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Abstract 

With hundreds of SARS-CoV-2 lineages circulating in the global population, there is an ongoing need for predicting and forecasting 
lineage frequencies and thus identifying rapidly expanding lineages. Accurate prediction would allow for more focused experimental 
efforts to understand pathogenicity of future dominating lineages and characterize the extent of their immune escape. Here, we first 
show that the inherent noise and biases in lineage frequency data make a commonly-used regression-based approach unreliable. To 
address this weakness, we constructed a machine learning model for SARS-CoV-2 lineage frequency forecasting, called CovTransformer, 
based on the transformer architecture. We designed our model to navigate challenges such as a limited amount of data with high levels 
of noise and bias. We first trained and tested the model using data from the UK and the USA, and then tested the generalization 
ability of the model to many other countries and US states. Remarkably, the trained model makes accurate predictions two months 
into the future with high levels of accuracy both globally (in 31 countries with high levels of sequencing effort) and at the US-state 
level. Our model performed substantially better than a widely used forecasting tool, the multinomial regression model implemented 
in Nextstrain, demonstrating its utility in SARS-CoV-2 monitoring. Assuming a newly emerged lineage is identified and assigned, our 
test using retrospective data shows that our model is able to identify the dominating lineages 7 weeks in advance on average before 
they became dominant. Overall, our work demonstrates that transformer models represent a promising approach for SARS-CoV-2 
forecasting and pandemic monitoring.
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Introduction
SARS-CoV-2 has been continuously evolving new variants that 
increase transmission fitness and/or evade population immunity 
(Carabelli et al., 2023; Markov et al., 2023; Meijers et al., 2023; 
Volz, 2023). As a result, many waves of infection around the 
world were caused by variants of concern (such as subvariants 
of the Delta and the Omicron lineages), leading to large num-
bers of infections and a high death toll (Dong et al., 2020; Ritchie 
et al., 2020). Vaccination is an important and effective tool to 
reduce the level of transmission along with morbidity and mor-
tality (Polack et al., 2020; Baden et al., 2021). However, with the 
frequent origination of immune escape variants (Harvey et al., 
2021; Rössler et al., 2023; Wilks et al., 2023), there are repeated 
waves of infection and hence an ongoing need for predicting the 
rate and magnitude of spread for new variants that emerge in 
a population. This has become increasingly important especially 

with dozens or hundreds of minor variants circulating and com-
peting in the global population (Beesley et al., 2023). Accurate 
prediction would allow for more focused experimental efforts to 

understand the pathogenicity and molecular characterization of 

the extent of immune escape of variants that have high potential 
to spread (Stockdale et al., 2022).

Existing forecasting tools have focused on predicting future 

trajectories of the numbers of COVID-19 cases and deaths (Du 

et al., 2023; Grubaugh et al., 2019; ForecastHub, 2023). However, 

a predictive tool focusing on forecasting dynamics of variant fre-
quencies is still lacking. The potential for spread of a variant 
when it first emerges has been predicted based on the extent of 
structural change on the spike protein leading to immune escape 
(Harvey et al., 2021; Chen et al., 2022), but the potential for an 
immune escape mutant to efficiently transmit in the population is 
unknown. Regression or mechanistic models predict the fitness of 
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a lineage, and thus the potential for spread, from time series data 
of variant frequencies (Volz, 2023; Beesley et al., 2023; Nextstrain, 
2023; Abousamra et al., 2023; Figgins & Bedford, 2022). However, 
due to the noise arising from data collection and deposition (as 
we show below), this general approach suffers from large uncer-
tainty in prediction. We previously found that robust and accurate 
predictions require several weeks of data from multiple countries 
(van Dorp et al., 2021).

