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Purpose: To present a new modified tri-exponential model for diffusion-weighted

imaging (DWI) to detect the strictly diffusion-limited compartment, and to compare it

with the conventional bi- and tri-exponential models.

Methods: Multi-b-value diffusion-weighted imaging (DWI) with 17 b-values up to 8,000

s/mm2 were performed on six volunteers. The corrected Akaike information criterions

(AICc) and squared predicted errors (SPE) were calculated to compare these three

models.

Results: The mean f0 values were ranging 11.9–18.7% in white matter ROIs and

1.2–2.7% in gray matter ROIs. In all white matter ROIs: the AICcs of the modified

tri-exponential model were the lowest (p < 0.05 for five ROIs), indicating the new model

has the best fit among these models; the SPEs of the bi-exponential model were the

highest (p < 0.05), suggesting the bi-exponential model is unable to predict the signal

intensity at ultra-high b-value. The mean ADCvery−slow values were extremely low in white

matter (1–7 × 10−6 mm2/s), but not in gray matter (251–445 × 10−6 mm2/s), indicating

that the conventional tri-exponential model fails to represent a special compartment.

Conclusions: The strictly diffusion-limited compartment may be an important

component in white matter. The new model fits better than the other two models, and

may provide additional information.

Keywords: diffusion magnetic resonance imaging, brain, white matter, computer-assisted image processing,

theoretical models

INTRODUCTION

Diffusion-weighted imaging (DWI) is the only noninvasive method for detecting the diffusion
motion of water molecules in tissues. Currently, in clinical practice, apparent diffusion coefficient
(ADC) maps are typically calculated with the mono-exponential model. However, it has been well
established that the attenuation of the DWI signal does not follow the mono-exponential model
in many tissues (Clark and Le Bihan, 2000; Koh et al., 2011). It is believed that more than one
proton pool exists inside each voxel (Bennett et al., 2003, 2006). Therefore, many models have been
developed in order to accurately reflect the diffusion motion of water molecules in vivo (Le Bihan
et al., 1988; Bennett et al., 2003; Jensen et al., 2005), such as the bi-exponential model.
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However, the bi-exponential model is being challenged for
the heterogeneity of its results across studies and its lack of
reproducibility (Müller et al., 1998; Grant et al., 2001; Schwarcz
et al., 2004; Koh et al., 2011; Steier et al., 2012; Hu et al.,
2014; Lin et al., 2015). This model is considered oversimplified
(Bisdas et al., 2013), and some researchers even speculate that
there are continuous distributions of diffusion coefficients inside
each voxel (Bennett et al., 2003, 2006). Recent studies have
demonstrated that the three-pool model can perform a better
fitting and may provide more detailed information than the bi-
exponential model in many tissues (Hayashi et al., 2013, 2014;
Cercueil et al., 2015; Ohno et al., 2016; Ueda et al., 2016; van
Baalen et al., 2017). However, it is well known that a highly
parameterized model can always fit a given data set better than
a model with fewer parameters. Whether or not a model can
provide more information should be well verified to avoid over-
fitting.

Recently, ultra-high b-value DWI has been studied more
frequently in recent years because of the popularization of 3.0-
Tesla MR systems (Ling et al., 2015; Hu et al., 2017). Several
studies using DWI with ultra-high b-value have found that the
signal curves of DWI decrease very slowly and tend to be stability
at ultra-high b-values in some tissues (Grant et al., 2001; Ling
et al., 2015). This phenomenon can be hardly explained by the
existing models. Many studies have suggested the existence of
the strictly diffusion-limited compartment with extremely low
ADC in tissues and even cells (Niendorf et al., 1996; Grant et al.,
2001; Sen and Basser, 2005; Baxter and Frank, 2013; Ling et al.,
2015). The ADC of water molecules, which are strictly limited in
microstructures with extremely small space (such as intracellular
organelles), might be extremely low. Because of the very low
signal attenuation of this compartment at normal b-values, the
ADC of this compartment can be set as zero mathematically.
Accordingly, by setting one ADC value of the conventional tri-
exponential model as zero, we developed a new modified tri-
exponential model.

