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Abstract
Objectives  Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical per-
formance in Huntington’s Disease (HD), an inherited Neurodegenerative disease (NDD).
Methods  We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 
Huntington’s disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.2), range (27–88) years] from 
three multicenter prospective studies in France and Belgium (MIG-HD (ClinicalTrials.gov NCT00190450); BIO-HD (Clini-
calTrials.gov NCT00190450) and Repair-HD (ClinicalTrials.gov NCT00190450). We pre-registered all of our methods 
before running any analyses, in order to avoid inflated results. We automatically extracted 60 speech features from blindly 
annotated samples. We used machine learning models to combine multiple speech features in order to make predictions at 
individual levels of the clinical markers. We trained machine learning models on 86% of the samples, the remaining 14% 
constituted the independent test set. We combined speech features with demographics variables (age, sex, CAG repeats, and 
burden score) to predict cognitive, motor, and functional scores of the Unified Huntington’s disease rating scale. We provided 
correlation between speech variables and striatal volumes.
Results  Speech features combined with demographics allowed the prediction of the individual cognitive, motor, and func-
tional scores with a relative error from 12.7 to 20.0% which is better than predictions using demographics and genetic 
information. Both mean and standard deviation of pause durations during backward recitation and clinical scores correlated 
with striatal atrophy (Spearman 0.6 and 0.5–0.6, respectively).
Interpretation  Brief and examiner-free speech recording and analysis may become in the future an efficient method for 
remote evaluation of the individual condition in HD and likely in other NDD.
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Introduction

Huntington’s disease (HD) is a rare severe inherited neuro-
degenerative disease (NDD) whose natural history is well 
known and well characterized. It combines all complexity 
of NDDs by associating motor, psychiatric, and cognitive 
disorders resulting in functional impairment [1]. Despite 
the development of innovative and promising clinical ther-
apies, a major challenge is the identification of markers 
sensitive to disease progression, even in the premanifest 
stage (preHD), before the appearance of motor symptoms.

Current clinical assessments are carried out with the 
Unified Huntington’s Disease Rating Scale (UHDRS) 
[2], the worldwide reference scale for HD studies. This 
is done once or twice a year, during face-to-face exami-
nations performed by trained experts from different spe-
cialties (neurologists, neuropsychologists, psychiatrists, 
and nurses). Each clinical domain is evaluated separately 
using lengthy, and often subjective scales [3, 4]. Recently, 
a multi-domain score, named cUHDRS, was proposed as a 
single endpoint of clinical trials in HD thanks to its greater 
sensitivity to disease progression [5]. As it combines vari-
ous scales of the UHDRS, it still requires trained experts 
and multiple scale assessments. Cognitive batteries with 
time-dependent tasks [6], brain imaging with striatal vol-
umes [7] or biofluids with Human Cerebrospinal Fluid 
(CSF) Neurofilament level [8] have also been evaluated 
as potential markers. These three types of markers have 
been considered as candidate biomarkers to follow the 
evolution of HD. However, they all require the presence 
of the patient at the hospital and a high level of expertise 
or equipment. In particular (1) cognitive batteries are car-
ried out face-to-face by an expert neurologist/neurologist; 
(2) high quality brain imaging requires visits of the patient 
to the neuroimaging center with expensive equipment; (3) 
analysis of biofluids such as CSF imposes an invasive pro-
cedure, which additionally cannot be performed outside 
hospital under clinical surveillance.

This calls for objective, cost-effective tests to measure 
the symptoms in a unified approach [9–11]. Neurodegen-
erative disorders are complex and heterogeneous at the 
individual level. It is very unlikely that a single marker/
measure would have all the good properties for diagnos-
tic and severity assessments of different types of symp-
toms and truly help for real life clinical decisions. Yet, 
the combination of complementary biomarkers appears to 
be a more promising path to predict accurately the differ-
ent clinical symptoms. Traditional methodologies used in 
Neurology, Inferential or Bayesian statistics, cannot han-
dle and properly digest very high dimensional data, espe-
cially when the number of markers is on par or outnumber 
the number of data points in the cohort. Making accurate 

predictions at the individual level becomes possible with 
machine learning methods. These methods are designed 
to detect subtle patterns, taking into account a large num-
ber of variables, potentially with non-linear interactions 
[12, 13]. Thanks to increasing computing power, machine 
learning models now provide an effective methodology to 
analyze the high-dimensional output of sensors, such as 
microphones or smartwatches, yielding a patient-tailored 
approach. This could lead to improved efficiency of the 
screenings and evaluations of disease modifying therapies 
by capturing the different clinical dimensions of HD [11].

