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Abstract: COVID-19 has imposed many challenges and barriers on traditional healthcare systems due
to the high risk of being infected by the coronavirus. Modern electronic devices like smartphones with
information technology can play an essential role in handling the current pandemic by contributing
to different telemedical services. This study has focused on determining the presence of this virus
by employing smartphone technology, as it is available to a large number of people. A publicly
available COVID-19 dataset consisting of 33 features has been utilized to develop the aimed model,
which can be collected from an in-house facility. The chosen dataset has 2.82% positive and 97.18%
negative samples, demonstrating a high imbalance of class populations. The Adaptive Synthetic
(ADASYN) has been applied to overcome the class imbalance problem with imbalanced data. Ten
optimal features are chosen from the given 33 features, employing two different feature selection
algorithms, such as K Best and recursive feature elimination methods. Mainly, three classification
schemes, Random Forest (RF), eXtreme Gradient Boosting (XGB), and Support Vector Machine (SVM),
have been applied for the ablation studies, where the accuracy from the XGB, RF, and SVM classifiers
achieved 97.91%, 97.81%, and 73.37%, respectively. As the XGB algorithm confers the best results,
it has been implemented in designing the Android operating system base and web applications.
By analyzing 10 users’ questionnaires, the developed expert system can predict the presence of
COVID-19 in the human body of the primary suspect. The preprocessed data and codes are available
on the GitHub repository.

Keywords: adaptive synthetic sampling; Android or web-based user applications; COVID-19 prediction;
feature selection methods; machine learning classifiers

1. Introduction

COVID-19 is a highly contagious disease caused by the recently discovered coron-
avirus 2, causing severe acute respiratory syndrome (SARS-CoV-2). It is highly infectious,
with alarming characteristics, leading to the current worldwide pandemic [1]. The typical
symptoms, such as fever, headache, shortness of breath, dry cough, and loss of smell, can
vary from person to person; for instance, it sometimes does not raise any symptoms in
some groups of people. It is noteworthy to mention that smokers and drug-addicted people
are highly affected by this novel virus. However, unaware interaction with surrounding
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healthy people increases day by day, leading to the spread rate of such a disease. More
than 176 million COVID-19 cases were reported up to June 2021, including 12.6 million
active cases and 3.8 million deaths [2]. COVID-19 not only causes death but also imposes
terrible effects on mental health [3] and human behavior [4]. However, isolation is one of
the primary solutions for fighting against the spread of COVID-19.

Researchers from different fields are currently working to discover solutions for com-
bating COVID-19 by developing a computer-aided detection (CAD) system. The authors
of many articles have employed machine learning (ML) agents with different datasets
to build such CAD systems. There are plenty of publicly available datasets, including
both statistical data and chest radiographic images. However, careful strategies should be
considered while exercising those datasets, as there is a possibility of building an overfit-
ted trained model [5]. Aljameel et al. [6] developed an ML-based COVID-19 prediction
method from 287 COVID-19 patients’ real-time data with 20 features from King Fahad
University Hospital. An AUC of 0.99 was achieved with the RF classifier using Logistic
Regression (LR), RF, and XGB on COVID-19 patient datasets. Arpaci et al. [7] proposed a
14-feature classification model for identifying COVID-19 patients using data from 114 sub-
jects. They applied six different classifiers: BayesNet, LR, lazy-classifier, meta-classifier,
regression model, and decision tree (J48), and obtained the best accuracy of 84.21% from
the meta classifier (classification via regression). Recently, Debjit et al. [8] proposed a novel
Harris hawks optimization-based eXtreme Gradient Boosting (HHOXGB) algorithm with
an improved objective function and applied it to clinical COVID-19 data and obtained
92.23% accuracy. Wang et al. [9] proposed an automatic Deep Learning (DL)-based system
by using CT images, collecting 4106 instances of lung cancer patients’ CT images and
Epidermal Growth Factor Receptor (EGFR) gene sequence information. This study used
EGFR datasets to determine if there was a link between abnormalities seen on a chest CT
scan and micro-level lung functional deficits. However, they did not consider the intensive
care unit and mild COVID-19 patients’ data and the intra-slice thickness of the CT scans.
Kumar et al. [10] worked on chest X-ray images to classify pneumonia and could also
be applied to detect COVID-19 patients by applying both ML and DL techniques. The
ML techniques considered by the authors comprise numerous well-known classifiers such
as XGB, LR, and K-Nearest Neighbors (KNN), and, as a representative of the DL type,
they used ResNet-152. Brinati et al. [11] aimed to identify COVID-19 positive patients
by analyzing blood test data using an RF classifier, an alternative to RT-PCR. In addi-
tion, they built a web-based application to evaluate COVID-19 through clinical support
tools. The authors trained and validated their models using the nested cross-validation
approach, utilizing an online dataset from the Zendo platform. Cabitza et al. [12] trained
and evaluated their model using three different datasets, including 1624 patients’ data
with 52% positive patients. They received the best accuracy (88%) from both the RF and
SVM classifiers on the OSR dataset and the second-most accuracy (86%) from the KNN
algorithm on the COVID-19-specific CBC dataset. Again, Elaziz et al. [13] developed an
image-based COVID-19 prognostication model, where they used Fractional Multichannel
Exponent Moments (FrMEMs) for feature extraction and Manta Ray Foraging Optimization
(MRFO) for feature selection, and obtained an accuracy of 96.09%. However, the proposed
approach aims to build a robust ML-based COVID-19 prognostication system to decrease
its spread by providing a user-friendly, cheap, fast, and flexible in-house user application.
Dhiman et al. [14] proposed that twin support vector machines can be applied in terms of
different classification-related problems; for example, wind turbine gearbox anomalies and
conditions can be predicted [15,16].