The purpose of this study was to present the new modified
tri-exponential model to detect the strictly diffusion-limited
compartment, and to compare it with the conventional bi- and
tri-exponential models. Previously, stationary water molecules
have been suspected to be exist in white matter (Alexander et al.,
2010), and three compartment models with a “dot” compartment
(zero radius sphere) have been found to produce a better
fitting for diffusion MRI in white matter (Ferizi et al., 2014).
Accordingly, we hypothesized that the modified tri-exponential
model with a “zero-ADC” compartment might also produce a
better fitting for DWI in white matter. Hence, we performed this
preliminary study in brain. To indicate the existence of the strictly
diffusion-limited compartment, a multi-b-value DWI sequence
with b-values range from 0 to 8,000 s/mm2 was used in this study.

MATERIALS AND METHODS

Participants
This study was approved by the institutional review board at
the Second Affiliated Hospital of Zhejiang University. Six young
healthy volunteers (four males and two females, age range 24–27

years) were enrolled in this study, without any previous history
of central nervous system diseases. Written informed consents
were obtained from all participants. This study was conducted
according to the principles expressed in the Declaration of
Helsinki.

DWI Parameters
The volunteers were imaged on a 3.0-Tesla MR system
(Discovery MR750, GE Healthcare Systems, Milwaukee, WI)
with a gradient strength of 50mT/m using an eight-channel high-
resolution receiver head coil. A single-shot echo planer imaging
sequence was used for the imaging with the following parameters:
number of sections, 24; section thickness, 4mm; field of view,
240 × 240mm; matrix, 256 × 256; in-plane resolution, 0.94 ×

0.94mm; repetition time/echo time, 3,000/107.7ms; phase FOV,
1.00; flip angle, 90; and pixel bandwidth, 1953.1 Hz/pixel. The
sequence was performed with 17 b-values (0, 10, 20, 30, 50,
70, 100, 150, 200, 300, 500, 700, 1,000, 2,000, 3,000, 5,000, and
8,000 s/mm2) in three orthogonal directions, and the signals
were averaged over three directions by the imaging system
automatically. The numbers of scan averages (NSAs) for b = 0
to 8,000 s/mm2 were 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5,
9, and 12, respectively. Magnitude reconstruction was applied
by the imaging system automatically. The total scan time was
21min 30 s.

Models
The potential biological interpretations for the three
compartments of the modified tri-exponential model are
shown in Figure 1A. The strictly diffusion-limited compartment
is suspected to represent water molecules strictly limited in
microstructures with extremely small space, such as intracellular
organelles. The signal attenuation curves for three different ADC
values are shown in Figure 1B. For normal ADC values, the
remaining signal ratio will be very low at b= 8,000 s/mm2 (1.8%
for ADC = 500 mm2/s and 0.0% for ADC = 2,000 mm2/s).
However, the signal ratio will still remain high at b = 8,000
s/mm2 for an extremely low ADC value (92.3% for ADC = 10
mm2/s).

The signal attenuation of the bi-exponential model, the
conventional tri-exponential model and the modified tri-
exponential model as a function of b is expressed by Equations
(1–3), respectively.

S

S0
= fslow

∗e−ADCslow
∗b

+ ffast
∗e−ADCfast

∗b, f slow + ffast = 1(1)

S

S0
= fvery−slow

∗e−ADCvery−slow
∗b

+ fslow
∗e−ADCslow

∗b

+ffast
∗e−ADCfast

∗b, fvery−slow + f
slow

+ ffast = 1 (2)

S

S0
= f0 + f slow

∗e−ADCslow
∗b

+ ffast
∗e−ADCfast

∗b, f0

+ fslow + ffast = 1 (3)

In these equations, S represents the signal intensity at
corresponding b, and S0 represents the signal intensity at b =

0 s/mm2. The fvery−slow, fslow, and ffast , respectively represent
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FIGURE 1 | Potential biological interpretations for the three compartments of

the modified tri-exponential model (A). The red regions represent the strictly

diffusion-limited compartment, the yellow regions represent the slow diffusion

compartment, and the green regions represent the fast diffusion compartment.

Signal attenuation curves of three ADC values (B). The unit of the ADC values

was mm2/s.

the fractions of corresponding diffusion compartments, with
corresponding ADC marked as ADCvery−slow, ADCslow, and
ADCfast . The f0 represents the fraction of the strictly diffusion-
limited compartment.