In this context, speech and language offer an appealing 
alternative unlocking potential remote evaluation and offer-
ing a relevant multi-domain approach. Speaking invokes 
complex motor abilities [14], cognitive control, and plan-
ning at multiple linguistic levels [15]. HD participants are 
impaired during different steps of spoken language produc-
tion: phonetics and prosody [16–22], syntax and morphol-
ogy [23], semantic [24, 25] as well as timings and pauses 
[26–28], making spoken language a good candidate for 
clinics. Significant differences were found between healthy 
controls and HD groups for acoustic markers [16, 27] and 
language markers [26]. Among these markers, it was found 
that the speech rate correlates with disease burden score, 
probability of disease onset, the estimated years to onset, 
and cognitive score [19, 27]. In addition, speech analysis 
combined with machine learning models allowed the dis-
crimination of manifest HD and PreHD individuals from 
controls [29, 30]. However, some of these speech tasks suffer 
some drawbacks, such as the requirement of fastidious anno-
tation by linguistic experts or language adaptation difficul-
ties, which make their use not suitable for clinical practice; 
and their sensitivity to the various HD symptoms remain 
unknown [31].

To fill this gap, we test the capacity of speech to pre-
dict the main clinical variables of the UHDRS (cUHDRS, 
motor, functional, and cognitive) in carriers of the mutant 
Htt gene. Participants performed a quick speech test consist-
ing of counting forward and backward numbers. We devel-
oped a method to quantify articulation, rhythm, persevera-
tion, and vocalization additions. Machine learning models 
were trained and assessed on different sets of participants 
to ensure generalization of our results. Finally, the clinical 
value of speech features was further substantiated by their 
correlations with the striatal atrophy, the anatomical hall-
mark of HD [1].

Methods

We pre-registered all the methods before running the analy-
ses to ensure its reliability and avoid inflated results (https://​
aspre​dicted.​org/​blind.​php?​x=/​66K_​66C). We developed the 

https://aspredicted.org/blind.php?x=/66K_66C
https://aspredicted.org/blind.php?x=/66K_66C
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methods with a first cohort (the Multicentric intracerebral 
grafting cohort, MIG-HD, NCT00190450) and then pre-reg-
istered. This first cohort is only used for training models, but 
the validation was only performed with independent cohorts 
(see Fig. 1).

Participants

French native speakers (N = 103) individuals with at least 36 
CAG repeats on the mutant Htt gene of HD were included in 

this study (Table 1). One visit refers to one visit to the hospi-
tal for a given participant. All assessments were performed 
on the same visit. Participants were enrolled from three pro-
spective studies: 36 manifest HD from MIG-HD prior to any 
intervention in 6 centers in France and Belgium from Stage 
I to Stage III, as defined by the Total functional capacity 
(TFC)[32], and 67 (51 manifest and 16 PreHD) from both the 
BIOHD (NCT01412125) and Repair-HD (NCT03119246) 
cohorts. PreHD participants were defined by a TFC score 
at 13 and a total motor score (TMS) of the UHDRS equal 

Fig. 1   Extraction of individual clinical scores from the speech sam-
ples. (Top panel) Examples of portions of the speech signal and vari-
ous types of vocalizations and segmentation are provided. Similar 
speech features were extracted separately from the forward and back-
ward counting tasks yielding to 60 features (30 × 2). (Bottom panel) 
Illustration of the methods developments, Machine learning train-

ing and evaluation of the predictions of the clinical scores. N CAG​ 
number of CAG repeats on the Huntingtin gene, DBS Disease Burden 
Score. TFC Total Functional capacity, TMS Total motor score, SDMT 
Symbol digit modality, UHDRS IS UHDRS Independence Scale, 
MAE Mean absolute error, ICC Intraclass correlation coefficient, 
cUHDRS composite UHDRS
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or below five [33]. The Disease Burden Score (DBS) was 
computed using the formulae: age × (CAG length − 35.5) 
[33]. All participants signed an informed consent. Ethical 
approval was given by the institutional review board from 
Henri Mondor Hospital (Créteil, France) for the French part 
of MIG-HD, Bio HD and Repair-HD, and the institutional 
review board from Erasme Hospital in Belgium. It complied 
with the Helsinki Declaration, current Good Clinical Prac-
tice guidelines, and local laws and regulations.

Clinical evaluation

Participants were assessed by certified examiners through 
nine measures classically used for both clinical practice and 
trial (Fig. 1): the UHDRS Total Motor Score (TMS), five 
cognitive assessments (the Symbol Digit Modalities Test 
(SDMT), the Verbal Fluency test 1-min (VF), and the three 
components of the Stroop test (word (SW); color (SC); inter-
ference (SI)), and two functional scales (the Total Functional 
Capacity (TFC) and the UHDRS Independence scale 
(UHDRS IS)). We also computed the composite cUHDRS 
[ 5 ] 
(

cUHDRS =

[(

TFC−10.4

1.9

)

−

(

TMS−29.7

14.9

)

+

(

SDMT−28.4

11.3

)

+

(

SW−66.1

20.1

)]

+ 10
)

.