COVID-19 has spread to every country in the world, and the most common symptoms
of this disease are the same. Developed and developing countries were affected at different
rates depending on their economic and social status. The core contributions of this work
are listed below:

1. Excluding redundant features from the utilized dataset by applying two different algo-
rithms for ablation studies, such as K Best and Recursive Feature Elimination (RFE);
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2. Optimizing the ML models’ hyperparameters using Bayesian optimization;
3. Performing comprehensive comparison in terms of different evaluation metrics among

different ML models to select the best performing classifier for the aimed task;
4. Finding the association between the significant features with the Apriori algorithm;
5. Developing an intelligent application system in both smartphone and web interfaces

to prognosticate COVID-19.

2. Analysis Procedure

The workflow diagram of this aimed study is displayed in Figure 1, where the pro-
posed method has been categorized into several steps.
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Figure 1. The recommended workflow for the identification of COVID-19 in conjunction with the
proposed user application.

Firstly, the dataset has been preprocessed for the subsequent steps in the proposed
framework. It includes missing value imputation and re-balancing the dataset, followed
by train-test splitting. Secondly, the feature selection method gives the essential and
non-redundant attributes. Thirdly, XGB, RF, and SVM classifiers categorize the Covid
and non-Covid patients. Finally, an expert system application was developed from the
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best-performing ML model for predicting COVID-19. The step-by-step methodology for
conducting this study is described in greater detail in the following subsections.

2.1. Data Acquisition

In this study, a clinically useful COVID-19 dataset has been utilized [17], which has
comprised Covid symptoms, for instance, ctab (Lungs Clear to Auscultation Bilaterally),
loss of smell, labored respiration, diarrhea, rhonchi, wheezes, days_since_symptom_on-
set, fatigue, cough, fever, sob (Shortness of breath), muscle sore, headache, loss of taste,
runny nose, and sore throat), epidemiological factors (for instance, age, high-risk Covid
occupation, and high-risk interactions), comorbidities (for instance, diabetes, CHD (Coro-
nary Heart Disease), HTN (Hypertension), cancer, asthma, COPD (Chronic Obstructive
Pulmonary Diseases), autoimmune dis, and smoker), Vitals (for instance, temperature,
pulse, Sys (Systolic), Dia (Diastolic), Rr (Respiratory Rate), and Sats (Oxygen Saturation).
This dataset has 11,169 attributes, with positive and negative classes of 2.82% and 97.18%,
respectively. The correlation of the features has been provided in Figure 2.
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Figure 2. Heat–map representation of the features, dispensing the correlations between them.
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2.2. Preprocessing

In this article, the practical COVID-19 dataset is dealt with. It requires several prepro-
cessing steps for imputing missing values and re-balancing the imbalanced data before
engaging in the final ML-based classification. Moreover, such preprocessing will likely
enhance the ML model’s performance [18]. However, the Multivariate Imputation has been
applied by the Chained Equations (MICE) algorithm [19] to deal with the missing values.
After that, the ADASYN algorithm has been used to eliminate the class imbalance nature of
the dataset, where an adequate amount of artificial data has been created for the minority
class. Finally, the feature selection method provides 21,578 instances with only 10 features.