Model Ranking
For model selection, the small-sample corrected Akaike
information criterion (AICc) has been widely used in previous
studies (Bourne et al., 2014; Jambor et al., 2015). The akaike
information criterion (AIC) was first proposed by Akaike
for determining the best model among models and avoiding
over-fitting (Akaike, 1974). Hurvich and Tsai improved this
method and proposed AICc to compensate for the number of
data points, and this improved method has been tested valuable
in small samples (Hurvich and Tsai, 1989). The equation for
calculating the AICc is as listed below:

AICc = 2 ∗ k+ N ∗ ln

(

RSS

N

)

+
2 ∗ k ∗ (k+ 1)

N − k− 1
(4)

where k is the number of free parameters of models, N is the
number of points used for fitting, and RSS is the RSS from fitting
(Hurvich and Tsai, 1989; Jambor et al., 2015).

Besides, we also compared the models with a leave-one-out
test, in order to confirm that the models were correctly ranked
by the AICc (Bourne et al., 2014). The predicted residual sum
of squares (PRESS) is an index of this method first proposed by
Allen for model selection (Allen, 1974).

Image Processing and Analysis
The DWI images were realigned by using SPM12 (available at:
www.fil.ion.ucl.ac.uk/spm). Then, these images were analyzed by
using programs written in MatLab (MatLab 2009b; MathWorks,
Natick, MA). The conventional bi- and tri-exponential models
and the modified tri-exponential model were all used for curve
fitting.

Curve fittings of these three models were performed using
DWI maps obtained with the first 16 b-values (excluding b
= 8,000 s/mm2), and were implemented voxel-by-voxel using

the steepest descent algorithm (Lenglet et al., 2009). Signal
values were all normalized to corresponding signal value S0
prior to model fitting. The initial values of parameters were set
empirically. For these three models, the initial value of fslow was
set to 0.50, withADCslow set to 600× 10−6 mm2/s andADCfast set

to 2,000 × 10−6 mm2/s. For the modified tri-exponential model,
the initial value of f0 was set to 0.10, while for the conventional
tri-exponential model, the initial value of fvery−slow was set to

0.10, with ADCvery−slow set to 100 × 10−6 mm2/s. The detail
description of the programmed algorithm ofmodel fit is shown in
Supplement Figure S1. Thus, the parametric maps and the maps
of residual sums of squares (RSS) were derived. Subsequently, the
AICc maps of these three models were calculated from the RSS
maps. Besides, the PRESS maps were also obtained.

After the curve fitting, the signal intensities at b = 8,000
s/mm2 were predicted, and the error of the prediction was
squared to form the squared prediction error (SPE) by Equation
(5). Thus, the SPE maps were derived. The SPE was a new index
presented in the current study to evaluate the ability of models in
predicting DWI signals at ultra-high b-values.

SPE = (Sm − Sp)
2 (5)

where Sm and Sp represent the measured signal intensity and the
predicted signal intensity at b= 8,000 s/mm2, respectively.

The regions of interest (ROIs) were drawn by an experienced
neuroradiologist. Each ROI was drawn to include corresponding
zones as much as possible at one section. Two ROIs were drawn
in the cingulate gyrus and supramarginal gyrus, representing
gray matter. Six ROIs were drawn in the genu of the corpus
callosum, splenium of the corpus callosum, posterior limbs of
the internal capsule, centrum semiovale, forceps minor and
forceps major, representing white matter. Average values of the
parameters and indexes were calculated within each ROI. Besides,
the signal-to-noise ratios (SNR) of DWI maps were determined
by using a “difference method,” which is based on the evaluation
of a difference image of two repeated acquisitions on a single
volunteer (Dietrich et al., 2007). ROIs were placed on centrum
semiovale and cingulate gyrus, representing for white matter and
gray matter, respectively.

In addition, we also performed a stability experiment to
investigate the fitting stability of the modified tri-exponential
model toward initial conditions. We set random values between
0.05 and 0.10 to initial f0 values, random values between 0.50
and 0.60 to initial fslow values, random values between 500 and
800 mm2/s to initial ADCslow values and random values between
1,900 and 2,200 mm2/s to initial ADCfast values. Thus, we totally
generated 20 random initial value sets for the modified tri-
exponential model. For each initial value set, curve fitting of the
modified tri-exponential model was performed, and the mean
values of the parameters were calculated over the ROI on the genu
of the corpus callosum (CCG) for one volunteer.