Standardised lightweight speech test

Speech samples were recorded through two brief controlled 
tasks by the examiner, who provided the instructions to the 

participants. Each participant was asked to (1) count aloud 
numbers from 1 to 20 (forward counting), then (2) to count 
the numbers backwards from 20 to 1 while holding his/her 
hands up and closing his/her eyes (backward counting). The 
rationales for these two subsequent tasks are: (1) we wanted 
to obtain a baseline performance for counting numbers with 
minimal cognitive load, (2) we wanted to measure perfor-
mance of HD as cognitive load is higher, due to the inhibi-
tion of forward counting and dual tasking. Recording was 
performed either by video tape, microphone of the computer, 
or external microphone.

Speech features

Only samples without too much acoustic noise, as percep-
tually determined blindly by two speech therapists before 
data delivery were retained. Thirty five files were discarded 
in total (33 from MIG-HD, 2 from BIOHD/REPAIRHD). 
This yielded the analysis of 126 samples, from 103 patients. 
In the case of a second visit for a participant, this visit can 
be separated between 1 and 36 months after the first visit. 
Then, the two speech therapists blindly transcribed each 

sample at the word level; and when there was a mispronun-
ciation, the word was transcribed at the phonetic level with 
the Speech Assessment Methods Phonetic Alphabet using 
the software Praat [34] and the Seshat platform [35]. This 
is based on the listening of the acoustic signal, and also 
visualisation of the acoustic signal along the spectrogram. 

Table 1   Demographics and clinical performance of the participants in the cohorts under study at baseline

Mean, (Standard Deviations) [range]
F Female, M Male, R Right, L Left, A Ambidexter, TFC Total Functional Capacity

MIG-HD BIOHD/REPAIRHD Total

Number of participants 36 67 103
Premanifest/manifest 0/36 16/51 16/87
Number of visits per patient 1.4 (0.5) [1–2] 1.1 (0.3) [1–2] 1.2 (0.4) [1–2]
Gender 23F/13 M 40F/27 M 63F/40 M
Age at first visit 47.0 (9.1) [28–68] 52.7 (11.8) [27–88] 50.7 (11.2) [27–88]
Laterality 30R/5L/1A 59R/8L/0A 89R/13L/1A
Number of CAG repeats 45.3 (4.4) [37–60] 43.5 (3.1) [39–55] 44.0 (3.6) [37–60]
cUHDRS mean (SD) [range] 9.1 (2.5) [5.2–15.0] 11.1 (4.6) [2.5–18.8] 10.4 (4.0) [2.5–18.8]
Total motor score mean (SD) [range] 35.0 (13.6) [7–63] 26.7 (20.3) [0–60] 29.6 (18.6) [0–63]
TFC mean (SD) [range] 10.4 (1.7) [6–13] 11.0 (2.2) [5–13] 10.8 (2.0) [5–13]
UHDRS independence scale mean (SD) [range] 85.7 (8.5) [70–100] 88.9 (12.9) [60–100] 87.8 (11.8) [60–100]
Verbal fluency 1 min mean (SD) [range] 28.2 (8.5) [9–45] 27.6 (13.3) [9–62] 27.8 (11.8) [9–62]
Symbol digit modality test mean (SD) [range] 24.8 (7.6) [11–42] 31.9 (15.2) [3–67] 29.4 (13.4) [3–67]
Stroop word mean (SD) [range] 61.9 (15.0) [39–99] 70.7 (24.7) [23–117] 67.6 (22.1) [23–117]
Stroop color mean (SD) [range] 46.6 (11.9) [24–76] 52.3 (18.5) [16–89] 50.3 (16.7) [16–89]
Stroop interference mean (SD) [range] 26.7 (8.8) [11–45] 29.9 (12.8) [7–58] 28.8 (11.6) [7–58]
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They identified paraphasias, phone perseverations, abnormal 
breathing, vocal noises, filled pauses (“euh”, “um”), blocks, 
and prolongations (Table 2). Paraphasias, phone persevera-
tions, blocks, and prolongations are pooled together to count 
as “pronunciation error”. Abnormal breathing, vocal noises, 
and filled pauses are considered to play an important part in 
communication and are referred to as collateral track addi-
tions [36].

Time and categorizations of events differences between 
raters were systematically discussed until agreement 
between both annotators. Phones were then force-aligned 
using Hidden Markov models combined with Gaussian 
Mixture models based on the Kaldi toolkit [37]. An auto-
matic pipeline algorithm was developed to extract the 

speech features previously selected on previous analyses of 
the MIG-HD, the exploration cohort. After exploration on 
MIG-HD, we preregistered all the methodologies before 
running the analyses on the BIOHD/REPAIRHD cohort.