The dataset used to carry out this research has 11,169 attributes, with 2.82% positive
Covid results and 97.18% negative Covid test results for each sample. So, a significant
class imbalance exists in the dataset, creating bias while classifying the target variables.
This issue can be mitigated by generating a sufficient amount of synthetic data for the
minority classes by oversampling these classes. There are two renowned techniques
to oversample the minority classes: (i) the Synthetic Minority Oversampling Technique
(SMOTE); (ii) the Adaptive Synthetic (ADASYN) sampling method, a generalization of the
SMOTE algorithm. Both the algorithms mentioned above can create virtual data to solve
the bias issue that occurred due to the class imbalance nature of the dataset. However, one
disparity is that if there is any sample outlying in the minority class and that appears in the
majority class, it will create a line bridge with the majority class. Another difference is that,
while oversampling, the ADASYN takes the density distribution into account to accurately
define the number of synthetic instances generated for the minority class, which is usually
challenging to understand [20]. So, it is evident that the ADASYN algorithm assists in
adjusting the decision boundary adaptively, relying on the problematic samples. Because
of this exciting convenience, the ADASYN algorithm has been considered for solving the
issue of the class imbalance nature of the dataset.

2.3. Classifiers

After the preprocessing, mainly three classification algorithms were applied: XGB, RF,
and SVM. These classifiers provide improved results in many studies [21–23]. Furthermore,
studies found significantly improved results by applying XGB in COVID-19 mortality
prediction and prepared a clinically operable Covid decision support system using XGB for
clinical staff [23,24]. This motivation leads to applying XGB along with other state-of-the-
art RF and SVM. Therefore, XGB has mainly been described in detail with the important
hyperparameters of RF and SVM.

XGB is a comprehensive ML system for tree boosting proposed by Chen and Guestrin [25],
which was a winner of the Kaggle ML competition in 2015. Gradient Boosting is the base
model of XGB, where multiple iterations co-occur. To optimize the specified loss function,
the residual will correct the previous predictor at each iteration of gradient boosting, as
illustrated in Figure 3. Regularization is applied to the loss function in order to establish
the objective function in XGB, which is used to assess the model’s effectiveness [22,26].

Suppose there is a dataset with n samples, where Xa is an independent variable and
every variable has m number of features, therefore XaεRm. For every variable, there are
corresponding dependent variables ya, hence yaεR. A tree ensemble model, such as ya,
predicts the dependent variable using the n additive functions of independent variables, as
shown in Equation (1).

ya =
n

∑
n=1

fDTn(Xa), fDTn εF, (1)

where fn belongs to a leaf score independent tree structure, and F is the space of trees. After
minimizing the above equation, it takes the following form in Equation (2) [25].

L(φ) = ∑ l(ŷa, ya) + ∑ Ω( fDTn), (2)
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where the loss function is l, and Ω is the term that reduces the complexity of the model,
which is defined in Equation (3).

Ω( f ) = γT +
1
2

λ‖ωi‖2. (3)

In the training phase, 10-fold cross-validation is employed to conduct experiments
on main three ML classifiers. One fold is used as a testing set in the outer loop, and the
remaining nine folds are utilized in the inner loop for the model’s training and hyperpa-
rameter optimization [18]. The Bayesian optimization algorithm has been employed to
optimize the hyperparameters of all the classifiers [23]. Table 1 confers different important
hyperparameters to be tuned using Bayesian Optimization. The intuition behind Bayesian
optimization is illustrated in the following paragraphs.

Training set Xtr

DT1
[Xtr, 휽1]

DT2
[Xtr, 휽2]

DT3
[Xtr, 휽3]

DTn
[Xtr, 휽n]

fDT1
[Xtr, 휽1]

fDT2
[Xtr, 휽2]

fDT3
[Xtr, 휽2]

fDTn-1
[Xtr, 휽n-1]

Split at node using
Objective Function

fDTn
[Xtr, 휽n]

Residual Residual Residual Residual

Iteration

+ +

∑ fDTn [Xtr, 휽n]

Figure 3. Flow chart of the working mechanism of the XGB algorithm in the XGB classifier. The
highest accuracy was achieved by applying the XGB algorithm to the dataset.