Statistical Analysis
All statistical analyses were performed using SPSS version 22
(SPSS Inc, Chicago, IL, USA). The median values and quartile
ranges of the RSS, SPE, and AICc were calculated. Wilcoxon
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signed-rank test were used to compare these three indexes
between any pair of the models. A value of p < 0.05 was regarded
as statistically significant.

RESULTS

The mean DWI signal intensity over an ROI decayed much more
slowly in white matter than in gray matter, shown in Figure 2.
In particular, the remaining signal intensity ratio at b = 8,000
s/mm2 was as high as 18.7% in the white matter ROI, while only
2.4% in the gray matter ROI. In white matter, the SNRs of the
DWI image at b= 0, 5,000, and 8,000 s/mm2 were 28.2, 27.8, and
23.7, respectively. In gray matter, those were 31.2, 9.8, and 6.5,
respectively. For the modified tri-exponential model, the stability
experiment showed that the distributions (mean ± SD) of the
mean f0, fslow, ffast , ADCslow, and ADCfast values on CCG over the
initial value sets were 18.2 ± 0.6, 58.4 ± 1.2, 23.6 ± 1.2%, 816 ±
7 and 4,525± 88 mm2/s, respectively.

For the white matter ROIs, the RSSs of the modified tri-
exponential model were lower than those of the other twomodels
(p < 0.05). Besides, the RSSs of the conventional tri-exponential
model were lower than those of the bi-exponential model (p <

0.05), shown in Table 1. For the gray matter ROIs, the RSSs of
the conventional tri-exponential model were lower than those of
the other two models, and there were no significant differences
in RSSs between the modified tri-exponential model and the
bi-exponential model.

The AICcs of the conventional tri-exponential model were
significantly larger than those of the other two models in all ROIs

FIGURE 2 | DWI images achieved with b = 0 (A), b = 1,000 (B), and b =

8,000 s/mm2 (C) from one volunteer. Plots of the average signal-intensity

decay of two ROIs as a function of b (D). CG, cingulate gyrus; CCg, genu of

the corpus callosum.

(p < 0.05), shown in Table 2. The AICcs of the modified tri-
exponential model were lower than those of the bi-exponential
model in the white matter ROIs (p < 0.05, except for the genu
of the corpus callosum), while were higher than those of the
bi-exponential model in the gray matter ROIs (p < 0.05).

The PRESSs of the modified tri-exponential model were
significantly lower than those of the other two models in all
white matter ROIs (p < 0.05), while those of the conventional
tri-exponential model were significantly lower than those of the
other two models in two gray matter ROIs (p < 05), shown in
Table 3.

The bi-exponential model was unable to predict the DWI
signal at b = 8,000 s/mm2 as accurately as the other two models,
shown in Figure 3. The SPEs of the bi-exponential model were
significantly higher than those of the other two models in all
white matter ROIs (p < 0.05), shown in Table 4.

TABLE 1 | Residual sums of squares (RSSs) of the bi-exponential, conventional

tri-exponential, and modified tri-exponential models in ROIs.

ROI Bi-exponential

(×10−4)

Conventional

tri-exponential (×10−4)

Modified

tri-exponential (×10−4)

CCg 194 (135, 214) 136 (122, 175)* 126 (110, 159)*#

CCs 121 (106, 159) 94 (82, 134)* 85 (78, 129)*#

ICp 61 (45, 72) 47 (34, 59)* 44 (29, 51)*#

CS 64 (58, 86) 50 (44, 70)* 44 (38, 66)*#

Fmi 80 (71, 107) 65 (53, 88)* 62 (43, 80)*#

Fmj 64 (54, 93) 52 (41, 70)* 45 (38, 60)*#

CG 187 (88, 291) 178 (82, 278)* 189 (90, 314)#

SpG 101 (69, 147) 93 (62, 142)* 96 (71, 151)#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median

(Q1, Q3). *p < 0.05, vs. the bi-exponential model; #p < 0.05, vs. the conventional

tri-exponential model.

TABLE 2 | Small-sample corrected Akaike information criterions (AICcs) of the

bi-exponential, conventional tri-exponential and modified tri-exponential models in

ROIs.