Based on these annotations, the forced-alignment and 
the acoustic waveform, we extracted different speech defi-
cits dimension already reported in HD: articulatory and 
phonatory deficiencies [16, 17, 27, 38], rhythm and tem-
poral statistics [26, 39], filled pauses and vocalizations 
additions [26, 27, 29], sequence (the order of numbers), 
and perseveration errors (introduced here for measuring 
target sequence errors). In total, we examined 60 features 
that do not need to be adapted to a specific language (See 
Table 2 for the full detailed list of speech features).

Table 2   List of speech and language features extracted from the recitation of numbers

SD stands for standard deviation, Temporal rate is defined as the ratio of the total time of a specific class on the total time to perform the task

Dimension Speech/language feature

Articulatory and phonatory deficiencies Total number of pronunciations errors
Ratio of pronunciation errors
Pronunciation error per second
Mean intelligibility based on non-intrusive normed speech-to-reverberation modulation energy ratio 

metric [40]
SD of the fundamental frequency
Range of the fundamental frequency
SD of normalized intensity of vocalizations
Normalized range of intensity of vocalizations

Rhythm and temporal statistics Task duration
Temporal rate of the pronounced numbers
Mean duration of pronounced numbers
Pronounced numbers per second
SD of the duration of pronounced numbers
Phones per second
TR of the silences
Mean duration of silences
SD of the duration of silences
Total number of silences

Sequence errors and perseverations Levenshtein distance between the pronounced numbers and the target sequence (1, 2, …, 19, 20)
Gestalt similarity between the pronounced numbers and the target sequence (1, 2, …, 19, 20)
Levenshtein distance between the pronounced phones and the target sequence (phones of 1, phones of 

2, …, phones of 19, phones of 20)
Gestalt similarity between the pronounced phones and the target sequence (phones of 1, phones of 2, 

…, phones of 19, phones of 20)
Total number of pronounced numbers
Total number of pronounced phones

Collateral track additions Total number of involuntary/abnormal vocalizations
Involuntary/Abnormal vocalizations per second
Temporal rate of the involuntary/abnormal vocalizations
Total number of filled pauses
Filled pauses per second
Temporal rate of the filled pauses
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Machine learning

We used the auto-machine-learning system, auto-sklearn 
[41] to predict the clinical variables from the speech fea-
tures. Auto-sklearn uses Bayesian optimization algorithms 
to find the model with the best cross-validated perfor-
mance on the training set. The model selection process 
is performed independently for each clinical score, yield-
ing different predictors and models. We ran and compared 
three automatic machine learning pipelines by using dif-
ferent sets of inputs:

1)	 The speech features (Table 2) with the Demographic 
variables (Gender, Age, Number of CAG repeats, and 
Disease Burden Score). In machine learning experi-
ments the relationship between the features and target 
variable is not always linear. Sometimes the relationship 
between dependent and independent variables is more 
complex such as polynomial transformation. That is why 
we used the combination of the Disease Burden Score 
alongside the Age and Number of CAG repeats.

2)	 Demographics variables alone, which allow predicting 
disease’s onset and progression in HD (Gender, Age, 
Number of CAG repeats, and Disease Burden Score), 
and represent an important baseline to be compared to 
[42].

3)	 The mean baseline performance of each clinical score on 
the training set (called Cohort Mean Performance in the 
following sections), which represents the average per-
formance of individuals in the training set. This Cohort 
Mean Performance is equivalent to what is usually per-
formed with classic statistical methodologies when there 
is a will to replicate results across cohorts in medicine.

For the auto-machine learning approach, we followed 
the approach described in detail in the auto-sklearn arti-
cle [41]. For the auto-machine learning approach, we set 
a 2-min time limit for each model training for each clinical 
score as defined by the auto-sklearn toolkit. Each training 
is limited to 30 s. We used 24 parallel processes for each 
clinical score and each model. Thus, the minimum number 
of models tested was therefore 96 models. Then all the best 
50 models found on training data during this search are com-
bined (through ensemble strategy).

To assess the respective importance of each speech fea-
ture to predict each clinical score, we used a linear regres-
sion model with an ElasticNet regularization (Fig. 5). We 
also ran an ablation study to evaluate the contributions of 
the backward and forward speech features. An ablation study 
is a term from the machine learning literature to refer to 
an experiment to evaluate contributions of specific features. 
This means that we run the same machine learning analy-
ses based on the subset of features extracted of the forward 

counting, and on the subset of features extracted on the back-
ward counting, to evaluate contributions of each.