To revolutionize the performance of the classifiers employed in the classification task,
important hyperparameters must be optimized. In this study, mainly three classification
algorithms, such as Random Forest (RF), Support Vector Machine (SVM), and eXtreme
Gradient Boosting (XGBoost), have been utilized. Each classifier mentioned earlier has
some distinct hyperparameters, which the Bayesian Optimization technique has tuned.
For instance, Gamma (γ) and Cost (C) parameters have been tuned for SVM classifiers,
where the Radial-Basis Function (RBF) kernel is controlled by the Gamma parameter.
Furthermore, the TSVM with linear kernel and TSVM with RBF kernel has been employed
in this research to compare these two variants, and the prevailing SVM [27,28]. While using
the TSVM, the non-parallel hyperplanes are required to be controlled by tuning several
hyperparameters, such as c1, c2, e1, e2, v1, v2. The broadness of the decision region depends
on the lowness of the Gamma parameter, and the misclassification of the training instances
is controlled by the Cost function. In the case of XGBoost, seven hyperparameters have been
optimized: n_estimators define the total boosting stages; maximum depth of the estimator is
denoted by max_depth, learning_rate controls the activities of each tree; Gamma represents
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the minimum loss; min_child_weight signifies the least summation of instance weight,
colsample_by_tree represents the column subsample, and n_jobs symbolizes the parallel
threads. In addition, the four hyperparameters for RF (criterion, max_depth, max_features,
n_estimators ) have been optimized, where the criterion estimates the split quality and the
maximum number of features is denoted using max_features.

The reason behind choosing Bayesian optimization is that it performs better than
random search, grid search, or manual search techniques for tuning the hyperparame-
ters of the classifiers. The most crucial advantage of Bayesian Optimization is that it
keeps the previous evaluation in memory and helps in tuning the hyperparameter in a
probabilistic manner. The important steps of Bayesian optimization are: (1) define a cost
function; (2) search space; (3) number of iterations; and choose a search algorithm. Initially,
there is a requirement to define a cost function; for instance, in this proposed approach,
the 10-fold cross-validation loss has been considered in the cost function, followed by
the task of searching space at the boundary of 0 and 1. In the last step, the number of
iterations is fixed, and the best algorithm is chosen. In this proposed approach, the Tree-
structured Parzen Estimator (TPE) algorithm has been considered by HyperOpt to finalize
the optimization process.

Table 1. Hyperparameters of various ML-based classifiers to be tuned.

Hyperparameters Short Description

XGB classifier

Estimator numbers Multiple boosting rounds worth of gradients were used to boost these trees

Learning rate How much the contribution of each tree will shrink

Number of jobs The number of XGB classifier parallel threads used

Maximum depth The tree’s node count (the best value depends on the interaction of the input variables)

Gamma values The bare minimum loss reduction necessary to allow for further leaf node partitioning

Minimum child’s weight The bare minimum in terms of child instance weight

Column sample numbers The ratio of columns’ sub-samples during tree construction

SVM classifier

Cost (C) A regularization parameter that controls the trade-off between classification accuracy on
the training instances and margin maximization

Gamma (γ) A kernel parameter of the radial basis function that defines the reciprocal of standard
deviation. It describes how the inverse of the radius influences support vector data points

RF classifier

Estimator numbers Represents the number of decision trees in the forest

Maximum depth Denotes the decision tree’s maximum depth

Minimum samples’ split Minimum instances needed to split a tree’s internal nodes are indicated by this value

Minimum samples’ leaf Minimum number of instances required to be at leaf node is denoted by this value

Twin SVM classifier

c1 and c2 Represent the penalty parameters that control the classification accuracy and margin
maximization

e1 and e2 Denote the column vectors of ones of appropriate dimensions depending on the dataset

v1 and v2 Symbolize the parameters that ascertain the tradeoff between the support vector and the
interval error
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2.4. User Application Design

