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Abstract

This paper presents a machine learning system for supporting the first task of the

biological literature manual curation process, called triage. We compare the

performance of various classification models, by experimenting with dataset

sampling factors and a set of features, as well as three different machine learning

algorithms (Naive Bayes, Support Vector Machine and Logistic Model Trees). The

results show that the most fitting model to handle the imbalanced datasets of the

triage classification task is obtained by using domain relevant features, an under-

sampling technique, and the Logistic Model Trees algorithm.

Introduction

Databases allows storing data in a consistent way, facilitating easy retrieval and

enabling both complex searches and computation on data. In the biomedical field,

databases are also used as vital resources for scientists searching literature. Over

the past few years, researchers and users have noted a significant expansion of

such literature databases [1]. For example, the free on-line database PubMed [2]

currently holds over 22 million documents, and a simple keyword search can

retrieve more than hundreds of thousands of documents. The analysis of the vast

biomedical data currently available is a challenge addressed by studies such as [5]

[6], as well as the use of this data to identify relevant information for biomedical

research [7] [8]. Biocurators who seek relevant information to populate

biomedical databases usually go through a time-consuming and error-prone

process, named triage [3]. The triage process requires querying the document

collection for keywords, and filtering among a long list of results for only the

documents that seem to be potential candidates for full curation. This first triage
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step creates a severe bottleneck in the manual curation workflow [3] [22], and

therefore could greatly benefit from automatic support.

In this paper, we present a supervised machine learning approach to perform

text classification of PubMed abstracts, with the goal of supporting the triage of

documents. As shown in Fig. 1, in the training phase, the system learns from

correctly labeled samples of abstracts, and makes a classification decision on a new

(tested) PubMed abstract based on the analysis of specific features of the data,

such as relevant pieces of text that can represent biological entities, frequency of

keywords or alpha-numerical identifiers.

By nature, the classification scenario of the triage task is highly imbalanced,

since the task consists in retrieving few very specific publications among the often

huge volume of available articles. In our context, curators are looking for

reference articles related to characterized lignocellulose-active proteins of fungal

origin that will populate the mycoCLAP database [4]. The presence of relevant

documents is limited to an average representation of only 10% of the total set of

retrieved documents. In imbalanced scenarios, classification algorithms are

naturally biased by the distribution of documents, and therefore tend to favor the

majority class and overlook the minority class instances.

In this paper, we discuss the use of 108 different classification models, defined

by experimenting with feature settings, classifiers and class distributions achieved

through data sampling. Our goal is to determine the most fitting model, capable

of dealing with the imbalanced data issue representative of a real life task and

achieving satisfying results.

Machine learning from imbalanced data is a common problem of many real

world applications beyond genomics text classification [9], such as fraud detection

[10] [11], medical diagnosis [12] [13] and speech recognition [14]. The imbalance

issue can interfere directly on the classifier performance, which is biased by the

majority class. Because the majority class is more heavily represented in the

dataset than the minority class, it tends to have more influence under uncertainty

cases, since the class distribution can influence learning criteria. In addition,

according to [15], a classifier presents a lower error rate when classifying an

instance belonging to the majority class, since it will have learned more

information from the examples of the majority class, compared to the information

learned in fewer examples from the minority class. As classification algorithms

tend to maximize the overall accuracy, the misclassification errors are equally

considered. This implies that a majority instance misclassified as a minority one

has the same error cost than a minority instance misclassified as a majority one.

Because the minority class is so little represented in the dataset, even if a classifier

assigns a majority class label to all minority instances, the overall accuracy would

still be fairly acceptable. However, this high accuracy does not mean that minority

class instances, the most relevant ones, are being correctly classified by a given

model. Various approaches have attempted to overcome the imbalanced data

issue. Two widely known approaches are, at the algorithm level, the use of cost-

sensitive classifiers [16], and at the data level, dataset sampling methods [17]. Cost

sensitive classifiers minimize classification errors on the minority class by biasing
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the classifier towards making mistakes on the majority class instead. The

algorithm learns that an error made on the minority class is more costly than an

error made on the majority class. At the data level, the Synthetic Minority Over-

sampling Technique (SMOTE) [17] suggests a combination of under-sampling

(i.e. reducing the majority class) and over-sampling (i.e. generating synthetic

examples of the minority class), in an attempt to balance the minority class

distribution.

A comparative study [18] between cost-sensitive and sampling methods was

not conclusive about the best approach to handle imbalanced data. Still, the

authors indicate that the class imbalance characteristic is an important factor to be

taken into account, because it may affect the sampling factors that are exploited.

In this previously described work, the authors adopted Decision Trees (C4.5) [21]

and Naı̈ve Bayes as classification algorithms.

Several studies have evaluated the performance of Support Vector Machine

(SVM) [19] to handle the imbalance issue, and described it as a sensitive

algorithm to skewed corpora. Akbani et al. [20] described a technique that

combines SVM and over-sampling, called SMOTE with Different Costs (SDC).

The results of the SDC system showed a better performance compared to a

standard SVM implementation or compared to an under-sampling method to

equalize the classes distribution. Yet, the authors clarify that the SDC algorithm

makes the assumption that the minority instances are similar in content and

Fig. 1. System Workflow. mycoSORT Training and Testing processes.

doi:10.1371/journal.pone.0115892.g001
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found close to each other on the dimensional space, conditions that should not be

considered by all means as typical.