In this work, we constructed a transformer model (Vaswani 
et al., 2017; Dosovitskiy et al., 2021), called CovTransformer, to 
forecast the future frequency of existing SARS-CoV-2 lineages 
from noisy lineage frequency time series data. Previously, machine 
learning approaches have been successfully applied to time series 
analysis (Che et al., 2018; Song et al., 2018) and more recently, they 
were applied to various problems in COVID-19 pandemic response 
(Syrowatka et al., 2021). In particular, state-of-the-art transform-
ers (Vaswani et al., 2017), distinct for their self-attention mecha-
nism, are renowned for their ability to capture complex sequential 
patterns and long-term relationships. This enables the nuanced 
detection of intricate patterns and long-term dependencies within 
data sequences, achieving success in many problems such as nat-
ural language processing (Vaswani et al., 2017; Brown et al., 2020; 
Devlin et al., 2018), computer vision (Dosovitskiy et al., 2021; Khan 
et al., 2022; Kirillov et al., 2023; Girdhar et al., 2019), multimodal 
learning (Xu et al., 2023; Radford et al., 2021), and time series 
analysis (Wen et al., 2023; Zhang & Yan, 2022; Gao et al., 2022; 
Song et al., 2018). Our approach integrates transformers within 
a broader strategy to address the complex task of forecasting 
pandemic lineage frequencies. This methodology systematically 
tackles inherent challenges such as large noise, reporting delays, 
input biases, variable label quality, and the scarcity of comprehen-
sive data across a wide array of lineages. It sets a precedent for 
utilizing machine learning tools in lineage-level frequency fore-
casting. Here, we first show that simple forecasting of emerging 
variant frequencies based on regression leads to erroneous pre-
dictions due to the inherently noisy nature of the data. Then 
we demonstrate that our transformer model accurately forecasts 
lineage frequencies and, importantly, identifies lineages that even-
tually reach high frequencies from a collection of newly emerged 
lineages.

Materials and methods
SARS-CoV-2 data

All available SARS-CoV-2 sequence metadata was downloaded 
from GISAID (Elbe & Buckland-Merrett, 2017) on February. 26, 
2024. We used the Pango lineage designations provided by GISAID 
in this metadata, discarding sequences that lacked Pango or coun-
try information. We then summarized the data as the number 
of records for each combination of collection date, submission 
date, and country. These counts were used to compute the variant 
frequencies used in our analysis. Our model was trained and eval-
uated using datasets from the UK and the USA, regions with the 
highest collection of SARS-CoV-2 genomic sequences. We divided 
the dataset of all lineages into training and validation sets com-
prising data up to Dec. 31, 2022, and a testing set with data 
following this date. This partition resulted in 107,712 entries for 
training and validation, and 37,707 entries for testing.

Regression model for lineage frequency 
forecasting for individual lineages
The frequency of a variant typically follows a linear increase in 
the logit transformed space (van Dorp et al., 2021; Bedford, 2023). 

Therefore we first transformed the frequency of each lineage 
with a logit transformation, p = log[p/(1 − p)]. We then performed 
a linear regression on the time series of the transformed lineage 
frequencies for the past 42 days. To forecast the lineage frequency 
into the future, we extrapolated lineage frequency based on the 
parameters from the linear regression.

Data processing for the transformer models
To improve the data quality, we first removed isolated data points 
during pre-processing. Specifically, a data point is identified as 
potentially anomalous and removed if there are five or more days 
without any records within a seven-day period centered on that 
point. The input of the machine learning model is constructed as 
a 5n dimensional vector, where n is the number of input days. For 
each day, we incorporate five features: the frequency of the specific 
lineage, the number of sequences of the lineage, the total number 
of sequences on that day, the number of days elapsed since Jan-
uary 1, 2020, and the elapsed days since the lineage’s first recorded 
collection day. For the missing records, we use a fixed negative 
token as a placeholder. By using special tokens, transformers can 
effectively manage missing or masked data, making them robust 
tools for a wide range of sequence-related tasks. In particular, we 
treat each one-day feature as a discrete element (referred to as a 
token or patch) for input processing. Thus, the patch size is 1 × 5. 
The model’s output is the predicted frequency of the lineage for 
a future time point, specified as T days ahead (Fig. 1a). Given the 
presence of noise and missing data in our dataset, we employ a 1-
D smoothing spline following interpolation to smooth the ground 
truth, which we then use as our labels. 

Machine learning framework
We employed a single-layer transformer with a linear input layer 
preceding it and a linear output layer following it. The trans-
former contains a self-attention layer, followed by a multi-layer 
perceptron (MLP). The overall model architecture is illustrated in 
Fig. 1b. In particular, the model uses embedding dimensions of 
8 and 2 attention heads without dropouts. There is a layer nor-
malization between the transformer and the input/output linear 
layer, separately. For the position embedding, we employed the 
fixed sin-cos embedding described in the original paper (Vaswani 
et al., 2017). Here, the primary challenge in our problem lies in the 
presence of significant data noise. Our primary objective is not to 
extract deeply hierarchical or intricate semantic information, but 
rather to uncover valuable signals within this noisy data. Given 
the relatively low amount of data for model training, our foremost 
considerations are robustness, simplicity, and resistance to over-
fitting. Consequently, we have deliberately opted for a shallower 
network architecture.

Because it is easier for the model to learn the short-term 
prediction, we used an incremental method to enhance long-
term predictions by including short-term predictions (Fig. 1b). We 
first trained a model that can predict 14 days into the future. 
Then, the 14-day predictions (ensemble of five models’ results 
from five-fold cross-validation) are concatenated with the input 
feature. Additionally, we introduce a shortcut connection that 
adds the short-term prediction to the model’s output to calculate 
the final long-term predictions. This approach combines short-
term insights with long-term forecasting, resulting in improved 
accuracy.