The best-performing ML classifier from an experimental setting is deployed into a
pickle file for developing a user-friendly application. Binary protocols are implemented in
the pickle module so that a Python object structure can be serialized and deserialized into a
bytes stream, and then the bytes stream can be converted into an object hierarchy again.
However, in a real-world scenario, the practice of pickling and unpickling is widespread as
it allows one to quickly transfer the data from one server/system to another and then store
it in a file or database [29]. Then, flask, a Python web framework, is deployed to integrate
the pickled model with the web application. Compared to the Django web framework, the
Flask web application is more precise in everyday scenarios; hence, it is considered more
Pythonic [23]. Besides, a user-friendly web application has been designed through which
end users can easily input the data to test whether they are affected by COVID-19 or not
in a probabilistic fashion. A higher probability indicates that the user has a higher risk of
being COVID-19 affected and vice versa. High-risk users should follow proper guidelines
and take medication for COVID-19 as early as possible.

3. Experimented Outcome and Discussions

This study comprised two types of analysis: (i) results related to classification model
building; performance analysis of the model; and identification of essential features and
the best classifier (see Section 3.1) and (ii) employment of the best classifier to develop an
expert system discussed in Section 3.2.

3.1. The Outcome of ML Classifiers

In this study, 70.0% data was used to train the model and 30.0% to evaluate the trained
model. The K Best and RFE algorithms have been practiced on the training dataset and
also output 10 essential features (see Table 2).

1. Age;
2. Temperature;
3. Pulse;
4. Respiratory rate;
5. Bronchi;
6. Wheezes;
7. Cough;
8. Fever;
9. Loss of smell;
10. Loss of taste.

Table 2. The decided attributes come from two different selection algorithms. Various features have
been chosen to be applied via RFE. By applying K Best, the last 10 features are selected for applying
classification models.

Recursive Feature Elimination (RFE)
K Best

XGB RF SVM

high_risk_exposure_occupation age diabetes age
htn high_risk_exposure_occupation copd temperature
smoker high_risk_interactions temperature pulse
cough temperature ctab rr
fever sys wheezes rhonchi
sob rr fever wheezes
fatigue sats diarrhea cough
headache cough fatigue fever
loss_of_smell fever loss_of_smell loss_of_smell
loss_of_taste loss_of_smell loss_of_taste loss_of_taste
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From Table 3, it is noteworthy that the Select K Best feature selection method provides
better results than the RFE feature selection approach. The performance of the XGB
classifier [30] has been significantly enhanced due to the Select K Best feature selection
process. The XGB classifier demonstrates the highest metrics values compared to the
other ML classifiers, such as RF and SVM (see Table 3). In the end, the XGB classifier, in
conjunction with Select K = 10 Best features, has provided the best result for the article.

Table 3. Classification performance of different classifiers using RFE, select K Best, and without
feature selection. The model’s performances have been proven by comparing several metrics like
accuracy, F1_score, Kappa, and more. On K Best feature, best model performances (Accuracy,
Precision, Sensitivity, Specificity) accomplished by XGB.

Different Performance Metrics (%)

Feature Selection Methods Without Feature
Selection MethodsK Best RFE

RF XGB SVM RF XGB SVM RF XGB SVM

Accuracy (ACC) 94.38 97.18 63.91 95.82 66.53 62.12 97.88 97.18 62.80
F1_Score 94.43 97.23 66.77 95.88 71.88 71.31 97.91 97.24 65.99
False Positive Rate (FPR) 5.43 3.75 44.05 4.37 51.94 69.56 2.30 3.84 45.95
Kappa Statistic (Kappa) 88.76 94.35 27.68 91.65 32.78 23.69 95.76 94.35 25.45
Matthews Correlation Coefficient (MCC) 88.77 94.37 28.00 91.65 35.12 30.26 95.76 94.37 25.80
Precision (PPV) 94.67 96.40 62.48 95.73 62.50 57.80 97.76 96.32 61.38
Sensitivity (SEN) 94.20 98.08 71.68 96.02 84.59 93.08 98.06 98.17 71.35
Specificity (SPE) 94.57 96.25 55.95 95.62 48.05 30.43 97.70 96.16 54.05

Furthermore, the class-wise COVID-19 prognostication results are displayed in the
confusion matrix, which is the visual representation of the classification performance.
Figure 4a–c depict the confusion matrices for the XGB, RF, and SVM classifiers, respectively.

