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Neuroinflammation is one of the most frequently studied topics of neurosciences as it is a
common feature in almost all neurological disorders. Although the primary function of
neuroinflammation is to protect the nervous system from an insult, the complex and
sequential response of activated glial cells can lead to neurological damage. Depending
on the type of insults and the time post-insult, the inflammatory response can be
neuroprotective, neurotoxic, or, depending on the glial cell types, both. There are
multiple pathways activated and many bioactive intermediates are released during
neuroinflammation. One of the most common one is the kynurenine pathway,
catabolizing tryptophan, which is involved in immune regulation, neuroprotection, and
neurotoxicity. Different models have been used to study the kynurenine pathway
metabolites to understand their involvements in the development and maintenance of
the inflammatory processes triggered by infections. Among them, the parasitic infection
Neospora caninum could be used as a relevant model to study the role of the kynurenine
pathway in the neuroinflammatory response and the subset of cells involved.

Keywords: kynurenic acid, glia, neuroinflammation, Neospora caninum, quinolinic acid
INTRODUCTION

As the world population is aging, the rates of diagnosable neurological disorders have increased
accordingly, indicating an overall adverse impact on health and quality of life (1). Aiming to
understand the etiopathogeneses of an array of neurological disorders, many studies seek to elucidate
the potential roles of neuroinflammation (2). Although inflammatory processes may not trigger such
disorders alone, the immune system nonetheless can greatly influence symptom severity and
progression. Scientists are actively looking for therapeutic targets that may efficiently control the
exacerbated immune responses associated with neuroinflammation in such conditions (3, 4).
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Neurons and glial cells in the central nervous system (CNS)
form complex and coordinated networks, of which a key
function is to maintain homeostasis (5). Among glia, both
astrocytes and microglia constantly assess the CNS
environment for potential insult (6). Astrocytes particularly
play key roles in maintaining the integrity of the blood–brain
barrier (BBB), regulating CNS metabolism, and releasing
antioxidants and trophic factors, as well as participating in the
process of synaptic communication (7). On the other hand,
microglia are considered the resident immune cells of the CNS,
contributing to the pro- and anti-inflammatory immune
response as they constantly scrutinize the brain parenchyma to
eliminate metabolic waste, abnormal cells and proteins,
infectious agents, and damaged tissue (8). In this way,
astrocytes and microglia become activated and undergo
morphological as well as functional transformations in
response to different microenvironmental signals. With the aim
to maintain homeostasis, the crosstalk among astrocytes and
microglia supports neuronal function and plasticity (9).

Infections, traumatic or ischemic injuries, and accumulation
of toxic metabolites often induce dysregulation of brain
homeostatic processes. At early stages and/or lower levels of
activation, astrocytes and microglia can be neuroprotective
(polarized as A2 and M2, respectively) as they initiate
coordinated responses to restore homeostasis and limit
neurotoxicity by rapidly triggering acute inflammation. This
might contribute to tissue repair and neurogenesis, as well as
clearance of cellular debris, infectious agents, and abnormal
proteins (10, 11). However, at chronic and/or high levels of
activation (polarized as A1 and M1), these glial cells can become
neurotoxic and contribute to neurodegenerative processes (12).
While much has been described, researchers are still trying to
fully understand the molecular and cellular triggers for this
functional switch (2).

One of the most studied pathways in recent years is the
kynurenine pathway (KP), which produces a variety of
neuroactive metabolites (13, 14). During neuroinflammation,
the KP catabolizes approximately 95% of tryptophan to
profoundly decrease serotonin and melatonin production and,
instead, generate a host of neurotoxic, neuroprotective, and
immune-modulating molecules that play key roles in various
brain diseases [reviewed by (15–18)].

Many studies underscore the necessity to better characterize
the complex yet coordinated glial response, as well as their
relevant communications with neurons in neuroinflammatory-
implicated dysfunction (3, 9, 19). In that regard, experimental
models able to mimic these interactions may grant opportunities
to shed new light on the involvement of tryptophan metabolism
in neuroinflammation. For example, exposing external factors
such as infectious agents to in vivo animal models, ex vivo brain
tissue slices, and in vitro freshly dissociated brain cells can
potentially be used to obtain much-needed answers (20).
However, effective models should permit recognition by and
activation of astrocytes and microglia as well as parasite
persistence mechanisms allowing the survival and proliferation
of the infectious agents. This immune-escape mechanism might
Frontiers in Immunology | www.frontiersin.org 2
bring information about alternative routes to understand cellular
function and linkage of different biochemical pathways, such as
KP, and activation and release of neuroprotective factors.