Going beyond the standard SVM model, Tang et al. [23] demonstrated a

generally better performance of Granular SVMs (GSVM), considering the

application of an under-sampling method, compared to other variations of the

SVM model. However, the GSVM was formerly described as a method likely to

overfit [24].

The work of Mountassir et al. [25] evaluated random under-sampling with

variations of under-sampling methods on imbalanced corpora. They compared

the performance of classification models using standard implementations of SVM,

Naı̈ve Bayes and k-Nearest Neighbor (k-NN). Their conclusions showed that

SVM was the most sensitive classifier to imbalanced corpora. In addition, all

variations of under-sampling methods performed similarly on the most

imbalanced datasets used in the experiments (in which the minority class was

represented by < 8% of the total number of instances).

In a text classification challenge, Charton et al. [26] achieved a high

performance when dealing with severely imbalanced data. Their system was able

to handle the classification of minority classes (that were represented by < 8%

and even < 0.6% of the total number of instances of the dataset) on a 4-class

corpus, and outperformed all the other systems participating in the same task. The

solution presented by the authors was a model formed by a combination of

feature types, and the use of the Logistic Model Trees (LMT) [27] classifier. The

system also showed better performance when evaluated against other classifiers,

such as Naı̈ve Bayes, Decision Trees, as well as SVM.

In this paper, we present a similar approach to [26] to tackle the problem of

triage classification. In general, the previously described works made use of a

readily available corpus, usually suitable for general tasks. In our work, we build

and adopt a specific corpus, specifically designed for the triage task, and we

discuss an approach focusing on dataset sampling and feature settings.

This paper is structured as follows: Section is formed

by subsections Corpus and Methodology. The subsection Corpus describes the

characteristics of the dataset used in our experiments. The subsection

Methodology introduces the approaches used to build the classification models,

describing the algorithms, the data representation and evaluation metrics used in

the experiments. In Section Results, we present and discuss our findings after

experimenting with 3 classifiers, 5 feature types and 9 sampling factors. Finally,

Section Discussion presents our analysis, and Section Conclusion summarizes

our work and future research avenues.
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Materials and Methods

Corpus

Corpus Creation

The dataset employed in our experiments is composed of PubMed abstracts

retrieved by biocurators using specific queries and time range. Queries were built

with the name of an enzyme (family) of interest, the logical conjunction AND, and

the generic string fung* to match fungal-related terms. All abstracts were

published before December 31, 2013. For instance, taking this period into

account, the query {beta-glucosidase AND fung*} returns a list of 1296 related

abstracts. The retrieved list of results was preprocessed with the mycoMINE text

mining system [28], which added bio-entity annotations to relevant units of text.

All documents were then correctly labeled by biocurators as belonging to one of

two classes, which indicate if the document will be selected or not for the full

curation process. Relevant documents are considered to belong to the positive

class and will be retained for full curation; while non-relevant documents are

considered to belong to the negative class, and will be rejected by biocurators.

After the manual labeling effort, biocurators were able to identify paper

abstracts related to a total of 28 enzyme families, which resulted in 749 positive

documents. The equivalent number of rejected documents adds up to 6,834

negative instances.

Table 1 gathers some statistics on this corpus, which we call mycoSet. As shown

in Table 1, the total number of instances is 7,583, and mycoSet is highly

imbalanced. The majority class, which has the negative label, represents 90.12% of

the total number of instances in the corpus, while the minority class, which has

the positive label, is represented by only 9.88% of the instances.

Training and Test Corpora

In order to build our classifiers, training and test corpora have been created from

the mycoSet dataset. The training corpus is a fraction of the dataset used by the

classification algorithms to learn a model that is able to distinguish instances by

their class. The test corpus is a distinct fraction of the dataset that contains

instance examples used to evaluate this model.

The test corpus was randomly created as 20.5% of the mycoSet dataset

instances. We aim to evaluate our models on a corpus that represents a realistic

class distribution.

The test set should therefore maintain an imbalanced distribution. This strategy

allows the classifier to fit and evaluate a classification model that will be capable of

handling the triage task in practice. Thus, we generated a test corpus that contains

the same class distribution as in mycoSet, with < 10% positive instances and <
90% negative instances.

The training corpus was generated with the remaining instances of mycoSet.

These remaining instances are not only highly imbalanced, but also numerous. As

an effort to cope with both issues, a random sampling technique was used to

create the training corpus. This process is further explained in Methodology.
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Methodology

Sampling

Sampling is a method used to deal with imbalanced data that generally involves

low computational cost, since the data processing can be executed before the

learning phase. Although sampling has not been shown to outperform other

methods that deal with imbalanced data such as [16] and [29], it does not present

limitations inherent to certain classifiers, as some other restrictive techniques do,

such as cost-sensitive classification [18]. Under-sampling is a sampling technique

that consists of reducing the number of instances of the majority class down to a

certain percentage. According to [18], through under-sampling it is possible to

reduce training time, or even make the training phase feasible if the task is dealing

with very large training sets.