For the purpose of training, validating, and testing our model, 
we partition the data as of January 1, 2023. Data recorded prior 
to this date are allocated for model training and validation with 
five-fold cross-validation. Then, the best-performing models are 
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Figure 1. Schematics of model input, output, and architecture. (a) An example of input and target data for the transformer model, using lineage 
XBB.1.9.1 in the USA. The access date A is when the data were assumed to be accessed in this example (February 23, 2023). Red dots show the 
access-day frequency time series available on that day. The data input to our model is these access-day frequencies, for the input period of n = 42 days 
before A. In this example, note that the first three days of the input period do not contain data on the access day, so the day of first collection, D1, is 
later than the start of the input period, A − n. Similarly, the last seven days of the input period do not contain data on the access day, so the day of last 
collection, D2, is earlier than A. Frequencies on these days only become available after more data are collected later; gray dots show the frequency 
time series that is eventually measured, using all data collected by our single data download on February 26, 2024. The model makes predictions of 
the lineage frequency T days after the access date. To compute this target frequency for training, we fit a smoothing spline (black line) to the eventual 
frequency time series. The error of the model is calculated as the difference (in log10) between the model-predicted frequency and the target 
frequency. (b) Model architecture. We employed a transformer with a linear input layer preceding it and a linear output layer following it. The 
transformer layer contains a multi-head self-attention layer, followed by a multi-layer perceptron (MLP). We used an incremental method to enhance 
long-term predictions by including short-term (i.e. 14-day) predictions.

ensembled and tested on data subsequent to this date as the 
testing data set. Our model is trained on combined datasets 
from the USA and UK. Moreover, we utilize a noise injection 
technique (Orvieto et al., 2022) to improve the model general-
ization ability, which perturbs the model parameters by random 
Gaussian noise (zero means and 1e − 4 std) in each training iter-
ation. This prevents the model from converging to sharp local
minima.

To address the challenge of data imbalance inherent in our 
dataset, we have employed an approach wherein we apply an 
exponential function to weight the loss function during model 
training. This weighting strategy takes into account the vary-
ing frequencies of the target day, assigning higher weights to 
datapoints corresponding to high frequency labels. By doing 
so, the model places greater emphasis on accurately predict-
ing the high frequency variants, which are often of paramount 
importance in epidemiological and public health contexts. This 

adaptive weighting mechanism ensures that the model focuses on 
effectively capturing the dynamics of the most prevalent variants, 
ultimately leading to improved overall forecasting performance 
and a more balanced predictive outcome. The overall loss function 
combines l1 and l2 loss, with an exponential weighting scheme. 
This loss function is designed to give more emphasis to lineages 
with higher frequency. The loss function can be mathematically 
represented as: 

ℒ(label,pred) = 1
N

N

∑
i=1

(wi ⋅ |labeli − predi| + wi ⋅ (labeli − predi)
2) ,

where N represents the number of samples, labeli is the true label 
of the i-th sample, predi is the model’s prediction for the ith sam-
ple, and wi is the weight associated with the ith sample, which is 
computed as wi = 2elabeli.
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To train the model, we employed the AdamW (Loshchilov & 
Hutter, 2018) optimizer with momentum parameters 𝛽1 = 0.9, 𝛽2 =
0.999 and a weight decay of 0.05. The initial learning rate was set 
to be 1 × 10−3, and we modified the learning rate with a cosine 
annealing (Loshchilov & Hutter, 2016). We set the batch size to 
256 and trained the model for 1000 epochs. We implemented our 
models in Pytorch and trained them on 1 NVIDIA Tesla V100 GPU.

Results
Data collection

To predict variant frequency trajectories, we used the meta-
data for SARS-CoV-2 sequences from GISAID [(Elbe & Buckland-
Merrett, 2017) downloaded on February 26, 2024, see Methods 
section for details]. For each viral sequence, we noted both the col-
lection date when a viral sample was collected from an infected 
individual, and the submission date when the sequence was sub-
mitted to the database. In general, there is a wide distribution of 
the delay in reporting, defined as the difference in days between 
the collection date and the submission date (Fig. S1). The mean 
and median delays in reporting are 30.1 and 17 days, respectively, 
whereas the standard deviation is 51.6 days. As we show below, 
the long reporting delays leads to large uncertainties and biases 
in lineage frequency time series especially for days immediately 
before the date of access to the database (see Fig. S2 for example).