Validation of models

We used both the Mean Absolute Error (MAE) and the intra-
class correlation coefficient (ICC) between the predicted and 
the observed scores provided by the clinicians. The ICC 
measures how much the predicted clinical score outputted by 
the Machine Learning model resembles the observed score. 
ICC values were calculated using a two‐way random model 
with absolute agreement. The use of ICC allows comparing 
the machine learning model to the interrater reliability of 
clinicians. The MAE quantifies the absolute errors between 
the observed clinical scores and the predicted scores.

Concerning the sample size of the current study, we 
wanted enough visits to train the models and enough visits 
to test the models. The problem of sample size and model 
validation for machine learning applied in Neurology and 
Psychiatry has been extensively studied with simulation in 
these studies [43, 44]. As underlined by the authors, "leave-
one-out" strategy leads to unstable and biased estimates of 
the true performance of a model, and repeated random splits 
method should be preferred. 20% should be left out for the 
test set.

Thus, we splitted the data into two sets: “train set” (86% 
of the participants, i.e. 89 participants, including all par-
ticipants of MIG-HD and 80% of the ones of RepairHD/
BIOHD) for fitting and developing the various models and 
an independent “test set” (14% of the participants, i.e. 14 
participants, consisting in the 20% remaining participants 
of RepairHD/BIOHD) for model evaluations. We conducted 
50 repeated learning-tests to obtain reliable estimates of the 
performances. There was no overlap between participants 
of the training and of the test sets to ensure the generalisa-
tion of the results. Multiple visits of the same patients were 
assigned either to the training set, either to the test set to 
ensure independence.

In addition, the number of samples should be at least 
100 to obtain less than 10% of variance on the test score 
based on the simulation [43, 44]. We had 103 participants 
and 126 visits in total in this study, which fulfilled all these 
requirements.

Identifying Significant Relationships with the Striatum.
The association between each of the 60 speech features 

and the striatal volumes was assessed in thirty-six partici-
pants from the BIOHD/REPAIRHD cohorts (23 females, 
mean age: 52.98 ± 12.56). High-resolution brain MRI scans 
were obtained on a Siemens Skyra including T1 3D anatomi-
cal MP-RAGE images (repetition time: 2300 ms; echo time: 
2900 ms; inversion time: 900 ms; flip angle: 9°; acquisition 
matrix: 256 × 240; slice thickness: 1.2 mm, no inter-slice 
gap, 176 sagittal sections). We used the FreeSurfer software 
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(https://​surfer.​nmr.​mgh.​harva​rd.​edu/) [45] for extracting 
subcortical volumes. Percentage of striatal volume relative 
to the estimated intracranial volume was obtained from the 
caudate nucleus, ventral striatum, and putamen volumes.

When number of associations to be tested is large with 
limited data, the assessment of significance of variables 
must consider that: (1) Measures of relationships need to 
yield a good probability of making a correct decision when 
assessing significance (power property), (2) the capabil-
ity to measure the strength of any relationship (linear or 
not) at a given noise level (equitability property) and (3) 
the multi-comparison issue. We therefore used the mutual 
information-based estimators procedure, including the Total 
Information Coefficient estimator (TICe) and the Maximal 
Information Coefficient estimator (MICe) [46] to identify 
and measure the strengths of their relationships [47]. The 
TICe allows the screening of variables because of its high 
power, but low equitability and the MICe estimates the 
strengths of the relationships because of its high equitability 
but lower power. In addition, speech variables and clinical 
scores correlations were corrected for multiple comparisons 
with the Maximum Statistic correction to take into account 
the correlations between the variables [48].

Results

The duration for the forward (backward) recitation of num-
bers is 10.7 ± 3.6 (15.6 ± 5.6) seconds. The annotation 
lasted less than 15 min per file. Illustration of prediction 

performances of the cUHDRS and TMS are shown in Fig. 2; 
where each individual prediction error on one visit contrib-
utes to the MAE. Predicted clinical scores on the Test Set are 
displayed in Fig. 3 using the MAE metric and Fig. 4 using 
the ICC. Models based on the Speech features performed 
significantly better for the MAE, for all clinical variables, 
than the ones using the Demographics variables (Age, Gen-
der, Numbers of CAG, and Disease Burden Score) or the 
Cohort Mean Performance (all P values < 0.0001 except for 
the Verbal Fluency P value = 3.25 × 10−3, Fig. 3). Models 
using the Demographics variables performed more accu-
rately than the ones using the Cohort Mean Performance, 
(all P values < 0.0001 except for the Stroop Interference P 
value = 1.32 × 10−1, Fig. 3). Models based on the Speech 
variables performed significantly better for the ICC for all 
clinical variables, than the ones using the Demographics 
variables (all P values < 0.0001, Fig. 4). Among all variables 
the cUHDRS was the best predicted based on the ICC. This 
score is predicted with on average 2.3 points error using 
the combination of the speech features and demographics 
(MAE = 2.3 ± 0.5;ICC=0.72 ± 0.10). Speech and demo-
graphic features allowed 19.4% and 29.2% improvement 
over demographics alone for MAE and ICC respectively, 
and 40.1% over Cohort Mean Performance models for MAE.