In this work, under-sampling was employed to build the training corpus, as a

strategy to manage both the imbalanced and large size characteristics of the

mycoSet corpus. In order to evaluate various training scenarios, we gradually and

randomly eliminated a percentage of negative instances from mycoSet. Several

training corpora were then generated through this progressive under-sampling

approach. A variety of class distribution ratios provide an effective comparison

between classifier performances at different bias degrees caused by the majority

class. We started from a training corpus with a similar class distribution as in the

mycoSet dataset. This allowed us to have a representative scenario of a real

document triage. Then the number of negative instances was gradually reduced by

a factor of 5%, until balance was achieved with similar distributions on both

classes. This is shown in Fig. 2.

Features

In order to represent the dataset as a feature space, document instances in the

dataset have to be expressed in fragments of useful information, and these are

used as features to build the classification models. In our experiments, we

extracted features from the paper abstract and title, respectively from the

Table 1. mycoSet Corpus Statistics.

Attribute Quantity

Total # of instances 7,583 (100%)

Total # of abstracts with text content 6,898 (90.96%)

Negative instances 6,834 (90.12%)

Positive instances 749 (9.88%)

# of words in paper abstracts 43,598

# of words in paper titles 12,388

# of annotations in paper abstracts 50,866

# of annotations in paper titles 8,172

# of EC numbers 12,272

Statistics of the mycoSet corpus.

doi:10.1371/journal.pone.0115892.t001
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"AbstractText" and "ArticleTitle" text fields of PubMed, in addition to the Enzyme

Commission (EC) numbers and the "RegistryNumber" text field.

Feature Extraction

Before performing feature extraction, the content gathered from each document

was pre-processed. In this step, some ASCII special characters, such as

punctuation, and extra blank spaces were removed. Likewise, unnecessary markup

tags were eliminated from the content.

The dataset instances were then expressed by means of mycoMINE annotation

content, their corresponding bio-entities and EC numbers. Bioentity annotations

are grouped according to their span. We considered two different annotation

spans: the first one takes into account an entire sentence; while the second span,

which we call entity, is composed by a word or a group of words. Table 2 lists all

the entities annotated by mycoMINE and their corresponding spans. Annotations

belonging to the entity span group were pre-processed (as described above). Then,

their content was kept as a feature, along with their corresponding entity.

Sentence annotations were represented as a bag-of-words after being pre-

processed. When representing annotation content as a bag-of-words, we discarded

PubMed stop-words [30] and tokens with a length smaller than 3 characters.

These very short tokens were eliminated because they contribute more to increase

both the sparseness of the feature space and the learning time, than to improve the

discriminative power of the classification models.

To give an example of annotation spans and feature representation, consider

the following sample fragment from the mycoSet dataset, annotated with

mycoMINE:

,SubstrateSpecificity.The substrate specificity of three ,Enzyme.ligninase

,/Enzyme. isozymes from the white-rot fungus ,Fungus.Trametes versicolor

Fig. 2. Corpora Under-sampling. Number of Instances and Balances across all Training Sets.

doi:10.1371/journal.pone.0115892.g002
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,/Fungus.has been investigated (…). ,/SubstrateSpecificity.(…)

,RegistryNumber.EC 1.14.99.-,/RegistryNumber.

The following features are extracted from the above sentence:

N Bioentities of the entity span: [ligninase, Enzyme]; [Trametes versicolor, fungus].

N Bioentities of the sentence span: [substrate, substratespecificity]; [specificity,

substratespecificity]; [three, substratespecificity]; [ligninase, substratespecificity];

[isozymes, substratespecificity]; [whiterot, substratespecificity]; [fungus, substrate-

specificity]; [trametes versicolor, substratespecificity]; [investigated, substratespe-

cificity].

N EC number: [11499].

These features were used to construct a feature vector, further explained in

Subsection Feature Vector, that represents the data in both the training and the

test datasets.

Feature Vector

Each document instance in both training and test datasets is represented as a

vector of features. Let I be the number of document instances in a dataset, and F

the number of extracted features. Each vector holds the number of feature

occurrences across one document in a F | I matrix. For example, the document

above would be roughly represented by the vector displayed in Table 3, in which

the values represent the number of times a feature was seen in the text.

The larger the dataset size, the larger and sparser is the representation matrix. A

sparse matrix reduces the accuracy of the classification models, while a large

matrix can be costly in terms of computational processing during the training

phase. Techniques to either reduce the dataset size, or the feature space through

feature selection, can be valuable in these cases.

In this work, we explore a few standard feature selection methods in addition to

sampling techniques. The features were selected according to their occurrence, as

Table 2. mycoSet Bio-entities.

Entity Span Entity Span

AccessionNumber entity Glycosylation sentence

ActivityAssayConditions sentence Kinetics sentence

Assay entity Laccase entity

Buffer entity Lipase entity

Characterization entity Peroxidase entity

Enzyme entity pH sentence

Expression sentence ProductAnalysis sentence

Family entity Temperature sentence

Fungus entity SpecificActivity sentence

Gene entity Substrate entity

GlycosideHydrolase entity SubstrateSpecificity sentence

Bioentities and Spans in the mycoSet Corpus Annotated by the mycoMINE Text Mining System.

doi:10.1371/journal.pone.0115892.t002
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an effort to maintain a more compact feature space. Words occurring less than 2

times in the training corpus, or with less than 3 characters were not taken into

account when generating feature vectors.