ROI Bi-exponential Conventional

tri-exponential

Modified

tri-exponential

CCg −102 (−106, −94) −98 (−103, −89)* −105 (−108, −94)#

CCs −112 (−115, −107) −108 (−112, −105)* −114 (−117, −110)*#

ICp −123 (−126, −118) −120 (−125, −115)* −126 (−131, −121)*#

CS −121 (−124, −118) −119 (−121, −116)* −124 (−127, −121)*#

Fmi −120 (−124, −117) −117 (−123, −114)* −122 (−128, −119)*#

Fmj −123 (−124, −115) −121 (−122, −113)* −126 (−127, −117)*#

CG −112 (−119, −98) −105 (−113, −91)* −109 (−115, −94)*#

SpG −117 (−121, −102) −110 (−115, −104)* −114 (−118, −107)*#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median (Q1,

Q3). *p < 0.05, refers to the bi-exponential model; #p < 0.05, refers to the conventional

tri-exponential model.
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Representative parameter maps derived from themodified tri-
exponential model and the conventional tri-exponential model
are shown in Figure 4. In the white matter ROIs, the mean
ADCvery−slow values (1–7 × 10−6 mm2/s) were extremely low,
and the mean fvery−slow values (11.8–18.3%) were similar to the

TABLE 3 | Predicted error sums of squares (PRESS) of the bi-exponential,

conventional tri-exponential and modified tri-exponential models in ROIs.

ROI Bi-exponential

(×10−5)

Conventional

tri-exponential (×10−5)

Modified

tri-exponential (×10−5)

CCg 2,930 (2,534, 3,864) 2,399 (1,786, 3,373)* 1,985 (1,458, 3,054)*#

CCs 1,679 (1,593, 2,327) 1,316 (1,121, 1,805)* 1,144 (1,044, 1,602)*#

ICp 861 (685, 1,038) 670 (530, 810)* 518 (489, 694)*#

CS 879 (793, 113) 715 (589, 835)* 582 (495, 759)*#

Fmi 1,006 (736, 1,203) 780 (572, 916)* 688 (454, 852)*#

Fmj 869 (728, 1,243) 619 (546, 886)* 573 (434, 807)*#

CG 1,964 (976, 3,433) 1,898 (915, 3,324)* 1,925 (989, 3,510)#

SpG 1,146 (819, 1,684) 1,073 (756, 1,621)* 1,085 (860, 1,721)

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median (Q1,

Q3). *p < 0.05, refers to the bi-exponential model; #p < 0.05, refers to the conventional

tri-exponential model.

mean f0 values (11.9–18.7%). However, in the gray matter ROIs,
the mean ADCvery−slow values (251–445 × 10−6 mm2/s) were
not extremely low and the mean fvery−slow values (11.9–15.7%)
were much higher than the mean f0 values (1.2–2.7%), shown in
Table 5.

Figure 5 presents the whole brain f0 maps of one volunteer.
The f0 is high in white matter, but very low in gray matter. These

TABLE 4 | Squared prediction errors (SPEs) of the bi-exponential, conventional

tri-exponential and modified tri-exponential models in ROIs of white matter.

ROI Bi-exponential

(×10−5)

Conventional

tri-exponential (×10−5)

Modified

tri-exponential (×10−5)

CCg 500 (340, 595) 56 (31, 69)* 46 (22, 60)*

CCs 613 (462, 761) 52 (46, 110)* 50 (42, 185)*

ICp 414 (352, 488) 38 (22, 43)* 44 (31, 56)*#

CS 362 (267, 428) 38 (24, 95)* 46 (36, 104)*#

Fmi 356 (337, 403) 23 (12, 31)* 28 (20, 42)*#

Fmj 328 (293, 351) 24 (17, 31)* 33 (23, 40)*#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major. Data expressed as median (Q1, Q3). *p < 0.05, refers to the bi-exponential model;

#p < 0.05, refers to the conventional tri-exponential model.

FIGURE 3 | The fitting curves of the three models with the first 16 b-values in a typical voxel of white matter (A). The maps of the squared prediction errors (SPE)

calculated by the bi-exponential model (B), the conventional tri-exponential model (C), and the modified tri-exponential model (D). The unit for SPE is ×10−5.
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FIGURE 4 | The f0 map (A), fslow map (B), ffast map (C), ADCslow map (D), and ADCfast map (E) derived from the modified tri-exponential model. The fvery−slow
map (F), fslow map (G), ffast map (H), ADCvery−slow map (I), ADCslow map (J), and ADCfast map (K) derived from the conventional tri-exponential model. The unit for

f maps is ‰, and the unit for ADC maps is ×10−6 mm2/s.

images show good resolution and good definition at white-gray
matter interfaces.

