behavior time series X(0) according to (1) and (2) and then generate a 1-AGO sequence 
X(1) and an immediate sequence Z(1).The construction of these two sequences is a param feature of GM, 
which aims to further uncover the information inherent in these seemingly erratic data.

	 2.	 Using the least squares estimation to obtain the parameter vector â according to (3) to (8), the obtained 
time response equation X(0) and the subtractive reduction equation x̂(0)(k) , then establish a simulation 
sequence.If the requirement for simulation accuracy is low, a preliminary simulation can be performed at 
this time, but the simulation value gradually increases with the prediction time.

	 3.	 Calculate the error and use it if the accuracy meets the requirements according to (9) to (11); otherwise, 
establish a residual sequence ε(0) in accordance with (13). Use the residual GM method if the residual tail 
segment modeling condition is met. If not, normalize the residual sequence.The purpose of data nor-
malization is to allow pre-processed data to be confined to a certain range, thus eliminating the effects of 
differences in magnitude, etc.

	 4.	 Use the residual sequence to generate the test set and training set, determine the numbers of input layer, 
hidden layer and output layer nodes, and construct the topology of BP artificial neural network.

	 5.	 Encode the network connection value, determine the score function, and generate the initial population 
according to the score function. Rank the individuals according to the score, and the individuals with high 
scores are taken as the center, and new individuals are generated in the vicinity of the individual to form 
the superior subpopulation and the temporary sub-populations; and publish them on the global bulletin 
board.

	 6.	 Perform a convergence operation in the sub-populations. Determine whether each sub-population is 
mature, and if true, end the convergence; otherwise, generate progeny population around the parent 
according to the Eq. (29) and continue the convergent operation until the sub-population matures. Each 
individual information is announced on a local bulletin board; and set the highest score of each sub-
population as its group score.

	 7.	 Perform an alienation operation in the global scope. If the temporary sub-population score is higher than 
the matured sub-population, then replaced it. Then redistribute the individuals within the replaced sub-
population in space to form new sub-populations; otherwise, release the temporary sub-population.

	 8.	 Determine the convergence. If it converges or reaches the end condition, proceeds to step (9), otherwise 
returns to step (6).

	 9.	 Decode the optimal individual and set it as the value of BP artificial neural network. Complete the training 
of BP network by using the test set and expected value in step (4).

	10.	 Predicate residual sequence {ε(0)(L)} by the trained BP network and construct a new simulation sequence 
x̂(0)(i, 1) based on it, x̂(0)(i, 1) = x̂(0)(i)+ ε(0)(i) . The simulated sequence is the predicted value of the 
combined model.

	11.	 Calculate the error accuracy.

The PEMEA-MP modified GM residual model flow chart is shown in Fig. 1.

Empirical study
Parameter determination.  Compared with the grey prediction model, the artificial neural network has 
a powerful learning ability. It can learn from the predictable mutation data to predict the occurrence of some 
special situations. However, artificial neural networks also have their weaknesses, that is, they require a large 
amount of widely representative training data, which is difficult to provide in actual practice. And the untrained 
artificial neural network will have large margin of error when making predictions. If the neural network predic-
tion completely replaces the grey prediction, then the smooth data that accounts for most of the data must be 
trained. Too many training modes will necessarily require a larger network structure, which reduces the learning 
efficiency and consumes considerable resources, and the learning of a few special data points may also be over-
whelmed by a large amount of normal data, which makes it not prominent enough. Neural network prediction 
is not suitable for process prediction with stable processes but sudden change points38–43.

Data training and input layer determination.  Set e(0)(L) as residual sequence. If S is the prediction order, the 
input samples for network training are e(0)(i − 1) , e(0)(i − 2),. . .,e(0)(1− S),and e(0)(i) is the corresponding out-
put samples of the network, where i = 1,2,..., n. Here, the prediction order is 3, which means that the number of 
network input layers is 3.

Data volume determination.  Randomly generate 10, 20, 30, 40, 50, 60, 70 data, and fit the BP, GENETIC-BP, 
and PEMEA-BP algorithms to obtain the mean square error as shown in the following Table 1.

To be more intuitive, the above values are normalized and displayed in the following Fig. 2.
Although the grey prediction model studies “some information is known and some information is unknown” 

“small sample” and “poor information” uncertain systems, if you want to optimize the grey prediction model 
by neural network, you need to determine the minimum data size. As can be seen from the Table 1 and Fig. 2, 
BP can converge when the amount of data is small, and it is difficult to converge to the global optimal value 
when the amount of data is increased. GENETIC, PEMEA is difficult to converge to the optimal value when the 
amount of data is small, the amount of data is increased, and the accuracy is gradually accurate. As can be seen 
from the figure above, when the amount of data reaches 50, the error of the BP algorithm increases significantly. 
Therefore, the number of residual tails in this experiment is 40.
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Determination of other parameters.  The number of hidden nodes in the network is usually determined accord-
ing to the formula n1 =

√
n+m+ a or n1 = log2n , where m is the number of output neurons and n is the 

number of input units. The hidden node is set to 8. The activation functions between the input layer and the 
hidden layer, and between the hidden layer and the output layer of the BP neural network are sigmoid functions. 
The hidden layer uses the tansig transfer function and the output layer uses the logsig transfer function. The 
maximum training times: 50,000 learning rate: 0.005 target. Error: le−3. Number of GENETIC iterations: 200. 
Population size: 10. Crossover probability: 0.4. Mutation probability: 0.2. The PEMEA algorithm takes a popula-
tion size of 200, the number of winning subpopulations is 5, the number of temporary subpopulations is 5, and 
the number of iterations is 10.