Classification Algorithms

For our experimental purposes, we considered three classification algorithms:

Naı̈ve Bayes (NB), Logistic Model Trees (LMT) and Support Vector Machine

(SVM). A NB classifier is appropriate to provide a baseline evaluation of sampling

and feature settings. LMT was previously described by [26] as an efficient classifier

to handle tasks where datasets are imbalanced. An SVM is useful to provide a

comparison between our model results and previous works that adopted this

classifier to deal with imbalanced data. In the next sections we will briefly review

these algorithms.

Naı̈ve Bayes

A Naı̈ve Bayes classifier is a probabilistic model based on Bayes’ Rule, that

assumes a strong conditional independence of features. This classifier builds a

"Naı̈ve" independence model, considering that in a feature vector F, the features

F1,:::,Fn are conditionally independent from each other, given a class C. By this

assumption, Naı̈ve Bayes implies that the presence of one word (one feature) is

not correlated with the presence or absence of another word in a document,

considering a class label. Therefore, the probability of a document instance D
belonging to class C, P(CjD), can be computed as:

P(CjD)~P(C) P
n

i~1
P(FijC) ð1Þ

where P(C) is the prior probability of a class C, P(FijC) is the discriminative value

of a feature Fi found within a document D with regards to the class C, and n is the

number of features. Naı̈ve Bayes aims to identify the best P(CjD), for all existing

C. Hence, the classifier seeks to maximize a classification score for each document,

as in:

class(D)~argmaxCP(CjD)~argmaxCP(C) P
n

i~1
P(FijC) ð2Þ

where class(D) is the class value that maximizes P(CjD). This value is defined after

the class prior probability P(C) and each document feature value P(FijC) are

computed.

Table 3. mycoSet Feature Vector Representation.

ligninase Trametes versicolor synthetic substrate specificity three fungus enzyme …

2 2 1 1 1 1 2 1 …

Feature Occurrence Represented in the Feature Vector.

doi:10.1371/journal.pone.0115892.t003
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Logistic Model Trees

Logistic Model Trees consist of a combination of Decision Tree and LogitBoost

algorithms. A Logistic Model Tree is a classification tree, with logistic regression

models on its nodes. At each node of the decision tree, the LogitBoost algorithm is

used to train a data subset for a certain number of iterations. This number is

defined through five fold cross validation. An error rate is computed at each

iteration and the one presenting a lowest rate is selected to define a logistic

regression model for the current node. A Decision Tree criterion is then applied to

split the current data subset. A LogitBoost execution to be started at the child

nodes will be initialized from the logistic regression model previously defined at

the parent node. Tree splitting will be performed until there is still a relevant

information gain.

In a Decision Tree model, leaves usually hold a class prediction as output. In a

LMT model, leaves hold a logistic regression function for the current data subset

at this node. A logistic function found in a LMT leaf forms a model that does not

only represent the data within the current node. It is a model that has been

continuously incremented, since it was built on top of a function first defined at

the root node. The final model of a logistic model tree is defined as follows:

f (x)~
X

t[T

(ft(x):I(x[St)) ð3Þ

where T represents the set of all leaves (terminal nodes), St is the dataset split on

the current leaf t, ft(x) is the logistic regression function at the current node x. I is

the indicator function: the expression I(x[St) has a binary evaluation, returning 1

only when the instance x belongs to the current dataset split St.

Support Vector Machine

A Support Vector Machine (SVM) is a well known algorithm that converges to an

optimal solution for linear and non-linear classifications. This classifier often

outperforms many commonly used machine learning algorithms, even though it

may not be an ideal choice to handle large datasets.

To separate data points on a dimensional space and tell their classes apart, SVM

computes the "margin maximum classifier" [31]. A maximum margin is the

largest radius around a classification boundary where no data points are placed.

The closest data points encountered next to this margin are called support vectors.

These vectors are considered as the hardest instances to be classified. Because of

that, they are used as a "support" to draw a decision boundary and build a

classification model. If a classification problem is identified as linearly separable,

the data points are simply separated by a line in the space. When linear separation

is not possible, SVM uses data transformation to separate the data point classes.

The transformation computation is optimized to a linear decision with the use of

a kernel function.

SVM classifies a new instance (x) according to its distance from the support

vectors (xi), and also from the hyperplane, placed in the middle of a maximum
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margin. A weight vector is placed orthogonally to the hyperplane, and the class

prediction (yi) for a new instance represents its coefficient on the weight vector

(ai). The decision function for SVM is computed as shown in the following

equation:

f (x)~
X

yiaiK(x,xi) ð4Þ

where yi stands for the class prediction (+1 or 21 in a binary classification), ai

represents the weight vectors, K is the kernel function, x is the instance to be

classified, and xi represents the support vectors.

Evaluation Metrics

Performance of classification algorithms can be displayed by a confusion matrix.

As shown in Table 4, the confusion matrix of a classification output indicates the

number of instances with regards to the predicted and the actual classes.

To compare the performance of different classification models, we considered

evaluation metrics that are not dependent on class distributions (the number of

instances in each class), and therefore will not be biased by a imbalanced dataset.

Experimental results of this work are presented by means of Precision, Recall, F-

measure, F-2 and Matthews Correlation Coefficient (MCC). We briefly explain

hereafter how each of these metrics is obtained from the confusion matrix scores,

in a binary classification framework.