As such, the infection by the parasite Neospora caninum appears
to be a promising model to study relevant neuroinfectious processes
and may contribute to improve the understanding of crosstalk
mechanisms between neurons, astrocytes, and microglia. N.
caninum is an obligate intracellular protozoan, belonging to the
phylum Apicomplexa, which forms cysts in the CNS and has been
shown to lead to abortions in cattle as well as neurological
symptoms in dogs (21, 22). Thus, the aim of this review is to
highlight the current knowledge about the complex interactions
between neuroinflammation and the KP, and to discuss the
relevance of the N. caninum infection model.
NEUROINFLAMMATION AND THE
KYNURENINE PATHWAY

The KP has been widely studied in the CNS over the last three
decades, especially with regard to its interactions with the
immune system [reviewed by (23–26)]. That said, the KP is
highly dynamic. For instance, many CNS cell types display
different KP profiles that depend on the disease and region
affected (27–29). Microglial activation rapidly occurs during
neuroinflammation and is characterized by structural changes
from a putatively resting, surveiling, ramified cell toward an
activated, spheroidal one (M1 type) producing proinflammatory
mediators such as cytokines (30). These M1 microglia also
activate astrocytes, which become reactive themselves (A1
type). Together, these intercellular signals stimulate the release
of many proinflammatory mediators, such as cytokines (IL-1b,
IL-6, IL-12, IL-23, and TNF-a), chemokine (CCL5 and CCL2),
adenosine triphosphate (ATP), reactive oxygen species (ROS),
and growth factors (2, 9, 31).

Activation of the KP is associated with induction of the
regulatory enzyme, indoleamine 2,3, dioxygenase 1 (IDO-1),
and many proinflammatory mediators can stimulate IDO-1
activity. This includes synergistic actions between, for example,
TNF-a, IL-1b, and IL-6 (32–34). Other studies have shown that
the induction of IDO-1 may also occur in monocyte/
macrophage-like cells, even in the absence of IFN-g (34–36).

After IDO-1, another key step in the KP is the activity of
kynurenine mono oxygenase (KMO), an enzyme highly
expressed in microglia, which converts kynurenine (Kyn) into
3-hydroxyanthranilic acid (37). The former regulates apoptosis/
necrosis pathways in macrophages and has immunoregulatory
and T-cell survival properties. Activation of KMO further leads
to the formation of quinolinic acid (QA). The best-known action
of QA is as an agonist of NMDA receptors in the nervous system
(14) and a potent neuro- and gliotoxin (38).

Interestingly, astrocytes do not express KMO while microglia
express all enzymatic components of the KP (29, 39, 40). Thus,
microglial activation by inflammatory mediators has a
fundamental role in increasing the production of QA (41). In
homeostatic situations, the production of kynurenic acid (KA) by
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astrocytes antagonizes, to a certain extent, the excitotoxic effects
of the QA produced by the microglia, through its antagonism of
NMDA receptors (28). In inflammatory conditions, astrocytes
produce large amounts of Kyn that can be taken up and used by
microglia as additional substrates to produce QA (29, 42–44).
The neurotoxicity of QA is observed through at least five
different mechanisms including excitotoxicity by NMDA
receptor activation, ROS formation, and cytoskeletal
destabilization (45, 46). The imbalance in the production of
QA and KA, with accumulation of QA, increases the neurotoxic
effects by blocking the glutamate uptake by astrocytes (38).
Consequently, this process cyclically stimulates ROS
production, disturbs the BBB, and increases phosphorylation of
structural proteins such as Tau, neurofilament (NF), and glial
fibrillary protein (GFAP), which in turn leads to cellular
cytoskeletal destabilization (39, 47, 48).