In addition, it has also been endeavored to test the results of the COVID-19 pa-
tient classification using the two well-known variants of Twin Support Vector Machine
(TSVM) [27,31] because of its high-speed computational capacity. Other exciting advantages
of using TSVM are that it ascertains two non-parallel hyperplanes instead of one hyper-
plane in the case of conventional SVM, and it can automatically unearth two-dimensional
projections of the data. The perks of TSVM have been projected using both tabular and
pictorial depictions. For instance, Table 4 delineates the comparative performance of tra-
ditional SVM and its two variants; Figure 4d,e visualize the confusion matrices of TSVM
with linear kernel and TSVM with RBF kernel. From the tabular and graphical illustrations,
it can be concretely decided that, although two variants of SVM perform better than the
conventional SVM, the performance of XGB far outweighs the rest of the classifiers, includ-
ing the TSVM. This is because the variants of TSVM have not been utilized for the further
analysis of the proposed research work.

The first two diagonal cells of Figure 4 expose the corresponding number of trained
networks and the percentage of proper classifications. For the best-performing XGB clas-
sifier, 66 of the COVID-19 cases are incorrectly classified as non-Covid, corresponding to
0.9% of all the 7121 examples in the data. Likewise, 135 of the non-Covid samples are
falsely classified as COVID-19, corresponding to 1.9% of all the data. Furthermore, the
XGB classifier has outputted a 98.1% positive predictive value, outperforming the RF and
SVM classifiers, respectively, by the margins of 0.4% and 33.3%. Again, that comparative
analysis of those three confusion matrices explains that the XGB classifier provides fewer
false-positive and false-negative COVID-19 identification results with better true positive
and negative while applying the K = 10 Best feature selection.

Again, all the classifiers are further evaluated in terms of ROC curves and their AUC
values. Figure 5a visualizes the ROC for the main three classifiers, which recognizes that the
optimized XGB affords better results in terms of ROC compared to SVM and SVM. Higher
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AUC values offer robust performance in differentiating between the target classes. The
experimental results reveal that the XGB classifier has the highest possible AUC of 98.0%.
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Figure 4. Confusion matrices of (a) XGB, (b) RF, (c) SVM, (d) Twin-SVM with linear kernel, and
(e) Twin-SVM with RBF kernel for evaluating their class-wise performance.

Table 4. Comparative performance of SVM and its two variants.

SVM and It Variants
Performance Metrics (%)

ACC Error F1_Score FPR Kappa MCC PPV SEN SPE

SVM 63.91 36.09 66.77 44.05 27.68 28.00 62.48 71.68 55.95
Twin SVM with linear kernel 66.28 33.72 71.31 50.67 32.30 34.20 62.60 82.84 49.33
Twin SVM with RBF kernel 77.78 22.22 77.03 17.96 55.61 55.83 80.76 73.63 82.04

The optimized XGB classifier has offered the best results in this study, as is evident from
the above outcomes and discussions. The further assessment of the best performing XGB
classifier has been accomplished using a bootstrap ROC, as attested in Figure 5b. In addition,
the ROC 100 times (nboot = 100) has been replicated, and thereby the corresponding results
offer a 95% confidence interval.
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(a) (b)

Figure 5. (a) ROC of RF, XGB, and SVM; and (b) bootstrap ROC analysis of XGB. The XGB classifier
outperformed all the other algorithms.

3.1.1. Cross-Validation, Analysis of Variance (ANOVA), and Multi-Comparison Test

The earlier results are based on the random train-test split, where 70.0% of the dataset
was adopted in training and 30.0% of it in the testing phase. The 10-fold cross-validation
(10-fold CV) was considered for additional robustness testing. This is done 10 times to
estimate the model’s overall performance. In Table 5, the performances of the main three
classifiers using a 10-fold CV are numerically presented. The mean accuracy for the XGB
applying the 10-fold CV has the highest value of 96.68%. In contrast, the SVM offers 63.62%,
and RF provides 90.77% cross-validation accuracy.

Table 5. A 10-fold cross-validation accuracy for the main three classifiers (RF, XGB, and SVM). The
best Mean ± Std value is archived from XGB, which is 96.68± 3.82.