Precision evaluates the proportion of correct predictions among correct and

incorrect predictions that the classifier makes for a certain class. This measure

indicates if a classifier is capable of outputting more relevant than irrelevant

results. Precision is calculated by the number of True Positives (TP, i.e. correctly

classified documents) divided by the sum of True Positives and False Positives (TP

and FP, i.e. all class predictions).

Precision~
TP

TPzFP
ð5Þ

Recall represents the ratio of relevant predictions made by the classifier between

all existing relevant instances that should have been predicted. This measure

demonstrates the capability of a classifier to predict the universe of relevant

instances. Recall is calculated by the number of TP (i.e. correctly classified

documents) divided by TP plus False Negatives (FN) (i.e. all instances belonging

to the same class).

Recall~
TP

TPzFN
ð6Þ

F-measure is the harmonic mean of Precision and Recall scores, obtained

through the formula:
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F~2|
Precision|Recall
PrecisionzRecall

ð7Þ

F-b score is a generalization of the F-measure defined as follows:

Fb~(1zb2)|
Precision|Recall

b2|PrecisionzRecall
ð8Þ

where b is the relative weight of Recall over Precision. Since in our experiments

there is more interest in the model ability to identify the entire universe of

relevant instances, Recall should be emphasized when calculating F-b score. Thus,

the b value should be greater than 1. In our experiments, we used b 52, leading to

the F-2 score.

Matthews Correlation Coefficient represents a coefficient of agreement

between observed and predicted classifications. A correlation value equal to 1

stands for a total agreement (a perfect prediction), while a value equal to zero

means total disagreement. MCC can be computed using the formula below:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð9Þ

Results

In this section, we present the experiments performed using several model

configurations. We evaluate the performance of our proposed models when

handling the imbalanced issue on the triage task using the mycoSet dataset.

Experiments

Set of Features

The set of features used to build all classification models was derived from both

PubMed abstracts, under the "AbstractText" field, and abstract titles, under the

"ArticleTitle" field. After being pre-processed, as explained in the related Section

above, the final set of features includes 5 types of features:

Table 4. mycoSet Confusion Matrix.

Predicted Positive Predicted Negative

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Confusion Matrix of a Binary Classification.

doi:10.1371/journal.pone.0115892.t004
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F1: Annotated bio-entities

F2: Annotated contents of entity spans

F3: Annotated contents of sentence spans (as a bag-of-words)

F4: Enzyme Commission (EC) numbers

F5: Bag-of-words representation of the entire fields (ArticleTitle and

AbstractText)

Classifiers

The classifiers used in our experiments are built-in algorithm implementations

available within the Weka framework [32]. The three classification algorithms

previously described were used:

1. Naı̈ve Bayes (NB)

2. Logistic Model Trees (LMT)

3. Support Vector Machine (LibSVM)

Under-sampling

The under-sampling technique was used to generate training corpora with

different class distributions. A first dataset was created with a class distribution

that is similar to the one present in a real triage classification scenario.

After generating this first training corpus, the number of negative instances in

the corpus was gradually reduced to arrive at a more balanced distribution. Until

the most balanced distribution was reached (i.e., when each class has the same

amount of document instances), 9 under-sampling factors (USF) were employed.

1. Training set with 0% USF: 90% negative, 10% positive

2. Training set with 5% USF: 85% negative, 15% positive

3. Training set with 10% USF: 80% negative, 20% positive

4. Training set with 15% USF: 75% negative, 25% positive

5. Training set with 20% USF: 70% negative, 30% positive

6. Training set with 25% USF: 65% negative, 35% positive

7. Training set with 30% USF: 60% negative, 40% positive

8. Training set with 35% USF: 55% negative, 45% positive

9. Training set with 40% USF: 50% negative, 50% positive

This is shown in Fig. 2.

Performance

We present here the results obtained after classifying the test set using the models

built through our previously described approaches. Tables 5, 6, 7 and 8 present

the Precision, Recall, F-Measure, F-2 and MCC results for the positive class,

achieved with the three classifiers, using different feature settings.

The results reported in Table 5 represent our feature setting #1, where the set

of features is composed only by the 22 bio-entities, F1 as listed in Section Set of

Features. In our feature setting #2 (see Table 6), the set of features is composed of
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the 22 bio-entities (F1) plus the EC numbers (F4) listed in the training set. The set

of features in our feature setting #3 (see Table 7) is composed by the bag-of-

words representation of the text fields (F5). Finally, the results reported in Table 8

correspond to feature setting #4, where the set of features is composed by the 22

bio-entities (F1), their annotated content (F2, F3) and the EC Numbers (F4) listed

in the training set.

For example, using the sample sentence given in Section Methodology, the set

of features in each setting is represented by the following:

N Feature setting #1 (F1): Enzyme, Fungus, Substratespecificity

N Feature setting #2 (F1+F4): Enzyme, Fungus, Substratespecificity, 11499

N Feature setting #3 (F5): substrate, specificity, three, ligninase, isozymes, white,

rot, fungus, Trametes, versicolor, investigated

Table 5. mycoSORT Results - Set of Features F1.

