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This rapid method for determining the degree of degradation of frying rapeseed oils uses Fourier-transform infrared (FTIR)
spectroscopy combined with partial least-squares (PLS) regression. One hundred and fifty-six frying oil samples that degraded
to different degrees by frying potatoes were scanned by an FTIR spectrometer using attenuated total reflectance (ATR). PLS
regression with full cross validation was used for the prediction of acid value (AV) and total polar compounds (TPC) based on
raw, first, and second derivative FTIR spectra (4000–650 cm−1).The precise calibration model based on the second derivative FTIR
spectra shows that the coefficients of determination for calibration (𝑅2) and standard errors of cross validation (SECV) were 0.99
and 0.16mgKOH/g and 0.98 and 1.17% for AV and TPC, respectively. The accuracy of the calibration model, tested using the
validation set, yielded standard errors of prediction (SEP) of 0.16mgKOH/g and 1.10% for AV and TPC, respectively.Therefore, the
degradation of frying oils can be accurately measured using FTIR spectroscopy combined with PLS regression.

1. Introduction

The quality of fried foods is closely related to the quality of
the frying oil [1]. During frying, oil is subjected to prolonged
periods of heating at high temperatures in the presence
of air and water. This leads to a wide range of complex
chemical reactions, such as thermal oxidation, hydrolysis,
and polymerization [2, 3]. The compounds generated by
these chemical reactions not only adversely affect flavor but
also produce undesirable constituents in fried foods [4].
Therefore, controlling frying oil quality by a rapid evaluation
method is imperative. Several quality attributes are used to
evaluate the quality of frying oil by traditional chemical
methods, acid value (AV) or free fatty acids (FFA), total polar
compounds (TPC), or total polar materials (TPM). Most
standard analytical methods for oil analysis are expensive,
require lengthy sample preparation, and, in some cases,
depend on advanced instruments [5–7].Thus, physical meth-
ods, based on colorimetric reaction, refractive index, density,

or viscosity [5, 8, 9], are relatively easy for measurement, but
do not agree well with the chemical changes in frying oils
during deep-fat frying.

Fourier-transform infrared (FTIR) spectroscopy has
proved to be a viable alternative to standard wet analyti-
cal techniques for determining key quality parameters in
many fields [10–12]. Previous studies have identified many
adulteration problems using experimental and statistical
methods [13–17]. More recently, FTIR spectroscopy was used
to determine deterioration in edible vegetable oils adulterated
with used frying oil [18, 19]. These investigations highlighted
the use of FTIR spectroscopy to authenticate and monitor
edible vegetable oils but did not evaluate frying oils that have
actually been used to fry foods. Al-Degs et al. [20] used
FTIR spectroscopy and a multivariate calibration method to
measure the degradation of frying quality of used vegetable
oils collected from 25 public restaurants. Relatively high
correlationswere reported between results fromwet chemical
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analysis and infrared spectroscopy, but the number of the
samples and the measurement ranges were limited.

Du et al. [21] discussed evaluating the quality of deep
frying oils with FTIR spectroscopy using a large number of
deep frying oil samples collected from a local college canteen,
but only the FFA and peroxide values (PV) of frying oils
were examined. As it is well known, the PV value indicates
the degree of oxidation of oils in the natural state or in the
initial stages of oxidation, so it cannot be used for evaluating
the quality of deep frying oils. The FFA value indicates the
quantity of free fatty acids by hydrolysis, so again it cannot
be used for evaluating the quantity of secondary oxidation
compounds that are connected to the quality of deep frying
oils. The TPC value is the most important parameter for
evaluating the quality of frying oils, because it indicates the
quantity of secondary oxidation compounds. Shen et al. [22]
used FTIR spectroscopy to assess the quality (FFA and TPC
values) of deep frying oils used by street vendors but no frying
rapeseed oil samples were used.

The objective of the present study was to investigate
whether the AV and TPC values of frying rapeseed oil sam-
ples that degraded to different extents could be determined
by FTIR spectroscopy combined with partial least-squares
regression in order to determine the degree of degradation of
a large number of deep frying oils. Furthermore, it will also
be determined whether the derivative spectra could improve
the measurement accuracy of the model.