Figure 1.   PEMEA-MP modified GM residual model flow chart.

Table 1.   Data volume-MSE.

Data volume/MSE BP GENETIC-BP PEMEA-BP

10 4065 7.5852 15.7611

20 5467 6014.4 1.6113

30 6774 0.0004375 0.3154

40 104,480 0.5994 0.0252

50 444,480 0.0061 0.0484

60 514,480 0.000034971 0.0727

70 644,480 0.0018 0.0574
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Algorithm verification.  Data source.  This article select the number of confirmed cases of COVID-19 in 
South Africa from June 9 to July 18 in 2020 (Coronavirus disease Weekly Epidemiological Update and Weekly 
Operational Update. https​://www.who.int/emerg​encie​s/disea​es/novel​-coron​aviru​s-2019/situa​tion-repor​ts/) as 
the training data of the residual tail in Table 2, and the number of confirmed cases from July 19 to July 31 as the 
test data of residual tail in Table 3.

According to Eqs. (4) to (8), a = − 0.0513 and b = 51434. The simulation diagram is shown in Fig. 3. From 
the simulation, the average simulation relative error of the original model is 1.0224%, the error is too high, and 
the residual sequence ε(0) does not meet the modeling conditions of the tail section.

Figure 2.   Data volume mean square error.

Table 2.   Training set data.

Date
6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18

50,879 52,991 55,421 58,568 61,927 65,736 70,038 73,533 76,334 80,412

Date
6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28

83,890 87,715 92,681 97,302 101,590 106,108 111,796 1,118,375 124,590 131,800

Date
6.29 6.30 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8

138,134 144,264 151,209 159,333 168,061 177,124 187,977 196,750 205,721 215,855

Date
7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18

350,879 364,328 373,628 381,798 394,948 408,052 421,996 434,200 445,433 452,530

Table 3.   Testing set data.

Date
7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28

350,879 364,328 373,628 381,798 394,948 408,052 421,996 434,200 445,433 452,530

Figure 3.   Residual of GM (1,1) simulation sequence.

https://www.who.int/emergencies/diseaes/novel-coronavirus-2019/situation-reports/
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Fitting accuracy.  The actual data and network output data are shown in Fig. 4.
The fitting accuracy table is shown in Table 4.
To be more intuitive, the above values are normalized and displayed in Fig. 5.
It can be seen from Table 4 and Fig. 5 that PEMEA-BP has significantly improved in time and accuracy 

compared with BP and GENETIC-BP.This model aims at the situation that there are many uncertain factors in 
small samples, so there are still some relative errors. It is more suitable for a macro relatively accurate prediction. 
However, when it comes to a specific point, it is still neural network and ordinary differential equation with 
known variables that are more accurate.

Prediction accuracy.  The residual sequence predicted by the BP network training model is {ê(0)(L)} , and 
the predicted value constructed using this predicted value is x̂(0)(i, 1) = x̂(0)(i)+ ê(0)(i) . The predicted value 
x̂(0)(i, 1) is obtained by the combination model of grey and neural network.The forecast accuracy table is shown 
in Table 5.

To be more intuitive, the above values are normalized and displayed in Fig. 6.
From Table 5 and Fig. 6, it can be seen that the residual GM modified by PEMEA-BP greatly compensates 

for the lack of accuracy of GM.The accuracy and BP convergence rate of GM in the case of inconsistent residual 
tail symbols are effectively compensated.

Figure 4.   Comparison of actual data and network output.

Table 4.   Fitting accuracy table.

SSE MAE MSE MAPE MRE TIME

BP 1043019.411 153.200 28972.761 0.014 − 0.022 2.022

GENETIC-BP 96314.456 41.518 2675.402 0.004 − 0.001 168.594

PEMEA-BP 41573.411 27.701 1154.817 0.002 − 0.002 1.505
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Conclusion
The GM method is widely used because it can effectively solve the problem of “less data” and “poor information”, 
but it has high requirements on the input data, that is, the input tail data should be linear and bear the same sign. 
However, in reality, More sequences present waveform or highly non-linear features. If these characteristics are 
not met before input data, the prediction accuracy will be low. The algorithm proposed in this paper uses the 
residual tail as a sample to input the trained BP artificial neural network model, which can obtain an effective 
residual sequence prediction value ε̂(0) . BP artificial neural network has the characteristics of being easy to fall 
into a local minimum and slow convergence. This is corrected by PEMEA to output the best connection weight. 
Finally, the residual grey model is used to obtain the final predicted value. The residual grey model modified by 
PEMEA-BP not only has the advantages of GM, i.e. small samples and high accuracy, but also can expand the 
scope of use to various non-linear and even multidimensional objects. Meanwhile, it can avoid defects of other 
algorithms, such as slow convergence and easy to fall into the local minimum. In small sample data experiments, 
judging from SSE, MAE, MSE, MAPE, MRE and other indicators, this new algorithm has significant advantage 
over GM, BP algorithm and combined genetic algorithm in terms of simulation accuracy and convergence speed.
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