Under-sampling(USF) Classifier Precision Recall F-measure MCC F-2

Training set with USF 0% Naive Bayes 0.286 0.227 0.253 0.182 0.240

Training set with USF 0% LMT 0.492 0.207 0.291 0.274 0.230

Training set with USF 0% LibSVM 0.714 0.033 0.064 0.140 0.04

Training set with USF 5% Naive Bayes 0.294 0.280 0.287 0.210 0.280

Training set with USF 5% LMT 0.461 0.233 0.310 0.278 0.260

Training set with USF 5% LibSVM 0.645 0.133 0.221 0.264 0.160

Training set with USF 10% Naive Bayes 0.269 0.307 0.287 0.202 0.300

Training set with USF 10% LMT 0.376 0.213 0.272 0.226 0.230

Training set with USF 10% LibSVM 0.47 0.207 0.287 0.264 0.230

Training set with USF 15% Naive Bayes 0.301 0.347 0.322 0.241 0.340

Training set with USF 15% LMT 0.352 0.413 0.380 0.307 0.400

Training set with USF 15% LibSVM 0.387 0.287 0.330 0.271 0.300

Training set with USF 20% Naive Bayes 0.263 0.340 0.297 0.209 0.320

Training set with USF 20% LMT 0.348 0.480 0.403 0.331 0.450

Training set with USF 20% LibSVM 0.353 0.353 0.353 0.281 0.350

Training set with USF 25% Naive Bayes 0.243 0.353 0.288 0.197 0.320

Training set with USF 25% LMT 0.286 0.547 0.375 0.301 0.460

Training set with USF 25% LibSVM 0.282 0.413 0.335 0.251 0.380

Training set with USF 30% Naive Bayes 0.277 0.440 0.340 0.257 0.390

Training set with USF 30% LMT 0.291 0.627 0.397 0.334 0.510

Training set with USF 30% LibSVM 0.258 0.48 0.336 0.252 0.410

Training set with USF 35% Naive Bayes 0.242 0.440 0.312 0.223 0.380

Training set with USF 35% LMT 0.233 0.620 0.338 0.266 0.470

Training set with USF 35% LibSVM 0.210 0.633 0.316 0.241 0.450

Training set with USF 40% Naive Bayes 0.254 0.467 0.329 0.243 0.400

Training set with USF 40% LMT 0.269 0.660 0.382 0.321 0.510

Training set with USF 40% LibSVM 0.196 0.667 0.303 0.229 0.450

Results of Positive Class on Feature Setting #1, Using Only Bio-entities as Features.

doi:10.1371/journal.pone.0115892.t005
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N Feature setting #4 (F1+F2+F3+F4): Enzyme, Fungus, Substratespecificity,

11499, ligninase, Trametes versicolor

Overall 108 experiments were performed using the 3 learners, the 4 feature

settings and the 9 under-sampling factors. Figs. 3 and 4 summarize the data of

Tables 5 to 8 by showing the best feature settings with respect to the F-measure

(Fig. 3) and F-2 score (Fig. 4).

Discussion

The results presented in Table 7, with the use of features F5, are considered as the

baseline for our experiments. These models use only a bag-of-words representa-

tion of the text as feature, without any domain annotation. When comparing the

Table 6. mycoSORT Results - Set of Features F1+F4.

Under-sampling(USF) Classifier Precision Recall F-measure MCC F-2

Training set with USF 0% Naive Bayes 0.285 0.380 0.326 0.242 0.360

Training set with USF 0% LMT 0.516 0.107 0.177 0.202 0.130

Training set with USF 0% LibSVM 1.000 0.020 0.039 0.134 0.020

Training set with USF 5% Naive Bayes 0.273 0.373 0.315 0.230 0.350

Training set with USF 5% LMT 0.426 0.173 0.246 0.224 0.200

Training set with USF 5% LibSVM 0.833 0.033 0.064 0.155 0.040

Training set with USF 10% Naive Bayes 0.268 0.427 0.329 0.243 0.380

Training set with USF 10% LMT 0.412 0.233 0.298 0.255 0.260

Training set with USF 10% LibSVM 0.688 0.073 0.133 0.203 0.090

Training set with USF 15% Naive Bayes 0.268 0.427 0.329 0.243 0.380

Training set with USF 15% LMT 0.398 0.300 0.342 0.284 0.320

Training set with USF 15% LibSVM 0.604 0.193 0.293 0.306 0.220

Training set with USF 20% Naive Bayes 0.275 0.440 0.338 0.255 0.390

Training set with USF 20% LMT 0.322 0.393 0.354 0.276 0.380

Training set with USF 20% LibSVM 0.471 0.327 0.386 0.338 0.350

Training set with USF 25% Naive Bayes 0.258 0.507 0.342 0.260 0.420

Training set with USF 25% LMT 0.321 0.520 0.397 0.324 0.460

Training set with USF 25% LibSVM 0.364 0.420 0.390 0.318 0.410

Training set with USF 30% Naive Bayes 0.237 0.540 0.329 0.248 0.430

Training set with USF 30% LMT 0.328 0.500 0.396 0.322 0.450

Training set with USF 30% LibSVM 0.323 0.473 0.384 0.308 0.430

Training set with USF 35% Naive Bayes 0.227 0.513 0.315 0.229 0.410

Training set with USF 35% LMT 0.267 0.587 0.367 0.295 0.470

Training set with USF 35% LibSVM 0.251 0.573 0.349 0.274 0.460

Training set with USF 40% Naive Bayes 0.244 0.520 0.332 0.250 0.420

Training set with USF 40% LMT 0.267 0.707 0.388 0.334 0.530

Training set with USF 40% LibSVM 0.217 0.613 0.321 0.245 0.450

Results of Positive Class on Feature Setting #2, Using Bio-entities and EC Numbers as Features.