DISCUSSION

In our study, the AICcs and PRESSs of the newmodel were found
to be the lowest in white matter, suggesting that this newmodel fit
better than the conventional bi-exponential and tri-exponential

models and may provide more detailed information. The f0
values were found to be very small in gray matter but ranging
10–20% in white matter. This result indicates that the strictly
diffusion-limited compartment may be an important component
in white matter and may need to be considered when we develop
models for multi-b-value DWI.

First of all, we certified that the fraction of the strictly
diffusion-limited compartment (f0) in white matter cannot be
explained only by noise. In white matter, the remaining signal
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intensity ratio was as high as 18.7% at b = 8,000 s/mm2, while
the SNR was 23.7. Thus, the ratio of noise at b = 8,000 s/mm2

to signal at b = 0 s/mm2 was only 0.79%. This ratio is much
lower than the fractions of the strictly diffusion-compartment in
white matter which were ranging from 11.8 to 18.7%. Thus, the

TABLE 5 | The f0 derived from the modified tri-exponential models, and the

fvery−slow and the ADCvery−slow derived from the conventional tri-exponential in

ROIs.

ROI f0 (%) fvery−slow (%) ADCvery−slow (×10−6 s/mm2)

CCg 16.9 ± 2.8 17.8 ± 0.2 7 ± 11

CCs 18.7 ± 2.0 18.3 ± 1.8 2 ± 4

ICp 15.3 ± 0.7 14.3 ± 0.9 1 ± 1

CS 14.9 ± 1.3 14.3 ± 1.1 1 ± 1

Fmi 13.2 ± 1.8 12.8 ± 1.6 4 ± 3

Fmj 11.9 ± 1.3 11.8 ± 0.8 7 ± 5

CgC 1.2 ± 1.0 15.7 ± 3.5 445 ± 144

SpG 2.7 ± 1.3 11.9 ± 1.5 251 ± 83

CCg, genu of corpus callosum; CCs, splenium of corpus callosum; ICp, posterior limbs

of internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps major; CgC,

cingulate cortex; SpG, supramarginal gyrus. Data expressed as mean ± sd.

existence of the strictly diffusion-limited compartment in white
matter is not only a result of noise.

In the present study, the bi-exponential model was found to be
an over-simplified model. According to the intravoxel incoherent
motion (IVIM) theory, the fast ADC is thought to be linked to
the microcirculatory perfusion of blood within the capillaries,
while the slow ADC is related to diffusion of water molecules
in the tissues (Le Bihan and Turner, 1992; Koh et al., 2011;
Cercueil et al., 2015). This theory is not suitable when b >

1,000 s/mm2. Another explanation for this model is that two
components represent intra- and extra-cellular compartments,
respectively (Niendorf et al., 1996; Steier et al., 2012). However,
researchers have found that the attenuation of DWI signal
does not obey the mono-exponential model even without extra-
cellular compartment or even in a single cell (Grant et al., 2001;
Schwarcz et al., 2004; Steier et al., 2012). These findings of
previous studies also indicate that the bi-exponential model may
not be a satisfying model for explaining the attenuation of DWI
signal. Models with more pools might be preferable to accurately
reflect the diffusion motion of water molecules in tissues.

In the present study, we also found that the SPEs of the bi-
exponential model were much higher than the other two models
in white matter. As we know, the remaining signal intensity
ratio will be very low at ultra-high b-value for compartments

FIGURE 5 | Sequential 30 slices of the f0 maps of one volunteer derived by the modified tri-exponential model. The f0 maps are displayed from the top left. The

unit is ‰.
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with a normal ADC, while this ratio will still remain high for
the compartment with an extremely low ADC. Hence, as the
bi-exponential model does not contain the compartment with
extremely low ADC, it is conceivable that the predicted signal at
b= 8,000 s/mm2 would be much lower than the measured value,
resulting in high SPE.