An ablation study showed that the speech features 
from the backward counting obtain better results overall 
than the forward ones, and even better results than when 
combined with the forward ones. Forward speech features 
obtained for the different scores: cUHDRS MAE = 2.6 
± 0.5; TMS MAE = 11.7 ± 1.8; TFC MAE = 1.5 ± 0.2; 

Fig. 2   Illustration of individual predictions of the cUHDRS (Left) 
and the TMS (Right) based on the speech features. Each individual 
blue dot is the difference between the predicted and the observed 
score for a particular assessment of an individual of the test set. The 

red dashed line is the line ‘y = x’. The black line is the individual con-
tribution of a point (individual absolute error) to obtain the Mean 
Absolute Error (MAE)

https://surfer.nmr.mgh.harvard.edu/
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UHDRS IS MAE = 8.8 ± 1.2; VF MAE = 9.2 ± 1.3, SDMT 
MAE = 9.8 ± 1.8; SW MAE = 14.9 ± 3.1; SC MAE = 10.9 
± 1.8; SI MAE = 8.9 ± 1.7. The backward speech features 
obtained for the different scores: cUHDRS MAE = 2.4 
± 0.4; TMS MAE = 12.0 ± 1.8; TFC MAE = 1.3 ± 0.2; 
UHDRS IS MAE = 8.1 ± 1.2; VF MAE = 8.0 ± 1.0, SDMT 
MAE = 8.9 ± 1.8; SW MAE = 13.3 ± 2.2; SC MAE = 9.6 
± 1.7; SI MAE = 7.8 ± 1.5.

Some clinical variables (cUHDRS, TMS, SW, SDMT, 
and UHDRS IS) and speech features (both Mean duration 
and Standard Deviation of durations of Silences during 
backward recitation) correlated with the measure of the 
striatal atrophy (Table 3). Comparison correction was per-
formed with the Maximum Statistic [48]. The Mean dura-
tion of Silences obtained the strongest strength of relation-
ship based on the MICe , while the cUHDRS obtained the 
strongest linear relationship with the Pearson coefficient R.

The features that are the most used for predictions are 
the ones from backward counting (Fig. 5). Speech fea-
tures extracted from the collateral track additions were 
less used overall than the other dimensions. Rhythm and 
temporal statistics were useful for both counting forward 
and backward.

Even if some coefficients have been set to 0, they may still 
be related to the clinical score outcome. The model chose 
to diminish their weights because they bring no additional 
information in comparison to the other speech features.

Discussion

Our multicentered prospective study aimed at predicting the 
clinical scores of different visits of 103 individuals carry-
ing the mutant Htt gene leading to Huntington’s disease, 
using machine learning analyses of speech productions. We 
used speech features extracted from forward and backward 
counting—a task that lasts less than 40 s, even in patients 
at an advanced stage. We showed that measures of speech 
production accurately predict the clinical measures in HD, 
within the 12% to 20% range for the functional, motor, and 
cognitive, and composite cUHDRS (The Mean Absolute 
Error is divided by the maximum observed range to obtain 
these values). Speech features improved predictions from 
demographics and genetics characteristics alone by around 
17% in relative terms. In particular, the predicted cUHDRS 
had an equivalent inter-rater agreement score (ICC) in the 

Fig. 3   Boxplots of mean-absolute-error (MAE) on the test set for 
the repeated-learning testing experiment. A MAE at zero means 
that the predicted value equals the observed one. Horizontal lines 
are the medians, boxes are upper and lower quartiles, and whiskers 

are 1.5 × IQR (Interquartile Range). First row displays the cUHDRS, 
functional, and motor predicted scores; whereas the second row dis-
plays the predicted Cognitive Scores. Statistical Significance was 
assessed with Wilcoxon-test and was Bonferroni-corrected
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Fig. 4   Boxplots of intraclass correlation coefficients (ICC) on the 
test set for the repeated-learning testing experiment. An ICC at 1 
means that the predicted value equals the observed one. Horizontal 
lines are the medians, boxes are upper and lower quartiles, and whisk-
ers are 1.5 × IQR (Interquartile Range). First row displays the cUH-
DRS, functional, and motor predicted scores; whereas the second 
row displays the predicted Cognitive Scores. Statistical Significance 

was assessed with Wilcoxon-test and was Bonferroni-corrected. The 
dashed lines figure the ICCs obtained between Neurologists for the 
clinical scores namely: (1) ICC for cUHDRS ICC = 0.92 [49], (2) for 
TMS ICC = 0.847 [3], (3) for TFC ICC = 0.938, and for UHDRS IS 
ICC = 0.842 [4]. The ICC cannot be computed for the Mean Cohort 
Performance as its standard deviation is zero