Together with QA, other catabolites of the KP have
synergistic neurotoxic effects. O’Farrell et al. (49) observed a
reduced neurite outgrowth and complexity after treatment of
neuron cultures with conditioned media derived from BV-2
microglia stimulated with IFN-g. They also observed an
increased concentration of tryptophan, Kyn, and 3-
hydroxykynurenine (3-HK) in the conditioned media. When
the authors used KP inhibitors, the neuronawfi 2l atrophy was
fully prevented.
MODELS OF EXOGENOUSLY ACTIVATED
NEUROINFLAMMATION AND KP

Many studies have tried to clarify the role of astrocytes and
microglia in neuroinflammation and neuroprotection, and each
of the mechanisms involved in neuroinflammation are yet to be
fully characterized. As above, one common approach to studying
neuroinflammation in cell culture and rodent models is exposure
to the Gram-negative bacterial lipopolysaccharide (LPS). In vitro,
LPS induces IFN-g production and consequently results in the
activation of IDO-1 and thus triggers the KP (28, 29, 50, 51).
Systemic LPS administration does the same, inducing IDO-1
activity alongside production of brain TNF-a and IL-6 (52).

Despite the effectiveness of stimulating neuroinflammatory
processes though, systemic challenge with LPS has failed to fully
clarify the mechanisms of KP (53). The response elicited by LPS
administration can activate pathogen-associated molecular
pattern receptors (PAMPs) and consequently stimulate
signaling pathways leading to the production of inflammatory
cytokines. Nonetheless, the neuroinflammatory processes
triggered in the CNS by infection with bacteria, viruses, and
parasites appear to be far more dynamic than the more
uniformed responses observed following LPS alone.

On the other hand, there are several models of neuroinfection
using microorganisms such as HIV or Toxoplasma gondii. The
model of infection with N. caninum is interesting because it is
not infectious to humans, which makes it a safer agent to use in
medical research. Furthermore, this parasite is easy to cultivate
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(54, 55). Importantly, N. caninum has the capacity to activate
neuroinflammatory processes and grant a viable alternative path
to study brain cell interactions and KP activity.

This parasite belongs to the phylum Apicomplexa, which are
unicellular and spore-forming parasites. Parasites from this
group activate the immune response with an associated INF-g
production leading to IDO-1 activation and associated depletion
of tryptophan in the host cells. Infection by these groups of
parasites also induces an increase in TNF-a and IL-1b
production (56, 57). Infection by Apicomplexa parasites also
triggers an increased production of Kyn, 3-HK, and QA (17, 58).

N. caninum infection leads to nervous symptoms in cattle and
canids related to infection sites in the CNS [reviewed by (59)].
During its infection, the initial recognition by the immune
system involves the toll-like receptors, cytosolic sensors such as
nucleotide ligand oligomerization domain-like receptors, and
NLR family sensors containing pyrin (60–65). Some studies
have shown that the activation of these receptors can lead to
an increase of Kyn production via the NF-kB signaling pathway
(66, 67). DuringN. caninum infection, the lymphocyte T helper 1
(Th1) response is effective to limit the multiplication of the
parasite and consequently induces the formation of parasitic
cysts in the host. The involvement of lymphocytes T CD4+ and
CD8+ is crucial for the development of the anti-parasitic
response in mice and is strongly influenced by the systemic
increase of IFN-g (68, 69). Mice treated with recombinant IL-12,
which directly is mediated by IFN-g activity endogenously, had
decreased markers of encephalitis as well as brain parasite load 3
weeks later (70). The effectiveness of IFN-g in protecting against
N. caninum infection in vivo is further supported in a study of
mouse strains. Long et al. (71) demonstrated that BALB/c and
C57Bl/6 mice were both highly susceptible to the development of
N. caninum-induced encephalitis, whereas B10.D2 mice were
highly resistant. Importantly, splenocytes from B10.D2-infected
mice also displayed high antigen-stimulated INF-g to IL-4 ratios
while these ratios were much lower in the other two strains,
which indicates that peripheral immune responses favoring INF-
g production might contribute to N. caninum protection in select
rodent strains in vivo (71).

To demonstrate the steps of N caninum infection within the
CNS, Yamane et al. (72) confirmed that the parasite proliferation
in cultured primary bovine brain cells was controlled by IFN-g as
well as TNF-a. Similarly, we have found in mixed cultures of
astrocytes and microglia that N. caninum induces the production
of TNF-a, IL-10, IL-6, and nitric oxide (NO) (55, 73–75).
Interestingly, when glia-neuron co-cultures were infected by
tachyzoites for 72 h, we observed a N. caninum-induced
retraction of neurites but no hypothesized neuronal loss (76).
However, application of IFN-g to the medium restored neurite
outgrowth of infected cells (76), which is consistent with the
IFN-g-mediated neuroprotection described in the in vivo models
above. Taken together, we proposed that N. caninum infection
triggers a local inflammatory response by way of TNF-a and NO
production, but without IFN-g application, the presence of IL-10
and IL-6 may trigger a switch to a Th2 profile, which could help
preserve the environment.
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Neuro-glia co-cultures infected with N. caninum also induced
astroglioses, which were characterized by an increased GFAP
expression and also induced the mRNA expression for IL-10 (77).
At the same time, the infection induced the mRNA expression for
brain-derived neurotrophic factor (BDNF) and neuronal growth
factor (NGF), which facilitate actions such as synapses plasticity and
formation (78). Additionally, treatment of the glia-neuron co-culture
with the medium of mixed cultures of astrocytes and microglia
infected by this parasite also induced neurite outgrowth (77).