2. Experimental

2.1. Sample Preparation. Two types of rapeseed oil (commer-
cially refined canola oil from the Nisshin Oillio Group Ltd.,
Tokyo, Japan, and unrefined rapeseed Kizakinonatane oil
from Akita New Bio Farm Co., Ltd., Akita, Japan) were used
as the frying oil samples. Frozen par-fried French fries in an
institutional pack were purchased from a local supermarket
and used for deep frying. The frying was conducted in a
restaurant-style stainless steel electric fryer TF-40A (Taiji &
Co., Ltd., Kanagawa, Japan) at frying temperatures of 180, 200,
or 220∘C. Batches of 100 g of frozen French fries were fried for
3min at 22min intervals, when the temperature of the oil had
reached the desired temperature. This continued for a period
of 7 h each day for 4 consecutive days. This was equivalent
to frying 17 batches per day and therefore 68 batches for
the whole experiment. During the frying process, 200mL of
heated oil was drawn off every 3.5 h and stored at −18∘C until
analysis for AV and TPC values and the acquisition of NIR
spectral data. The frying experiments were carried out once
using canola oil and twice using rapeseed Kizakinonatane
oil. A total of 156 frying oil samples, degraded to different
degrees, were obtained from the food frying process.

2.2. Reference Analysis. The acid values (AV) of the frying
oil samples were determined in triplicate using an automatic
potentiometric titrator (AT-500N, Kyoto Electronics Man-
ufacturing, Kyoto, Japan) according to the AOCS Official
Method Cd 3d-63 [23]. All AV analysis results were expressed
as mgKOH/g oil. The total polar compound (TPC) estima-
tions of the frying oil samples were measured directly with

a food oil monitor (FOM 310, Ebro Electronics, Ingolstadt,
Germany) based on measuring the change in dielectric
constant.

2.3. FTIR Spectral Acquisition. Spectroscopic data from the
frying oil samples were acquired by an infrared spectrometer
(Nicolet 6700 FT-IR,Thermo Fisher Scientific K.K,Waltham,
MA,USA) equippedwith an attenuated total reflection (ATR)
accessory with a temperature controller. A small amount
of the oil samples was uniformly deposited on the crystal
surface of the ATR accessory (Specac Inc., Woodstock, GA,
USA), equipped with a ZnSe reflection crystal. Analyses were
carried out at room temperature. Spectra were acquired (100
scans/sample or background) in the wavenumber range of
4000–650 cm−1 at a spectral resolution of 4 cm−1, and the
data was exported using OPUS Ver. 6.0 (Bruker Optics,
Billerica, MA, USA) software in ASCII-compatible format.
For each sample, the absorbance spectrum was collected
against a background obtained with a dry and empty ATR
cell. Three spectra per sample were recorded. After acquiring
each spectrum, the ATR crystal was cleaned with a cellulose
tissue soaked in hexane and then rinsed with acetone. All
spectral data exported by the OPUS software were then
imported to Unscrambler software (CAMO, Oslo, Norway).

Because there are differences in the viscosity of frying oil
samples, it may produce baseline offset and slope in infrared
spectra that may affect the creation of robust calibration
model. One of the earliest methods for removing baseline
offset and slope is the use of derivative spectra [24, 25].
The first derivative of a spectrum is simply a measure of
the slope of the spectral curve at every point. The slope of
the curve is not affected by baseline offsets in the spectrum,
and thus the first derivative is a very effective method for
removing baseline offsets.The second derivative is a measure
of the change in the slope of the curve. In addition to
ignoring the offset, it is not affected by any linear “tilt”
that may exist in the data and is therefore a very effective
method for removing both the baseline offset and slope
from a spectrum. The first and second derivative spectra
were obtained using the Savitzky-Golay method [26] with a
segment of a 10-point window and a gap of a 0-point window.
The derivative mathematical treatments were carried out
using the Unscrambler software.

2.4. Statistical Analysis. Partial least-squares (PLS) regression
analysis was used to extract relevant information from the
complex FTIR spectra of the frying oils.The calibrationmod-
els were created by PLS regression from the raw FTIR spectra
and their first and second derivatives, and the optimum
number of PLS factors used for prediction was determined
by full cross validation.The number of significant PLS factors
was chosen using a predicted residual error sum of squares
(SECV) value for every possible factor. The SECV value was
the sum of the squared differences between the predicted
and known concentrations. It was calculated by building
calibrationmodels with different numbers of factors and then
predicting some samples of known concentration against the
model. The quality of the calibration model is described by
the squared correlation coefficient (𝑅2) and standard error
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Table 1: Characteristics of reference data for calibration and
validation sets.

Calibration set (𝑛 = 104) Validation set (𝑛 = 52)
Mean Range SD Mean Range SD

AV
(mgKOHg−1) 2.82 0.09–8.37 2.06 2.80 0.09–7.47 2.02

TPC (%) 11.00 0.50–40.00 8.21 10.92 0.50–35.00 7.97
SD: standard deviation.

of calibration (SEC) and was validated with the validation
sample set that was not used for the calibration development.
The correlation coefficient of prediction (𝑟) and root-mean
square of the prediction (SEP) were used to choose the best
model. SEPmeasures howwell themodel can predict samples
in a validation set. The best calibration model to be used for
prediction was the one with the highest value of 𝑟 and the
lowest value for SEP. The PLS regression performance was
carried out using PLS1 algorithm with only one 𝑌-variable
for prediction of the AV or TPC value of frying rapeseed oil
samples, respectively, by the Unscrambler software.