When compared with the modified tri-exponential model,
the conventional tri-exponential model had significantly higher
AICcs in all ROIs and was considered as an over-fitting
model. More importantly, the biological implications of the
ADCvery−slow compartment differed between white matter and
gray matter. In the white matter ROIs, ADCvery−slow values were
extremely small, and the fvery−slow values were found to be similar
to the f0 values. Thus, f0 and fvery−slow represent the fraction
of the same compartment with extremely small ADC in white
matter. However, when f0 values were negligible in the gray
matter ROIs, the fvery−slow values were still as high as in white
matter, while the ADCvery−slow values were not extremely small.
This finding suggests that the ADCvery−slow compartment no
longer represents the compartment with extremely small ADC
in gray matter. In our view, the three compartments of the
conventional tri-exponential model may represent three major
proton pools in tissues, while the major proton pools may differ
among tissues. Hence, the parameters derived from this model
may have no specific biological implications. This might be an
important limitation for the application of the conventional tri-
exponential model. Generally, models with more pools may also
suffer from this fatal limitation.

On the contrary, by directly setting the ADCvery−slow to
zero, the modified tri-exponential model is able to detect the
volume fraction of the extremely-low ADC compartment. In
the present study, the mean f0 values were found to be non-
ignorable in white matter, ranging from 11.9 to 18.7%. Ferizi
et al. also found that three compartment models with a “dot”
compartment (zero radius sphere) can produce better fit for
diffusion MRI in white matter, suggesting the existence of the
extremely-low ADC compartment (Ferizi et al., 2014). In white
matter, it has been suspected that there are stationary water
molecules trapped in glial cells and other small compartments
or bound to membranes and other subcellular structures
(Alexander et al., 2010). However, Dhita et al. recently showed
that still water compartment was absent in white matte by
using isotropic diffusion measurement (Dhital et al., 2017). A
similar conclusion was also made by Veraart el al. using single-
direction measurements (Veraart et al., 2016). Although Dhital
et al. found that the slowly diffusing water pools existed in
all directions, these pools were suspected to reside in separate
micro-environments (Dhital et al., 2017). It is recommended
that orientation dispersion of axons and glial processes should
be taken into account when developing models for fitting
isotropic diffusion measurement (Dhital et al., 2017). Thus, the
exact biological interpretation for the strictly diffusion-limited
compartment in white matter needs to be investigated further.
Besides, the existence of this compartment in other normal or
pathological tissue also needs to be investigated.

One limitation of the application of ultra-high b-value DWI
is low SNR. To ensure high SNRs, the NSAs were designed very

large in this study, especially for DWI images with ultra-high
b-values. Our result showed that the SNRs of DWI maps with
ultra-high b-values were comparable with that of DWImaps with
b = 0 s/mm2. However, traditional magnitude reconstruction
which is used in this study, may lead to an accumulation of
noise (Eichner et al., 2015). Averaging the repeat measurements
in complex domain is recommend to further improve the SNR,
while it requires complex phase navigation and is not normally
provided by hardware vendors (Jones et al., 2013; Eichner et al.,
2015).

Anisotropic resolution with a high in-plant resolution and
a large slice thickness was applied in this study. Clinically,
a high in-plant resolution is required to distinguish fine
structure in brain. SNR has a linear relationship with voxel
volume, thus a relative large slice thickness can improve
the SNR. Besides, a large slice thickness can also shorten
the scan time. However, anisotropic resolution can lead to
differential averaging of fiber orientations (Jones et al., 2013).
This effect is not accounted for in this study because the
DWI images used for model fitting do not contain direction
information.

There are still several limitations in this study. First, the total
scan time of this sequence is too long for clinical practice. Hence,
the multi-b-value DWI sequence should be optimized, including
the selection of b-values and NSAs. Second, in gray matter,
the SNRs of DWI maps at ultra-high b-values were low, which
reduced the reliability of some results. However, the main focus
of the study was on white matter, and the SNR still remained high
at ultra-high b-values in white matter. Third, the impact of T2
values of different compartments were not evaluated in our study,
and need further research.

In conclusion, the bi-exponential model is an over-simplified
model and unable to predict the signal intensity at ultra-
high b-values in white matter, while the conventional tri-
exponential model is an over-fitting model and has no specific
biological implication for each compartment. The new model fits
better than the other two models, and may provide additional
information.
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