Table 3   Summary of the speech and clinical variables with significant correlation with the Normalized Volume of the Striatum

The comparison between the TICe ’s P values [46], the measure of linear relationship with the Pearson R coefficient, the Spearman rank correla-
tion coefficient � , the measure of strength of the relationship with the MICe shows that Mean duration of Silences and the Standard Deviation of 
the duration of Silences are as well correlated with the striatal volume than the regular clinical scores. Multiple Comparison correction is done 
with the Maximum Statistic [48]

TICe P value MICe Pearson R Spearman �

Speech
 Mean duration of the silences during backward recitation 0.0024 0.57  − 0.35  − 0.56
 Standard deviation of the duration of the silences during backward 

recitation
0.026 0.49  − 0.41  − 0.60

Clinical variables
 cUHDRS 0.0050 0.40 0.65 0.68
 UHDRS total motor score 0.0090 0.38 0.52 0.57
 Stroop word 0.021 0.38 0.61 0.64
 Symbol digit modality test 0.030 0.36  − 0.63  − 0.63
 UHDRS independence scale 0.040 0.33 0.58 0.57
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“good” reliability range. Finally, the Mean Duration and 
Standard Deviation of Durations of Silences correlated sig-
nificantly with the atrophy of the striatum.

These results may lead to the construction of reliable, 
discriminative and applicable diagnostic tools for the predic-
tion of the progress of the symptoms. Our forward/backward 
counting task provides a good compromise between the dif-
ferent requirements for a usable language-based battery in 

a clinical setting: accuracy (to measure the evolution of the 
condition), ease of use, and multidimensionality (capability 
for one single marker to capture several dimensions of the 
disease [5]).

As for accuracy, for machine learning systems to be clini-
cally valuable, assessing only the statistical significance of 
the group performance (here the Cohort Mean Performance) 
is insufficient [7]. The derived scores should be predictive 

Fig. 5   Coefficient importance of 
the different speech features for 
the predictions of the clinical 
scores. Each line represents 
a feature of Table 2 and the 
rank is the order introduced in 
Table 2. These mean weights 
are obtained with a linear 
Elastic Net model for interpret-
ability. The weights are z-scored 
per clinical score to be one the 
same scale. The weights for the 
clinical scores are reversed, so 
that a higher feature weight can 
be interpreted as a higher clini-
cal impairment



5018	 Journal of Neurology (2022) 269:5008–5021

1 3

enough at the individual level to be used for clinical decision 
making. This is why, to assess their accuracy, we compared 
our predicted scores with standard tests performed by neu-
rologists [12]. As expected, the ICCs from machine learning 
models did not match the ones of expert clinical raters [3, 4, 
49]. However, their capacity to assess the patients frequently 
could reduce the cost to evaluate clinical therapies in HD by 
increasing the measures of an individual, thus permitting the 
reduction of the required number of participants in clinical 
trials [50].

As for ease of use, the forward and backward counting 
does not require the involvement of any expert nor train-
ing for patients’ recording. This constitutes a major pro-
gress considering that despite its worldwide dissemination 
and its excellent acceptability, the interrater reliability of 
the UHDRS between neurologists decreases in absence of 
annual certification [3]. Audio data can be collected over the 
phone, allowing not only remote but also out of sync assess-
ments between health professionals and patients [51]. The 
limited vocabulary and deterministic sequences expected 
from participants allows easier development of fully auto-
mated procedures potentially reducing further annotation 
time. In contrast, other batteries like the Cantab [52], and 
the HD-CAB [6], require longer assessments, are not easy 
to administer and cannot currently be performed remotely.

Finally, as regards multidimensionality, our simple 
speech test, allows measuring, on the top of language, the 
different components of the UHDRS (cognitive, motor and 
functional).

Our results are consistent with previous ones in HD con-
cerning the different dimensions that are affected during 
spoken language production. Our 60 speech features coded 
articulatory and phonatory deficiencies, rhythm and tempo-
ral statistics, and added seldom studied collateral track addi-
tions, sequence and perseverations. We showed that rhyth-
mic and articulatory features were particularly sensitive to 
the progress of the disease. Rhythmic features well reflected 
motor and cognitive disabilities (Fig. 5) and correlated the 
most with the striatal volume (Table 3). This latter result is 
consistent with Hinzen’s findings on a storytelling task in 
which the composite quantitative score capturing the rhythm 
was the only one correlated with striatal atrophy. This con-
firms the involvement of the striatum in motor programs 
of phones and syllables, and their sequential structure and 
timing[14] Besides, we also found that articulatory features 
were linked to various HD deficits (global, motor, functional 
but not as much to the cognitive scores: SDMT, Stroop Word 
and Stroop Interference) like in previous reading tasks [18, 
27, 29] and storytelling tasks [26].