doi:10.1371/journal.pone.0115892.t006
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results in Table 7 (feature setting #3) with the results in Table 5 (feature setting

#1) and Table 6 (feature setting #2), we observe that the scores of the bag-of-

words approach are in general better than the scores using bio-entities, and bio-

entities plus EC numbers as features. This difference can be explained by the

feature space size of the models in Table 7 compared to the feature space size in

models presented in Tables 5 and 6. While the classification models in Table 5

used only 22 features, the models in Table 6 used from 186 to 397 features across

the different training sets, and the models in Table 7 used 7,622 to 20,729 features.

Models with a larger feature space presented better performance, however the

computational cost of the learning phase also increased greatly.

Analyzing the results presented in Tables 5 and 6, we can observe an

improvement when the EC numbers are added to the set of features. Models

presented in Table 8 show better performance for the majority of the under-

Table 7. mycoSORT Results - Set of Features F5.

Under-sampling(USF) Classifier Precision Recall F-measure MCC F-2

Training set with USF 0% Naive Bayes 0.307 0.720 0.430 0.382 0.570

Training set with USF 0% LMT 0.656 0.420 0.512 0.485 0.450

Training set with USF 0% LibSVM 0.833 0.033 0.064 0.155 0.040

Training set with USF 5% Naive Bayes 0.310 0.733 0.436 0.390 0.580

Training set with USF 5% LMT 0.600 0.500 0.545 0.503 0.520

Training set with USF 5% LibSVM 0.703 0.173 0.278 0.319 0.200

Training set with USF 10% Naive Bayes 0.307 0.760 0.438 0.396 0.590

Training set with USF 10% LMT 0.574 0.567 0.570 0.523 0.570

Training set with USF 10% LibSVM 0.704 0.333 0.452 0.449 0.370

Training set with USF 15% Naive Bayes 0.309 0.793 0.445 0.41 0.600

Training set with USF 15% LMT 0.458 0.693 0.552 0.504 0.630

Training set with USF 15% LibSVM 0.596 0.413 0.488 0.451 0.440

Training set with USF 20% Naive Bayes 0.314 0.793 0.450 0.415 0.610

Training set with USF 20% LMT 0.422 0.653 0.513 0.460 0.590

Training set with USF 20% LibSVM 0.545 0.527 0.536 0.485 0.530

Training set with USF 25% Naive Bayes 0.312 0.780 0.446 0.408 0.600

Training set with USF 25% LMT 0.399 0.673 0.501 0.449 0.590

Training set with USF 25% LibSVM 0.481 0.580 0.526 0.470 0.560

Training set with USF 30% Naive Bayes 0.288 0.767 0.418 0.377 0.580

Training set with USF 30% LMT 0.388 0.727 0.506 0.461 0.620

Training set with USF 30% LibSVM 0.460 0.687 0.551 0.503 0.630

Training set with USF 35% Naive Bayes 0.302 0.780 0.435 0.397 0.590

Training set with USF 35% LMT 0.359 0.807 0.497 0.465 0.650

Training set with USF 35% LibSVM 0.369 0.800 0.505 0.472 0.650

Training set with USF 40% Naive Bayes 0.303 0.773 0.435 0.396 0.590

Training set with USF 40% LMT 0.344 0.840 0.488 0.463 0.650

Training set with USF 40% LibSVM 0.338 0.840 0.482 0.456 0.650

Results of Positive Class on Feature Setting #3, Using Only Bag-of-Words as Features.

doi:10.1371/journal.pone.0115892.t007

Machine Learning for Biomedical Literature Triage

PLOS ONE | DOI:10.1371/journal.pone.0115892 December 31, 2014 16 / 21



sampling factors used. The feature space size of these models varies from 3,338 to

8,931; therefore they are smaller than the ones used for the models in Table 7, but

still they are able to outperform the bag-of-words results. This indicates that the

domain annotations do have a relevant discriminative power when classifying

documents for the triage task.

It is also interesting to note that the use of only bio-entities as features also

suggests an interesting cost-benefit. With a very concise feature space of only 22

bio-entities, the classification algorithm still manages to perform reasonably

compared to the other more robust models. Such a compact feature space can be

beneficial in circumstances in which computational cost and processing time are

important concerns.

The results of different sampling factors used to generate the training corpora

showed that the under-sampling of majority instances in the dataset contributed

Table 8. mycoSORT Results - Set of Features F1+F2+F3+F4.