To form a dataset for training our models below, we first con-
structed an input dataset retrospectively where we assumed the 
database was accessed on each day between January 1, 2020 and 
February 22, 2024. For each day of access, we calculated the fre-
quency time series of each Pango lineage (Rambaut et al., 2020) 
for the past two months by only considering the viral genetic 
sequences submitted to the database before or on the access date. 
Overall, there are a total of 145,419 time series for two countries’ 
data (USA and UK), which serve as an input dataset for our models. 
Note that we used the lineage assignment for each sequence at the 
time of our one metadata download (February 26, 2024). It is pos-
sible that some lineages were not assigned yet at the assumed day 
of access, for example, if the size of a to-be new lineage was not 
large enough to be assigned as a new lineage. This means that the 
training of our model benefits from the knowledge of the contem-
porary lineage assignment, which improves the training datasets 
especially at low lineage frequencies, and thus enhances model 
performance especially for newly emerged lineages once they are 
assigned. It also means however, when we deploy this method, 
its prediction of newly emerged lineages relies on Pango lineage 
designation and assignment (O’Toole et al., 2022).

To construct a target dataset for model evaluation and testing, 
we calculated the frequency of each Pango lineage on each day, 
using all the sequences available when we downloaded the GISAID 
metadata. We termed these the ‘final’ frequencies. For the ground 
truth frequencies used as targets to train and test the model, we fit 
a smoothing spline to the final frequencies to remove the inherent 
noise from the data due to day-to-day variations in sampling. Our 
strategy for constructing time series datasets is shown in Fig. 1a.

Limitation of regression-based estimations due 
to noise and biases in data
One common forecasting approach is to estimate the growth rate 
of a lineage by applying regression-based methods on lineage fre-
quency time series, and then project future lineage frequency 
based on the estimated growth rate. We found that because of the 
reporting delay, the Pango frequencies within two weeks’ time of 
the access date were often substantially different than the final 

frequencies, and typically there was no viral genome reported 
within 1–3 days prior to the access date (Fig. S2). This high level 
of uncertainty in the lineage frequency time series due to report-
ing delay makes the regression-based approach highly unreliable 
(Fig. S2) especially when a lineage was at low frequencies. For 
example, we used a linear regression on the logit transform of the 
lineage frequency data (since it has been shown that the SARS-
CoV-2 lineage frequency follows a linear growth or decline on the 
logit transform; van Dorp et al. 2021; Bedford 2023). We found that 
for many lineages, the projection suffers from either large noise or 
from systematic biases in the lineage frequency data (Fig. S2). We 
used this regression-based prediction as a baseline model below 
for our machine learning model to compete against.

Development of a transformer model
We developed a transformer model to forecast future frequencies 
of each Pango lineage (see Methods section for details). The trans-
former is characterized by its distinctive attention mechanism, 
known as multi-head self-attention. This mechanism enables the 
model to weigh the significance of each element in a time series 
against all others, enabling it to capture intricate relationships and 
long-term dependencies within data sequences, whether in text, 
time series, or other temporal data (Vaswani et al., 2017; Xu et al., 
2023; Wen et al., 2023).

In brief, our model employs a shallow transformer network 
with a linear input layer preceding it for patch embedding and a 
linear output layer. The model architecture is illustrated in Fig. 1b. 
It uses the frequency time series of a Pango lineage in a coun-
try as input to predict the frequency of the lineage at a future 
date (14, 21, 28, 35, 42 and 60 days into the future). We employed 
an incremental approach to enhance long-term model predic-
tion, developing six model variants to make predictions on the 
six future dates. The first model variant is trained to forecast on 
day 14, and then the 14-day predictions are concatenated with 
the input feature as inputs for the other five model variants. This 
approach combines short-term insights with long-term forecast-
ing, resulting in improved accuracy. Note that the model at this 
stage concerns predictions for a single lineage in one country only. 
It does not consider predictions from other extant lineages at the 
same time period, although we address this consideration further 
below.

The error of the model is calculated as the mean absolute error 
(MAE) between the log10 of the model predicted frequency and the 
log10 of the target frequency. We calculate the error on the log10 
transform of the frequencies because in general, the size of each 
of the lineages increases or decreases exponentially. One charac-
teristic of the dataset is that there are only a few lineages that 
rose to a high frequency to become the dominant lineage in the 
population, while most lineages stayed at relatively low frequen-
cies (Fig. 2b). To address this issue of data imbalance, we applied 
an exponential function to weight the loss function during model 
training, such that the errors between target and model prediction 
from lineages that rose to a high frequency were weighted heavily 
in the training. In this way, our model is trained to better identify 
lineages that will become dominant when their frequencies are 
still low (Fig. 2b). 