We obtained robust estimations of clinical scores, even 
though using a relatively simple task. Yet, the strength of 
rhythmic and phonatory impairments in HD has been shown 
to depend on the cognitive load of the task used to elicit 

speech. Vogel and authors studied the speech disturbances 
of manifest and premanifest mutant Htt gene carriers while 
performing a spectrum of tasks from low to high cognitive 
load [27]. In their study, rhythmic deficits correlated with 
the TMS only when measured from a reading task (Percent-
age of silence R = 0.4) and a monologue task (Percentage of 
silence R = 0.5) but not from automated speech (recitation 
of the days of the week, Percentage of silence R = 0.08). 
Similarly, although HD participants have difficulties to sus-
tain the vowel /a/ steadily for a few seconds compared to 
premanifest patients [30], speech features extracted from this 
simple task could not improve the clinical score extracted 
from demographics alone [38]. In our present study, we 
used both an automatic task (counting forward) and a more 
cognitive complex task (counting backward). A post hoc 
analysis shows that the forward counting task alone, which 
involves an automatic sequence yields lower predictions 
than the backward counting sequence. As described in the 
methods, when participants perform the backward counting, 
they need to inhibit the automatic number forward recitation 
and disengage from the overlearned forward sequence of 
numbers just previously performed. In addition, we used a 
dual task (of holding hands and closing eyes) [53] which is 
known to increase reaction times and errors [54]. As seen in 
Fig. 5, perseveration features are more salient in the back-
ward compared to the forward test confirming the impor-
tance of cognitive load when estimating the symptoms of 
HD participants.

Here, we focused on the measurement of rather low-level 
acoustic features in a rather simple task for its potential for 
automation and applicability in different languages with 
minimal adaptation. Other studies have demonstrated that 
HD symptoms also include higher levels of language pro-
cessing (conceptual, lexical, syntactic planning) [26]. Add-
ing such high level features could improve the accuracy of 
a test battery over low level speech features. However, it 
was shown [55] that the extraction of high level features 
from 10 min of speech imposed two hours of annotation by 
experts including the identification of “Who speaks when?”, 
“What is said?”, and “How is it said?”. Current Artificial 
Intelligence (AI) research is being done to replace the expert 
linguist by automatic systems in order to reduce the cost of 
analyzing such tests. an automatic speech recognition sys-
tem that could recognize the words was built [29] (“What is 
said?”) directly from audio recordings of the ‘GrandFather 
Passage’ story yielding to 85% accuracy when classifying 
HD from controls using speech features (speech rate, pauses, 
fillers, and goodness of pronunciation). However, humans 
were still required to segment manually the turns between 
doctor and patient, and the boundaries between sentences 
before feeding the automatic transcriber. Surprisingly, “Who 
speaks when” is still more challenging for algorithms than 
for humans when the audio comes from naturalistic and 
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clinical settings (see the low performance in engineering 
DIHARD challenges [56]). Even when using state-of-the-art 
models, the reliability of “Who speaks when” in a clinical 
context remains too low for clinical use [38]. More powerful 
models and larger datasets will eventually overcome these 
limitations. The combination of different objective sources 
is an opportunity to increase the predictive power of the 
clinical scores based on speech features. In future work, 
this would be of great interest to combine speech features 
to other objective measures such as the Q-motor [57]. Yet, 
this still represents a technical challenge as the number of 
dimensions to analyze increase.

Our study presents some limitations that could be over-
come in future works. The number of participants limited 
to a hundred here might impact the generalization results. 
Focusing on French gene-carriers of the mutant Htt gene 
should not constitute a problem, the analysis of results from 
five languages in Parkinson’s disease was found equivalent 
[58]. Our task was designed with as much as language-inde-
pendent features, but it does not warrant the generalization 
of our results across languages and centers. Despite Hun-
tington's disease combining the major features of NDDs—
motor, psychiatric and cognitive disorders, the dissemination 
of our method requires validation in each individual disease 
of interest.

In conclusion, this is the first machine learning model 
combined with speech study that reliably estimated the 
scores of classical scales assessing several domains for pre-
HD individuals and HD participants. One of its strengths is 
that the reliability of the predictive models closely match the 
observed data from neurologists and neuropsychologists for 
HD, without any ambiguity on the reliability of the data as 
methods were pre-registered before analyses. Being able to 
evaluate the severity of the different symptoms so quickly 
and potentially remotely has both clinical and experimen-
tal relevance in HD. This will likely reduce the human and 
financial burden for the follow-up of patients and help to 
reduce the cost of future disease modifying therapeutic 
trials.
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