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Abstract: Most early-stage drug discovery projects focus on equilibrium binding affinity to the
target alongside selectivity and other pharmaceutical properties. Since many approved drugs have
nonequilibrium binding characteristics, there has been increasing interest in optimizing binding
kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug
target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug
candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from
FAK, we find an empirical power–law relationship between the simulated time needed for ligand
unbinding and the experimental rate constant for dissociation, with a strong correlation depending
on the SMD force used. To improve predictions, we further develop regression models connecting
experimental dissociation rate with various structural and energetic quantities derived from the
simulations. These models can be used to predict dissociation rates from FAK for related compounds.

Keywords: focal adhesion kinase; drug-binding kinetics; free energy methods; umbrella sampling;
steered molecular dynamics

1. Introduction

Most drugs function by binding to a specific target and altering its activity in a way
that ultimately prevents or treats a disease. Consequently, while a wide range of factors
affect the clinical efficacy and safety of a drug candidate (including selectivity, toxicity,
solubility and pharmacokinetic properties), the binding affinity of a drug candidate to its
target is of primary importance, and high binding affinity can make up for less desirable
characteristics elsewhere. Accordingly, many drug discovery efforts begin by searching
for compounds that have high affinity for binding to the target. Computational methods
have become an important part of this effort [1], and a wide range of methods have been
developed for determining binding affinities. The most rigorous and computationally
expensive methods involve alchemical free energy methods [2–6]. These methods take
advantage of the fact that free energy is a state function by effectively causing the ligand to
appear within the binding site of the protein or in solvent and determining the free energy
changes for these “alchemical” transformations. The free energy change for the dissociation
of the ligand from the target can then be calculated using a thermodynamic cycle. Other
less rigorous methods include MM/PBSA and MM/GBSA methods [7,8], which determine
the affinity using energies calculated from simulations with and without the ligand, and
molecular docking, which uses scoring functions that have been fitted to correlate with the
binding affinity [9–11].

There is increasing evidence that the in vivo effectiveness of some drug candidates
depends not only on their equilibrium binding affinity but also on their residence time
bound to their targets. The advantages of a longer residence time at the target can include
better selectivity, a larger therapeutic window and increased duration of action or less fre-
quent dosing [12–14], although there is not universal agreement that residence time offers
more information than equilibrium binding affinity [15]. Nevertheless, the pharmaceutical
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industry is making an effort to develop a better understanding of the factors affecting drug
residence time. Computational simulations of biomolecules can play an important role in
this effort[16,17]. It is more difficult to directly simulate the dissociation of a ligand from a
target than to apply free energy techniques to determine the binding affinity because the
timescales on which ligands dissociate are usually orders of magnitude longer than those
directly accessible to simulation. The binding equilibrium of ligand fragments to FKBP
has been directly observed using simulations on the microsecond timescale carried out
on the Anton supercomputer [18]. In addition, there are a number of enhanced sampling
methods that can determine the rates of long timescale processes from simulations on
shorter timescales. These include Markov state analysis of unbiased simulations [19–21],
the weighted ensemble method [22–26], multiple replica scaled MD [27], selectively scaled
MD simulations [28], τ-RAMD simulations [29], milestoning [30,31], combined weighed
ensemble and milestoning [32] and transition path sampling [33,34]. Other methods, while
not directly yielding estimates of dissociation rates, could be used to obtain pathways that
ligands might take in dissociating from the binding site of the target. These include steered
molecular dynamics [35,36], targeted molecular dynamics [37,38] and biased molecular
dynamics [39], which use additional forces or constraints in different ways to cause confor-
mational changes to take place much faster than they would in an unbiased simulation.
Once such a pathway has been identified, it can be used to define the reaction coordinate
in more rigorous but time-consuming simulations such as computing free energy profiles
or surfaces by umbrella sampling [40].

Combining these methods can achieve accurate predictions of residence times. For
example, the dissociation of ligands from the A2A adenosine receptor, a G-protein coupled
receptor, has been simulated by using SMD to pull the ligand from the binding site into
the extracellular vestibule, and the calculated change in the interaction energy between
ligand and water over the course of the simulation was found to have a strong correlation
with the experimental dissociation rate [41]. Enhanced sampling techniques can also be
used to explore protein conformational changes that are critical to ligand unbinding and
thereby improve the accuracy of predicted dissociation rates. For example, combining
SMD, infrequent metadynamics, and Markov analysis allowed detailed study of the un-
binding mechanism of a radioligand from the α7 nicotinic acetylcholine receptor as well
as estimation of the dissociation rate within an order of magnitude of the experimental
value [42]. Finally, using methods similar to those used here, the dissociation of eight
ligands from the protein kinase p38α was studied by first performing SMD to determine
unbinding paths, then resampling again using SMD but in a manner similar to umbrella
sampling to determine the potential of mean force for unbinding. The barrier heights from
this potential of mean force for each ligand were then used to predict the dissociation
rate, and a high correlation of 0.86 with the experimental dissociation rate was observed.
However, this method was relatively expensive computationally, requiring a total of 4.5 µs
for each ligand [43].