Under-sampling(USF) Classifier Precision Recall F-measure MCC F-2

Training set with USF 0% Naive Bayes 0.355 0.727 0.477 0.431 0.600

Training set with USF 0% LMT 0.685 0.420 0.521 0.498 0.460

Training set with USF 0% LibSVM 0.867 0.087 0.158 0.257 0.110

Training set with USF 5% Naive Bayes 0.365 0.740 0.489 0.446 0.610

Training set with USF 5% LMT 0.585 0.480 0.527 0.484 0.500

Training set with USF 5% LibSVM 0.729 0.287 0.411 0.424 0.330

Training set with USF 10% Naive Bayes 0.349 0.787 0.484 0.448 0.630

Training set with USF 10% LMT 0.552 0.600 0.575 0.526 0.590

Training set with USF 10% LibSVM 0.670 0.420 0.516 0.491 0.450

Training set with USF 15% Naive Bayes 0.342 0.787 0.477 0.441 0.620

Training set with USF 15% LMT 0.478 0.647 0.550 0.498 0.600

Training set with USF 15% LibSVM 0.607 0.473 0.532 0.491 0.490

Training set with USF 20% Naive Bayes 0.342 0.793 0.478 0.443 0.630

Training set with USF 20% LMT 0.425 0.64 0.511 0.456 0.580

Training set with USF 20% LibSVM 0.521 0.587 0.552 0.500 0.570

Training set with USF 25% Naive Bayes 0.322 0.787 0.457 0.421 0.610

Training set with USF 25% LMT 0.389 0.747 0.511 0.469 0.630

Training set with USF 25% LibSVM 0.474 0.667 0.554 0.504 0.620

Training set with USF 30% Naive Bayes 0.336 0.773 0.469 0.430 0.610

Training set with USF 30% LMT 0.398 0.780 0.527 0.490 0.650

Training set with USF 30% LibSVM 0.459 0.673 0.546 0.496 0.620

Training set with USF 35% Naive Bayes 0.304 0.800 0.440 0.406 0.600

Training set with USF 35% LMT 0.343 0.760 0.473 0.433 0.610

Training set with USF 35% LibSVM 0.357 0.793 0.493 0.458 0.640

Training set with USF 40% Naive Bayes 0.295 0.780 0.428 0.389 0.590

Training set with USF 40% LMT 0.361 0.847 0.506 0.481 0.670

Training set with USF 40% LibSVM 0.331 0.793 0.468 0.433 0.620

Results of Positive Class on Feature Setting #4, Using Bio-entities, Content and EC Numbers as Features.

doi:10.1371/journal.pone.0115892.t008
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to enhance the classifier performance, confirming conclusions of previous works

[25, 29]. Independently of the under-sampling factor used to create the training

corpus, the test corpus was generated with a positive instance balance that

corresponds to a real scenario experienced by biocurators.

The NB classifier was considered as a baseline algorithm in our experiments.

However it outperformed LMT and SVM in models formed by highly-imbalanced

datasets and a small feature space, such as 397 bio-entities and EC numbers. The

Fig. 3. mycoSORT F-measure scores. Results of the Best Classifiers for Each Classification Model.

doi:10.1371/journal.pone.0115892.g003

Fig. 4. mycoSORT F-2 scores. Results of the Best Classifiers for Each Classification Model.

doi:10.1371/journal.pone.0115892.g004
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SVM classifier outperformed in models that applied USF from 20% to 35%, and a

larger feature space, with the use of domain annotations and bag-of-words. LMT

outperformed the other classification algorithms in less imbalanced models, but

with an even smaller feature space. When using an USF of 40% (which provides

50% of majority instances and 50% of minority instances), the LMT performance

with 22 bio-entities as features was comparable to the performance of a model

using 186 bio-entities and EC numbers. This confirmed the results previously

described by [26] that LMT can handle harder classification tasks well.

Conclusion

In this paper, we presented an evaluation of classification models to deal with

document classification in the triage task. Usually, the triage task involves

identifying very few relevant documents among a much larger universe of

documents, hence datasets representative of this scenario have by nature an

imbalance class distribution.

We evaluated different classification models in an attempt to identify the best

configuration to be applied in a learning model to suitably tackle the triage task.

Our intent was to develop a model that is capable of correctly classifying positive

(relevant) instances, and at the same time reduces the misclassification of negative

(not relevant) instances.

We experimented with 4 feature settings, 3 machine learning algorithms, and 9

under-sampling factors, for a total of 108 experiments. The system described in

this paper can be applied to perform the literature triage of biomedical

documents. The results demonstrate that, to achieve the best outcome, the most

suitable approach for dealing with the triage of imbalanced corpora relies on a

classification model composed by domain annotations, a balanced dataset and the

use of LMT algorithm as classifier. Moreover, the other models studied here can

be used as further options to tackle the document classification in the triage task,

in case of existing constraints related to computational cost or data availability.

The mycoSORT system is fully implemented, and publicly released as an open

source toolkit available here: https://github.com/TsangLab/mycoSORT. The

mycoSet corpus used in our experiment is also publicly available as a list of pairs

[abstract PubMed ID - class of the abstract].

For further application of our techniques, we would like to point out that,

besides mycoMINE, other scientific wide-ranging annotation schemas [33, 34] are

available and could be used to support the triage task in different biomedical

research contexts. Such alternatives use the Medical Subject Headings (MeSH)

vocabulary, the Gene Ontology (GO) and the Unified Medical Language System

(UMLS) thesaurus, being able to handle an extensive set of biomedical research

subjects.

These tools can be helpful to provide broad-spectrum biomedical annotations

for relevant units of text in a dataset. Later on, these annotations can play a similar
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role in the triage classification process as the mycoMINE annotations used as

features in this work.

As future work, we plan to evaluate the presented classification models on the

triage of medical related PubMed abstracts annotated with MeSH terms.
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