We also developed and tested a two-layer long short-term 
memory (LSTM) model (Sak et al., 2014) to check how this earlier 
and simpler model architecture performs. This model is designed 
to make 14-day predictions. It has approximately 1.4k parameters 
(compared to 1.6k parameters in the transformer model), and it 
is trained and tested using the same dataset as we used above. 
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Figure 2. The transformer model outperforms linear regression models on data from UK and USA across evaluation categories. In all panels, the noise 
level (dashed line) is calculated as the MAE between the smoothed final frequency and the final frequency (on a log10 scale). (a) Overall model 
performance of the transformer model versus the regression model for six different future days. (b) MAE categorized by the model-predicted 
frequencies. Results were binned by each 0.5 interval on the log10 of the frequencies. The transformer model performed substantially better than the 
regression model especially for high frequency predictions: it identifies lineages that would rise to a high frequency much better than the regression 
model. The number of samples (red line) indicates the number of total valid input time series in each bin. (c) MAE categorized by the week since the 
first prediction day for each lineage (the first day when there are 14 non-zero frequencies in the model input). The transformer has superior 
performance compared to the regression model, especially in the initial weeks following the emergence of a new variant, when data is scarce.

As expected, our transformer model makes more accurate pre-
dictions than the LSTM model. The MAE of the Transformer was 
0.4239, compared to 0.6098 for the LSTM model. This confirms that 
transformer architecture is suited to handle this type of datasets 
and make accurate forecasts.

The transformer-based model performs well
We first trained and tested our model using data derived from the 
UK and the USA, where most SARS-CoV-2 genomic sequences have 
been collected. We split the dataset containing all lineages such 
that the data before January 1, 2023 were used as the training and 
validation dataset and the data between January 1, 2023 and Jan-
uary 1, 2024 were used as the testing dataset. This leads to 107,712 
training data and 37,707 testing data.

We tested all the model variants and compared their perfor-
mance with model predictions from linear regressions on the logit 
transform of lineage frequencies. Our model substantially outper-
forms the regression model across all prediction time points Fig. 2. 
This performance advantage is especially pronounced in long-
term forecasts (e.g. 60 days into the future) where the regression 
models exhibit escalating error rates. In contrast, the transformer 
models maintain a lower and more stable loss growth, indicating 
robustness in handling extended prediction horizons. Remarkably, 
the MAE for the transformer model predictions ranges between 
0.32 and 0.42 for the six future dates. These MAEs are only slightly 

above the mean noise level of the data, 0.2 calculated as the mean 
difference between the actual final frequencies derived from the 
sequence data and the smoothed target frequencies. This means 
we expect the average difference between our predictions and the 
ground truth frequencies to be approximately 0.42 on a log10 scale 
(i.e. 2.6-fold difference on a linear scale) even for predictions 2 
months into the future.

We next examined the MAEs using two different catego-
rizations. First, we derived statistics of MAEs according to the 
predicted frequency of the lineage (Fig. 2b). Our models show 
remarkable consistency across various prediction frequencies, 
even though the number of training datasets is very low when the 
predicted frequency is high. This is critical for lineage surveillance 
because of the importance of accurate and early identification 
of lineages that eventually rise to a high frequency in the pop-
ulation. The regression models, in contrast, exhibit pronounced 
inaccuracies and false positive rates, particularly in these cate-
gories. Second, we derived statistics of MAEs according to the time 
since our model was able to make the first prediction, defined 
as the day when a lineage has at least 14 days of non-zero data 
points in the past 42 days. Figure 2c shows that even when the 
number of input data is low, such as two weeks’ data points, our 
model makes accurate predictions, whereas the regression model 
performed poorly.

We further evaluated how early our model is able to iden-
tify future-dominating lineages. For each variant that became 
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the dominant variant at some time (the lineage with the highest 
frequency in the population) in our testing dataset, we calcu-
lated the difference between the date when it actually became 
dominant and the date when our 60-day prediction model first 
predicted it to be the dominant variant. The mean and median 
of the difference in days are 48.7 and 54 days, respectively (Fig. 
S3). This suggests our model is able to identify the future dom-
inating lineages 7 weeks in advance on average. Note that here 
we assumed that at the time of forecasting, the newly emerged 
lineages were already identified and assigned a unique name, 
although in reality, this may not be the case. Therefore, the ability 
of our model to make early forecasts is potentially constrained by 
the time of Pango lineage assignment.