Different Folds RF XGB SVM

Fold 1 86.52 86.24 50.83

Fold 2 91.38 97.68 66.50

Fold 3 92.26 97.68 72.75

Fold 4 87.21 95.09 61.68

Fold 5 88.42 97.50 60.89

Fold 6 93.05 98.66 68.86

Fold 7 92.68 98.01 76.78

Fold 8 92.59 98.75 58.39

Fold 9 90.36 98.79 58.88

Fold 10 93.32 98.42 60.59

Mean ± Std 90.78± 2.53 96.68± 3.82 63.62± 7.64

The Box and Whisker plot in Figure 6a of those three models explains that the XGB
classifier produces the best results, showing very few inter-fold variations and the highest
mean accuracy.
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Figure 6. (a) Box and Whisker plot of 10-fold CV of the main three ML classifiers and (b) a multi-
comparison test of the three trained models in this article.

The statistical significance of this study is carried out using the ANOVA test, employ-
ing a 10-fold CV. Additionally, the Multi-comparison Analysis (MCP) has been adopted,
which has critical statistical properties. Failing to account for them leads to three induction
algorithm pathologies: attribute selection errors, overfitting, and oversearching. However,
a significant statistical analysis has been performed and calculated the p-value, 4.8× 10−14

(p < 0.001, statistical significance). This critical analysis has revealed statistically significant
results. The optimized XGB result is statistically more important than the RF and SVM
manifested in Figure 6b, as is apparent from the multi-comparison test.

The importance of the t10 selected best features is exhibited in Figure 7a using the best
performing XGB classifier. The most important features are loss of taste and smell, and the
least essential feature among the 10 is wheezes. Cumulative importance (CI) calculates the
most important features and describes how the second-most important features improve the
performance. Performing CI, the 10 features are shown in Figure 7b, and the performance
is almost 95%.

The violin plot displayed in Figure 8 is also created to visualize the data and data
distribution in terms of fever and cough. It clearly distinguishes between Covid and non-
Covid patients [32]. Therefore, an optimized XGB model using 10 important features (age,
temperature, pulse, respiratory rate, bronchi , wheezes, cough, fever, loss of smell, loss of
taste) has been used to design an intelligent app that is discussed in Section 3.2 [33].

Furthermore, from Table 6, it is evident that the model performance has been bestowed
on the selected features. Without feature selection, the performance of RF and XGB is
almost similar, with an accuracy of 97.89% and 97.18% separately. However, the Matthews
correlation coefficient is 95.79% and 94.37% for RF and XGB, respectively. The results using
the 10 best features are slightly better than this. So, it can be concluded that using the
10 features resulting from SelectkBest in collaboration with the optimized XGB provides the
best results. From these results, the violin plots have also been carried out (see Figure 8).

The most important rules are derived from a set of 10 attributes. It has been attempted
to discover a relationship between the selected features due to this result. These nine
rules are extracted based on confidence (35%) and support (95%), and Figure 9 depicts the
relationship between those variables and the rules for Covid patients.
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(a) (b)

Figure 7. Feature importance and cumulative importance using XGB. The most important feature is
loss_of_test, which is a noteworthy discovery from the dataset investigation. Then, (a) showed the
selected 10 critical features, and (b) visualizes the cumulative feature importance curve, which also
indicates that it grows to 95% above.

Figure 8. Violin plot of data distribution in terms of fever and cough.
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Table 6. Selected feature models performances using RF, XGB, and SVM are quantified in terms of
accuracy, error, F1_Score, false-positive rate, and Kappa. The highest degree of precision, accuracy,
and specificity is achieved via the efforts of RF.

Classifiers
Performance Metrics (%)

ACC Error F1_Score FPR Kappa MCC PPV SEN SPE

RF 97.89 2.11 97.91 1.96 95.79 95.79 98.08 97.75 98.04
XGB 97.18 2.82 97.24 3.84 94.35 94.37 96.32 98.17 96.16
SVM 62.80 37.20 65.99 45.95 25.45 25.80 61.38 71.35 54.05

(a) (b) (c)

Figure 9. Association rules (a) scatter plot, (b) support and lift, and (c) items in the left hand side
(LHS) and the right hand side (RHS) group.