The 156 oil samples obtained from the frying process
were divided into calibration and validation sets as follows.
Initially, samples within the parent set were sorted according
to AV or TPC values determined by traditional methods.
Starting with the sample with the lowest AV or TPC value,
the first and third samples were assigned to the calibration set
and the second sample to the validation set. The next group
of three samples was assigned similarly, and so on, until the
last group.Thus, 104 samples were included in the calibration
set and 52 in the validation set. Statistics for the AV and TPC
values of the frying oil samples selected for the calibration and
validation sets are shown in Table 1.

3. Results and Discussion

3.1. Spectra Features of FTIR. Figure 1 shows the FTIR spectra
of fresh canola oil and rapeseed Kizakinonatane oil. To
the naked eye, the entire ranges of spectra of the two oils
look similar. These spectra showed the typical characteristic
of absorption bands similar to those reported in previous
studies [15, 16, 20, 27]. The most prominent absorption
band at 1743 cm−1 can be assigned to the C=O stretching of
aliphatic esters [15, 16, 20, 27]. The strong bands at around
2922 and 2852 cm−1 can be ascribed to the asymmetrical and
symmetrical C-H stretching vibrations of CH

2

groups. The
band at around 1157 cm−1 can be assigned to the stretching of
the C-O bonds of aliphatic esters [15, 16, 20, 27].

Figure 2 shows the FTIR spectra of fresh and used canola
oil. The entire range of spectra looks very similar for the
fresh (before frying) and used oils (after frying). However, if
one examines the spectra closely, differences between fresh
and used canola oil samples are observed at the typical
characteristic of absorption bands around 2922, 2852, 1743,
and 1157 cm−1. In addition, the weak absorption at 966 cm−1
observed in used oil samples may be due to the C-H out-of-
plane deformation of isolated trans double bonds or some
trans conjugated unsaturated fatty acids [15, 16, 20, 27, 28].
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Figure 1: FTIR spectra of canola (CO) and Kizakinonatane (KO)
frying oil samples.
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Figure 2: FTIR spectra of the fresh and used canola oil.

There was an obvious difference in absorption intensity
at around 966 cm−1 between the fresh (before frying) and
the used oils (after frying). The peak intensity at 966 cm−1
exhibited a slight increase in used frying oils compared with
the fresh oil.Thus, it can be seen thatmuch information about
the degradation of frying oils can be obtained from the entire
range of FTIR spectra.

3.2. IR Calibration Models for AV and TPC Values. PLS
regression analysis results for predicting AV and TPC values
in frying oils using raw, first, and second FTIR spectra are
shown in Table 2. A total of six PLS calibration models were
developed for analyzing the AV and TPC value of frying oils
using the calibration and validation sample sets based on raw,
first, and second derivative spectra. There were very strong
correlations between actual values and IR-predicted values in
these calibration models, with 𝑅2 values 0.99 for AV and 0.98
for TPC.

When the SEC, SECV, and SEP values of the calibration
models were compared as shown in Table 2, the results based
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Table 2: PLS analysis results for predicting the AV and TPC values of frying oil samples.

𝐹 𝑅2cal SEC SECV 𝑅2val SEP Bias RPD

AV
Raw spectra 5 0.99 0.20 0.22 0.99 0.22 0.03 9.2

First derivative spectra 5 0.99 0.15 0.17 0.99 0.16 0.03 13.0
Second derivative spectra 6 0.99 0.14 0.16 0.99 0.16 0.03 12.7

TPC
Raw spectra 6 0.98 1.13 1.26 0.98 1.13 0.00 7.1

First derivative spectra 6 0.98 1.04 1.16 0.98 1.10 −0.09 7.3
Second derivative spectra 6 0.98 1.05 1.17 0.98 1.10 −0.01 7.3

𝐹: number of factors; 𝑅2: coefficient of determination; SEC: standard error of calibration; SECV: standard error of cross validation; SEP: standard error of
prediction; bias: average of differences between reference value and NIR value; RPD: ratio of standard deviation of reference data in the validation set to SEP.

on the first or second derivative spectrawere better than those
based on the raw spectra. The baseline offset and slopes in
spectramight affect the development of a sensitive calibration
model because of the differences in the viscosity of the frying
oil samples. The first derivative of the raw spectra is simply a
measure of the slope of the spectral curve at every point and
the second derivative is a measure of the change in the slope
of the curve.The slope of the curve is not affected by baseline
offsets in the spectrum, and thus using the first and second
derivatives is a very effective method for removing baseline
offsets [24, 29, 30]. This may be why relatively better results
were obtained based on the first or second derivative spectra.