In bovine endothelial cells infected with N. caninum, IDO-1
activation was observed in the presence of IFN-g (79). In a glia-
neuron co-culture model, IDO-1 activation was associated with the
control of the parasitic proliferation, since inhibiting IDO-1 with 1-
MT increased tachyzoite proliferation (80). Also, in the absence of
IFN-g, IDO-1 was activated by the infection, inducing a 50% increase
in Kyn compared to uninfected co-cultures. Recently, Argolo et al.
(81) demonstrated that, despite observation of neurite outgrowth
and release of neurotrophic factors, the infection increased levels of
QA and of CCL5 and CCL2 mRNA expression.

These chemokines recruit cells from immune system and
activate microglia to control the parasite infection. Aside from its
neurotoxic role as an NMDA agonist, QA also contributes to the
production of NAD+, which together modulate the production
of inflammatory cytokines IL-1b, TNF-a, and IL-6 and facilitate
the change toward a pro-inflammatory profile and a resolutive
response by the release of IL-10 (29, 82, 83). However,
dysregulation of QA production has been seen during
infectious models and it is still unclear whether NAD
production is altered in these processes. It is possible that a
portion of KP metabolites, such as QA, are directed toward NAD
+ production in response to infection, but the mechanism(s)
mediating this process remain unclear (84).

It is possible that some effects ofN. caninum infection, such as
Th2 cytokine production and release of neurotrophic factors,
evidence an atypical immune response associated with parasite
persistence. However, these findings should not be confounded
with universal neuroprotection as infection progression triggers
astrocyte death and neurological impairment. Other studies
demonstrated that the parasite could change the immune
response to favor its persistence, such as increased population
of T CD8+ regulatory cells (68), inhibition of IL-12p40
production (85), and the inhibition of Th1 response by STAT3
phosphorylation in the invasion process (86, 87). Taken together,
these varied immune responses to N. caninum infection
underscore the viability of this model in aiding discovery and
further characterization of the dynamic and context-dependent
function of neuroinflammatory processes related to the KP and,
ultimately, brain function in normal and dysfunctional conditions.
CONCLUSION

The KP, the major route of tryptophan catabolism, produces
NAD+ and several intermediates, which have neuroactive
properties. In recent decades, studies of the KP have not only
brought new understanding about interactions of these
Frontiers in Immunology | www.frontiersin.org 4
intermediates and the function of CNS, but also highlighted
the influence of the unbalanced production of these bioactive
catabolites and their potential impact on various neurological
disorders. At the same time, many scientists have used in vitro
experimental models to study cellular mechanisms and pathways
involved in both physiological and pathological conditions. The
complex and multi-factorial crosstalk between glial cells and
neurons have been studied to better understand the processes of
brain homeostasis and neuroinflammation, which is a common
feature in most brain diseases and disorders.

This paper describes a potentially relevant and novel approach
utilizing neuroinfection via the parasite N. caninum to study KP
activation as well as astrocyte/glia crosstalk, particularly given the
atypical immune response following infection. Although N.
caninum triggers an acute inflammatory response marked also by
astrogliosis, proinflammatory activation of microglia, and QA
production, it also triggers concomitant neurite outgrowth and
neurotrophic factor release in culture. This is likely due to the
production of neurotrophins and immuno-modulating cytokine
IL-10. This highlights the importance of assessing the KP profile
and its relationship with other inflammatory molecules in
neurological disorders associated with infection by non-LPS
factors, such as viruses and parasites, with the aim to understand
the consequences of lesser characterized biochemical interactions.