Transformer models accurately forecast lineage 
trends in the USA and the UK, and more generally
The results above showed that the transformer models perform 
well in making predictions for individual lineages. However, in 
practice, dozens of lineages may coexist in a population at the 
same time. Therefore, when implementing our models to deal 
with real-time data, we normalized the predictions of individ-
ual lineages such that the sum of all extant lineage frequen-
cies is 1. Figure 3 shows comparisons between the raw data 
and our model predictions for the USA and the UK during the 
period between November 30, 2022 and February 18, 2024. Model 
predictions shown on each day were made using lineage fre-
quency time series collected for an access date 28 or 60 days 
prior to the day of prediction. The model predictions agree 
well with the raw data. In particular, our models correctly pre-
dicted the rise of XBB lineages in the first half of 2023 and the 
JN lineages in late 2023, emphasizing their utility in making 
accurate real-time forecasts and identifying highly transmissi-
ble SARS-CoV-2 lineages. Again, these forecasts rely upon the 
identification and assignment of new lineages from their parent
lineages.

Similarly, we normalized the predictions from the logit regres-
sion model, and Fig. S4 shows comparisons between the raw data 
and the projected frequencies from the model. As expected, the 
predicted frequencies aligned poorly with raw data. 

Given the highly accurate performance of our models on the 
data sets from the USA and the UK, we further tested our mod-
els using data collected from over 100 other countries as well 
as the USA state level data, to assess their generalization abil-
ity (4). Our model performance is surprisingly robust, at least 
for countries with relatively high numbers of available genomic 
sequences (Fig. 4a). For example, for 31 countries (each with 
>20,000 sequences reported), the MAEs of our model predictions 
are below 0.5. Moreover, 24 of 27 countries with >70,000 sequences 
reported have MAEs below 0.5, and the MAEs of the other three 
countries are close to 0.5. There is a clear correlation between 
the intensity of a country’s sequencing efforts and the perfor-
mance of our model, with a Pearson correlation coefficient of 
−0.82 (Fig. 4a). We found similar patterns with the USA state-
level data. Our model performs very well for states with >20,000 
sequences reported (Fig. 4b). The performance drops when fewer 
genomic sequences are available. Overall, the robust performance 
of our model across data from other countries and from the 
USA states suggests the wide applicability of our model. The 
clear correlation between model performance and the number of 
genomic sequences underscores the importance of comprehen-
sive sequencing in enhancing the precision of predictive models 
in viral genomics.

Model design ablation test
During model development, we tailored our model specifically to 
characteristics of the input data and the need to identify lineages 
that may rise to a high frequency. This includes estimating the 
target frequency by smoothing the time series to remove noise, 
using a single-layer transformer to reduce model complexity, and 
using an exponential weighting function to focus on learning 
high-frequency lineages (see Methods section). To test the effec-
tiveness of these model settings, we performed ablation tests 
using alternative models where either raw frequencies were used 
as target frequencies, a two-layer transformer was implemented, 
or no weighting function was applied. We found that none of the 
alternative models performed better than our original model (Fig. 
S5), emphasizing that our model design choices indeed improve 
overall performance.

Transformer models outperform Nextstrain 
predictions
Currently, a widely accepted tool for lineage frequency forecast-
ing is Nextstrain’s multinomial logistic regression (MLR) model 
(Hadfield et al., 2018; Abousamra et al., 2023; Nextstrain, 2023). 
The Nextstrain MLR model has stringent data criteria, requiring 
for example that a lineage have at least 5000 sequences in the 
past 150 days for a given day of access. In contrast, our model 
makes predictions on lineages that have at least 14 days of records 
in the past, and has no formal requirement for the minimum 
number of sequences. Therefore, our model is able to make predic-
tions for many more lineages than the Nextstrain model. Further-
more, for those lineages that were included in Nextstrain model 
prediction, our model can make predictions much earlier than 
Nextstrain. The caveat for early predictions remains that both of 
these models rely on newly emerging lineages being assigned a 
Pango designation at the time of forecasting.

To test relative prediction accuracy, we compared our model 
predictions on the lineages and days where predictions from the 
Nextstrain MLR model were available. In general, our model had 
much better performance (Fig. 5). For example, after we normal-
ized the frequencies of all existing lineages predicted from our 
models, the MAEs of our model are between 0.28 and 0.36 for 14, 
21, and 28-day predictions, only slightly above the noise level. In 
contrast, the Nextstrain MLR model had MAE >0.5 across all pre-
dictions (Fig. 5a). Our transformer model performed particularly 
well when the predicted frequency was high. That is, it can identify 
lineages that reached high frequencies, whereas the Nextstrain 
MLR model performed poorly (Fig. 5b). We also provide visualiza-
tion examples of 14-day predictions, including 12 lineages from 
four countries (GBR, USA, CHN, and AUS), in Fig. S6. Overall, these 
results highlight the strength of our approach in accuracy and 
stability. 