The calibration models based on the first and second
derivative spectra gave the same level of accuracy. Because
the wavelengths of the absorbing peaks are in accordance,
despite the fact that second derivative spectrum and the
raw spectrum are being complete opposite of direction of
the absorption peaks, the models based on the second
derivative spectra were chosen in order to easily examine
the factors contributing to these models, which for AV
showed low values of SECV (0.16mgKOHg−1) and SEP
(0.16mgKOHg−1) and for TPC and low values of SECV
(1.17%) and SEP (1.10%). Compared with the results of AV
in previous studies [20–22], higher 𝑅2 and lower SECV and
SEP values were obtained. The differences between previous
studies and the present study were mainly due to the wider
range of frying oil samples and the differences in the numbers
of samples. The cross validation and prediction (validation)
results, represented graphically by plotting the reference
analysis values against the IR-predicted values based on the
second derivative spectra, showed strong linearity, as shown
in Figures 3 and 4. Furthermore, all the prediction models
had high ratio performance deviation (RPD) values of more
than 5.8.The RPD is the ratio between the standard deviation
of the observed values of training samples against the SEP
of the model; the larger it is, the better the technique does
perform. Generally, an RPD value above 3 indicates a useful
model that allows good quantitative predictions [31–33]. It
can thus be concluded that the IR spectra provided good
estimates of AV and TPC values in frying oils, showing low
SEP values and very high RPD values.

3.3. Regression Coefficients of PLS Model. Regression coeffi-
cients can be used to compare the contributions of individual
wavenumbers to a PLS calibration model, since a regression
coefficient spectrum shows characteristic peaks and troughs

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

IR
 p

re
di

ct
ed

 v
al

ue
s (

m
g 

KO
H

/g
)

AV values (mg KOH/g)

Cross validation
Prediction

Figure 3: Relationship between actual and IR-predicted AV values.

that can indicate which wavenumber range is important for
the calibration model [29, 32, 34].

Figure 5 shows the regression coefficients of the PLS
calibration model based on the second derivative spectra
for AV values. Some notable negative peaks at wavenumbers
3010, 2924, 2852, and 1716 cm−1 were easily observed. The
negative peak at a wavenumber of 1716 cm−1 can be assigned
to the C=O functional group, which might be related to the
absorption of the C=O stretching characteristic frequency
associated with free fatty acids that increase with the degra-
dation of frying oils [14, 19, 35, 36]. The negative peaks at
wavenumbers 3010, 2924, and 2852 cm−1 can be assigned to
the C-H functional group, which might be related to the
absorption of the C-H stretching characteristic frequency
associated with free fatty acids [14, 19, 35, 36].

Figure 6 shows the regression coefficients of the PLS
calibration model based on the second derivative spectra
for TPC values. Some notable peaks at wavenumbers 3026,
3008, 2852, 1736, 1149, and 968 cm−1 were easily observed.
The negative peak at wavenumber 1736 cm−1 can be assigned
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Figure 5: Regression coefficients of the PLS calibration model for
AV based on the second derivative spectra.

to the C=O functional group, which might be related to the
absorption of the C=O stretching characteristic frequency
associated with ester, aldehyde, and ketone, which increase
with the degradation of frying oils [14, 19, 35, 36].Thenegative
peak at wavenumber 3026 cm−1 can be assigned to the C-H
trans functional group and the positive peak at wavenumber
3008 cm−1 can be assigned to the C-H cis functional group,
whichmight be related to unsaturated fatty acids that increase
with trans fatty acids and decrease with cis fatty acids in
frying oils [14, 19, 35, 36]. The negative peak at wavenumber
968 cm−1 can be assigned to the HC=CH trans bending
(out-of-plane) functional group, which might be related to
the absorption of trans fatty acids that increase with the
degradation of frying oils [14, 19, 35, 36]. Taken together,
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Figure 6: Regression coefficients of the PLS calibration model for
TPC based on the second derivative spectra.

these results suggest that PLS calibration models with very
high precision for prediction of AV and TPC values of frying
rapeseed oils could be established. These are based on the
absorption of FFA and secondary oxidation products such as
carboxylic acid, ester, aldehyde, and ketone groups, which all
increase as frying oils deteriorate. The results of the present
study have thus shown the utility of using the IR technique to
determine the AV and TPC values of frying oils.

4. Conclusions

FTIR spectroscopy can be successfully applied to measure
the AV and TPC values of frying rapeseed oils with high
precision. Good calibration model based on the second
derivative spectra was obtained by comparing the prediction
accuracy of models based on raw, first, and second derivative
spectral data. FTIR spectroscopy has significant advantages
over chemical analytical techniques; it is a fast and simple
method that requires no sample preparation, so it is a very
practical method for measuring the AV and TPC values of
frying oils.
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