3.1.2. State-of-the-Art Comparison

The previous discussion reveals that 10 features have been selected by employing
Select-K Best feature selection and are shown to outperform using XGB. The results are also
comparable with other contemporary studies. In Table 7, Awal et al. [23] worked on the
same dataset where the feature number and total instances were 33 and 21578. They applied
mainly three different ML algorithms and got the best accuracy of 98.63% from XGB with
33 features, but no expert system was built there. On the other hand, with 10 significant
features, the expert system developed using the proposed approach achieved 97.91%
accuracy in the XGB model, which is quite close to Awal et al. [23] work. Kumar et al. [10]
also developed their prediction model by applying RF and XGB. Arpaci et al. [7] achieved
the best accuracy of 97.7% by applying XGB on the dataset containing three features and
5840 instances. Debjit et al. [8] used a dataset consisting of 20 clinical features and obtained
92.54% accuracy. The proposed system was based on 10 features, and the cases were 21,578.
However, it is obvious that the better accuracy is 97.91% from XGB, 97.81% accuracy from
RF, and 73.37% is obtained from SVM.

3.2. Mobile and Web Application Development

A user-friendly web and mobile application have been developed from the model
on which end users can easily input the data to test whether they can affect COVID-19
in a probabilistic fashion or not. Here, end-users input 10 data points such as age, body
temperature, pulse rate, respiratory rate, bronchi, wheezes, cough, fever, loss of smell, and
taste. The higher probability indicates a higher risk of affective COVID-19 and vice versa.
The high-risk user should follow proper guidelines and medication against COVID-19. The
web application, as well as the mobile interface of the proposed framework, have been
presented in Figures 10 and 11, respectively.
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Table 7. Comparison of accuracy between the existing outcomes and the proposed system.

Different Studies (year) Feature Numbers Sample Numbers Algorithms Accuracy (%)

Awal et al. [23] (2021) 33 21,578

RF 98.54

XGB 98.63

SVM 96.75

Wang et al. [9] (2020) 15 279
RF 80.00

SVM 80.00

Kumar et al. [10] (2020) 69 1925
RF 93.00

SVM 91.00

Arpaci et al. [7] (2020) 3 5840
RF 97.30

XGB 97.70

Debjit et al. [8] (2022) 20 48,676

XGB 92.54

RF 91.53

SVM 84.54

Proposed system (2022) 10 21,578

XGB 97.91

RF 97.81

SVM 73.37

Figure 10. Screenshot of the designed web application for COVID-19 prognostication, deploying the
proposed framework.

After input, those 10 data that predict the button return the following Figure 11 with
the positive and negative probability percentages. Here is the screenshot of the newly
designed smartphone application. End users can here input these 10 data and predict the
probability of positive or negative.
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(a) (b) (c)

Figure 11. Several screenshots, such as (a) queries from users, (b) queries from users, and (c) pre-
dicted results of the implemented mobile application for COVID-19 prognostication, deploying the
proposed framework.

4. Conclusions

COVID-19 has altered global, social, and economic conditions. The sturdiness of inter-
national relations has been tested, whether on a unilateral or multilateral basis. The most
obvious consequences of this disease are economic recession, a global governance crisis,
trade protectionism, and increased isolationist sentiment. There have been restrictions
on international exchanges of people, culture, and travel. Nevertheless, this is only the
beginning. The world will be able to maintain stability in the future when faced with
similar challenges because people will overcome the pandemic. If COVID-19 is detected
early, it may be possible to defeat the virus. Furthermore, here, a model is built for the
early detection of COVID-19 to facilitate end-users by quickly testing whether they are
affected by COVID-19 in a probabilistic fashion. A higher probability indicates that the
user is more likely to be affected by COVID-19 and vice versa. Mainly, three ML algorithms
have been utilized, namely XGB, RF, and SVM, to establish this model, which obtained
an average accuracy of 97.91% for XGB, 97.81% for RF, and 73.37% for SVM. Finally, an
expert intelligence system has been developed using the outcomes of this study, and it is
aimed to be highly efficient and accurate in predicting and classifying COVID-19, as its
symptoms are the same. This application can be applied to any country’s people. In the
future, deep learning and transfer learning may be integrated into the proposed algorithm
to make the application more efficient. The sample size of the dataset can be enlarged
to make the analysis more feasible, accurate, and valuable. The current dataset has been
stored in the GitHub repository (https://github.com/awalece04ku/Covid-ML/) (accessed
on 26 February 2022) for future app usability testing and performance measurement.

https://github.com/awalece04ku/Covid-ML/
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