Discussion
Here, we developed a transformer-based model to make accurate 
forecasts on SARS-CoV-2 lineage frequencies up to 60 days into 
the future. The model excels in robustness, accuracy, and gener-
alization ability across datasets. Its ability to outperform existing 
models, including the widely-used Nextstrain multinomial regres-
sion model, and adapt to diverse datasets makes it a powerful 
tool for SAR-CoV-2 lineage frequency forecasting and pandemic 
monitoring. Assuming the newly emerged lineage is identified and 
named, our test using retrospective data shows that our model is 
able to identify the future dominating lineage 7 weeks in advance 
on average.
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Figure 3. Retrospective predictions from the transformer model agree well with raw data from the UK and the USA. Upper panels show the lineage 
frequencies over time derived from the raw data. Middle and lower panels show the frequencies from the 28 and 60 day predictions from the 
transformer model. The model-predicted frequencies on a day were calculated by first applying the transformer model to time series of each extant 
lineage assuming an access date of 28 or 60 days prior to the prediction date, and then normalizing the predictions for all lineages such that the sum 
of frequencies is 1 on each day. The dashed line denote the date (December 31, 2022) after which the raw data was not used for model training.

Although trained only on partial data from the USA and the 
UK, our model demonstrated remarkable generalization ability 
across datasets from 31 countries in distinct geographic regions 
across the globe and datasets from the USA states. This is espe-
cially important for pandemic monitoring purposes, because it 
enables early identification of a highly transmissible variant that 
can appear in any geographic region. Thus, we expect our model 
could be implemented and used to make continuous forecasts 
using data collected globally and at the state or provincial level 
(for regions where sufficient genomic data is available to make 
reliable predictions), such that highly transmissible variants can 
be identified as early as possible. This identification would pro-
vide researchers and public health officials with a list of candi-
date highly transmissible variants to be further monitored and 

investigated, for example, through experimental evaluation of its 
pathogenic and their potential of immune escape. In addition, 
when our model forecasts that a lineage may become dominant 
in multiple countries or multiple states/provinces, it serves as a 
strong indication that the lineage may become a global variant 
of concern. In actual implementation for monitoring purposes, 
we could define a risk score for each variant calculated from, for 
example, the weighted sum of predicted future frequencies of the 
variant across regions/countries considered in the model. This 
would provide public health officials a direct measure of risk of 
spread for each circulating minor variant.

Existing tools for lineage frequency forecasting, such as the 
multinomial regression approach implemented in the Nextstrain 
model (Nextstrain, 2023; Abousamra et al., 2023), mostly adopt 
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Figure 4. The transformer model exhibits remarkable generalization ability when tested on data from countries across the globe (a) and data from the 
US states (b). (a) The MAE for the 28-day prediction against the total number of sequences collected before February 26, 2024 in each country. Country 
codes are indicated around the data points. There is a significant linear correlation between the total number of sequences (on the log10 scale) and 
the MAE of our model predictions (Pearson correlation coefficient −0.82). (b) The MAE for the 28-day prediction against the total number of sequences 
collected before February 26, 2024 in each US state. State names were indicated around the data points. There is a significant linear correlation 
between the total number of sequences (on the log10 scale) and the MAE of our model predictions (Pearson correlation coefficient is −0.77).

Figure 5. The transformer model outperforms Nextstrain’s Multinomial Logistic Regression (MLR) model. The MAEs for the transformer model were 
calculated for countries and dates where the Nextstrain MLR model predictions exist. Only results for 14, 21, and 28 days’ forecasting are shown, 
because the Nextstrain MLR model forecast a maximum of 30 days into the future. Our models outperform Nextstrain’s MLR model both in terms of 
overall results (a) and stability across different prediction frequencies (b).

a regression-based approach. This type of approach implements 
regression on past lineage time series and projects future trajecto-
ries based on estimated growth rates. As we demonstrated in this 
work, these approaches suffer from large noise and biases in the 
recently collected data points due to reporting delay. In addition, 
in our previous work, we found that long time series are needed 
for regression-based approaches to make reliable predictions of 
relative variant fitness due to variation during the prediction inter-
val (van Dorp et al., 2021). Indeed, the multinomial regression 
model implemented in Nextstrain has stringent criteria for predic-
tion (a lineage must have at least 5000 sequences in the past 150 
days) to ensure prediction accuracy. In contrast, the transformer-
based models we developed here overcome these challenges and 