The infectious process most commonly begins in the periphery,
resulting in the dysregulation of KP metabolism and alteration of
the immune system before propagating in a secondary stage to
affect the CNS. The multifactorial and complex interactions
between periphery and CNS, the KP, and the alteration of BBB
integrity should all be taken into consideration when using models
of neuroinfection. The systematic and comprehensive
characterization of this response presents another step toward a
better understanding of cellular and molecular communication
mechanisms between all the protagonists and the inflammatory
response triggered by the parasitic infection. With this concluded,
some questions remain unanswered: (1) how the mechanism of
neural protection occurs, even with the increase in QA, and
whether this relationship may bring new insights to understand
the CNS response to external insult; (2) how CNS homeostasis is
disrupted after a systemic challenge with N. caninum, where the
KP intermediates are produced, and by which brain cells; (3) what
other metabolic pathways would be associated with KP to justify a
neuroprotective response; (4) do the atypical immune responses
described in cell culture studies translate fully to in vivomodels or
provide additional novelty for understanding relevant immune
activity; and (5) can the N. caninum infection model revolutionize
our understanding of the cellular crosstalk in the CNS, highlight
new processes worthy of investigation, and ultimately facilitate the
development of more effective therapeutic interventions for
immune-related dysfunction of the brain.
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43. Herédi J, Cseh EK, Berkó AM, Veres G, Zádori D, Toldi J, et al. Investigating
KYNA Production and Kynurenergic Manipulation on Acute Mouse Brain
Slice Preparations. Brain Res Bull (2019) 146:185–91. doi: 10.1016/
j.brainresbull.2018.12.014

44. Notarangelo FM, Beggiato S, Schwarcz R. Assessment of Prenatal Kynurenine
Metabolism Using Tissue Slices: Focus on the Neosynthesis of Kynurenic Acid
in Mice. Dev Neurosci (2019) 41(1-2):102–11. doi: 10.1159/000499736

45. Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, et al.
Denervation-Induced Skeletal Muscle Atrophy Is Associated With
Increased Mitochondrial ROS Production. Am J Physiol Regul Integr Comp
Physiol (2007) 293:R1159–68. doi: 10.1152/ajpregu.00767.2006

46. Pierozan P, Zamoner A, Krombauer-Soska A, Silvestrin R, Loureiro S,
Heimfarth L, et al. Acute Intrastriatal Administration of Quinolinic Acid
Provokes Hyperphosphorylationof Cytoskeletal Intermediatefilament
Proteins in Astrocytes and Neurons of Rats. Exp Neurol (2010) 224:188–96.
doi: 10.1016/j.expneurol.2010.03.009

47. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, et al.
Activation of Microglial N-Methyl-D-Aspartate Receptors Triggers
Inflammation and Neuronal Cell Death in the Developing and Mature
Brain. Ann Neurol (2012) 72(4):536–49. doi: 10.1002/ana.23626

48. Guillemin GJ, Croitoru-Lamoury J, Dormont D, Armati PJ, Brew BJ.
Quinolinic Acid Upregulates Chemokine Production and Chemokine
Receptor Expression in Astrocytes. Glia (2003) 41(4):371–81. doi: 10.1002/
glia.10175

49. O’Farrell K, Fagan E, Connor TJ, Harkin A. Inhibition of the Kynurenine
Pathway Protects Against Reactive Microglial-Associated Reductions in the
Complexity of Primary Cortical Neurons. Eur J Pharmacol (2017) 810:163–73.
doi: 10.1016/j.ejphar.2017.07.008

50. Lestage J, Verrier D, Palin K, Dantzer R. The Enzyme Indoleamine 2, 3-
Dioxygenase Is Induced in the Mouse Brain in Response to Peripheral
Administration of Lipopolysaccharide and Superantigen. Brain Behav
Immun (2002) 16(5):596–601. doi: 10.1016/S0889-1591(02)00014-4

51. Cesura AM, Alberati-Giani D, Köhler C, Ricciardi-Castagnoli P. Regulation of
Enzymes of the Kynurenine Pathway by Interferon-Gamma in Murine
Macrophages and Microglia. Pharmacol Res (1995) 31):125. doi: 10.1016/
1043-6618(95)86760-0
Frontiers in Immunology | www.frontiersin.org 6
52. O'Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, et al.
Lipopolysaccharide-Induced Depressive-Like Behavior Is Mediated by
Indoleamine 2, 3-Dioxygenase Activation in Mice. Mol Psychiatry (2009) 14
(5):511–22. doi: 10.1038/sj.mp.4002148

53. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP.
Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand
Neurodegeneration. Int J Mol Sci (2019) 20(9):2293. doi: 10.3390/
ijms20092293
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