make reliable predictions from a minimum of only 14 days of non-
zero data in the past 42 days. Furthermore, from a computational 
cost perspective, our model is relatively small for a deep learn-
ing model, containing only 1600 parameters. Training our model 
takes approximately one hour on an Nvidia V100 GPU with a batch 
size of 256. Once the model is trained, it can be used to make 
predictions much more quickly. For making forecasts, it requires 
just 0.0007 seconds to predict a single lineage on a CPU. Thus, the 
trained model can be easily implemented on a laptop computer 
to make rapid forecasts. Retraining will be desirable if model per-
formance can be improved by new data coming in. However, we 
observed similar performance even after adding an additional six 
months of data to train the model (between January 1, 2023 and 
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June 30, 2023; results not shown). Given also the robust model 
performance we observed against datasets that were not used for 
model training, we expect that frequent retraining of the model 
will not be needed.

Our model’s exceptional performance and ability to generalize 
stem from several strategies specifically designed according to the 
unique features of the dataset. First, early identification of emerg-
ing lineages that eventually become dominant in the population 
is critical for any lineage forecasting tool. One inherent issue with 
the data is that lineages that eventually dominated the popula-
tion are few compared to those that did not, leading to a data 
imbalance for machine learning model training. By introducing 
an adaptive loss weighting mechanism to address the data imbal-
ance, we ensured our model prioritizes accurate predictions for 
rapidly growing lineages that will rise to a high frequency. Second, 
to increase the accuracy of long-term prediction, we employed 
an incremental learning strategy that uses the trained short-term 
predictions to facilitate long-term predictions. Third, we imple-
mented cross-validation and noise injection techniques (Orvieto 
et al., 2022) to increase the stability of the model, which works well 
for countries with a relatively high sequencing effort. The model 
performance becomes poorer for countries with less sequencing 
data available (for example, countries with < 30,000 sequences col-
lected before 2024), suggesting the noise and bias in the datasets 
from these countries are too large for our current model.

Despite the good performance, there are limitations and areas 
of improvement to our model. First, in the lineage frequency data 
used to train our model, we assumed that the metadata for each 
sequence is available when it appears in the database; however, in 
reality, a newly emerged lineage is assigned as a new Pango lineage 
only after enough sequences on that lineage have been obtained, 
and Pango lineage designations may continue to change over time. 
Therefore, although we showed that our model provides good 
predictions at low frequencies as a lineage is newly emerging, pre-
dictions only are possible after lineage assignment in a real-time 
setting. We were unable to recover the full history of Pango lin-
eage assignments in order to evaluate how early our model would 
be able to forecast for each newly emerged lineage. Nonetheless, 
we demonstrated here that our model is able to make accurate 
predictions once a newly emerged lineage is defined and there are 
at least 14 days of non-zero data available. Second, our model only 
makes predictions on lineages already existing in the database. As 
with other forecasting models, it does not predict the origination 
of new lineages. The origin of a new lineage that transmits effi-
ciently in the population may completely change the dynamics of 
existing lineages. For example, for the Omicron BA.1 outbreak in 
late 2021, our model does not make predictions about it before it 
is assigned as a new lineage; however, the model makes accurate 
predictions of this and other Omicron lineage frequencies once it 
is assigned and there is enough time series data available. Third, 
our transformer model was trained on the time series of lineages 
individually. Although we normalized the predicted frequencies of 
all existing lineages to 1 for real-time predictions, our model fun-
damentally only focuses on the dynamics of individual lineages 
without considering the interactions among co-existing ones. One 
potential future direction is to develop models to make predictions 
based on all existing lineages. However, data collected on a sin-
gle day only lead to one training data point for the model, in this 
case. Currently, the amount of available data (on the order of a 
thousand data points) is not sufficient to train such a transformer-
based lineage interaction model. Fourth, our model was trained on 
data collected from the UK and the USA. One potential improve-
ment to the model is to add a country token in the input data 

stream, train the model using data from more countries, and make 
country-specific predictions. However, currently, the amount of 
data from most countries is insufficient to train a model with a 
country token to make substantial improvements compared to 
our existing model. As more and more data becomes available, 
the transformer model can be improved by implementing this 
strategy. This also points towards the importance of continuing 
and broadening the genomic surveillance of SARS-CoV-2 lineage 
evolution.

Overall, our transformer-based model is adept at navigating 
the challenges posed by substantial noise, bias, and missing data 
inherent in lineage viral frequency datasets. It not only demon-
strates substantially improved forecasting accuracy relative to 
other methods, it also exhibits remarkable generalization ability 
across numerous countries worldwide. It thus demonstrates that 
modern machine learning-based approaches represent a promis-
ing framework going forward to advance the field of outbreak 
analysis and epidemiological forecasting.
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