Recently, our group tested the concept of using steered molecular dynamics simula-
tions to predict the dissociation rates of three ligands from focal adhesion kinase (FAK)
simulations [44], comparing the results to dissociation rates for these ligands measured
using surface plasmon resonance [45]. FAK has attracted interest as a target for the devel-
opment of anticancer therapies because it plays an important role in mediating interactions
between cells and the extracellular matrix, activating pathways that promote cell growth
and survival in response to integrin binding to the extracellular matrix [46,47]. The activity
of FAK is thought to contribute to the ability of cancer cells to survive, grow, and metas-
tasize even in the absence of attachment to the extracellular matrix [48]. In our previous
SMD study, we found that SMD could rank the dissociation rates for the three ligands in
the same order as the experimental measurements. Furthermore, dissociation pathways for
the ligands appeared to have a two-step mechanism, with an intermediate state and the
exposure of a hydrophobic phenyl ring contributes to the activation barrier.
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In addition to SMD simulations, we have used Markov state analysis and the mileston-
ing method to estimate the dissociation rate of one of the ligands (Wong, not published)
and found the rate to exceed the experimental value by 6–7 orders of magnitude. We
then performed umbrella sampling simulations to determine the free energy surface for
dissociation and found a low barrier giving a similar overestimate of the dissociation rate
(results shown below). Therefore, we turn to SMD simulations again to explore its capabil-
ity as an inexpensive method to simply classify compounds into fast or slow dissociating
ligands. Initially, we simply hoped that the method could increase the enrichment factor
in screening compounds with the desired drug-binding kinetics, such as long residence
time, as molecular docking could for finding strong binders. This is already useful for
practical drug discovery. To our surprise, the study of 14 ligands here suggests that the
method can even rank-order the dissociation rate of these ligands, especially by introduc-
ing regression models that connect experimental measurements with various energetic or
structural parameters from the simulations. The regression models we develop may be
useful for predicting the dissociation rate of other ligands from FAK in a computationally
inexpensive way.

2. Results
2.1. Free Energy Surface for Exit of Ligands from the Binding Site

We first examined the free energy surface for the dissociation of ligands 32, 2, and 41
from the active site of FAK to get a sense for the mechanism of dissociation and the location
and nature of the activation barrier. Figure 1 shows the three-dimensional free energy
surface for the center of mass of ligand 32 relative to FAK as a series of contour surfaces.
Figure 1b shows the one-dimensional potential of mean force along the dissociation path,
which has been obtained from the three-dimensional free energy surface by integrating
out two of the degrees of freedom. Since only conformations in which the ligand was near
the exit pathway previously identified by SMD were sampled, only the free energy near
this pathway was well estimated. The profile of the potential of mean force shows a free
energy basin corresponding to the bound state and a shallow basin for an intermediate
state before ligand dissociation. This qualitatively agrees with the two-step dissociation
mechanism observed in previous SMD simulations carried out in explicit solvent [44]. The
free energy surface shows the dissociation pathway in the structure of the protein. Figure 1
displays the free energy contours just before the bound state and intermediate state can
be connected and after—10.5 kcal/mol and 11.0 kcal/mol, respectively. It illustrates the
location of the center of mass of the ligand at the transition state. It is located near the side
chains of Arg 426, Glu 506, and Ser 509.

If one estimates the activation barrier for the dissociation of ligand 32 by the average
of 10.5 kcal/mol and 11.0 kcal/mol and uses it to estimate the order of magnitude of the
dissociation rate by Eyring’s transition state equation [49,50].

kd =
κkBT

h
exp

[
−∆G‡

kBT

]
(1)

where ∆G‡ is the transition state free energy, T is the temperature, and κ the transmission
coefficient (the fraction of reactions that proceed to products after reaching the transition
state, which we assume to be 1). This corresponds to a dissociation rate of approximately
2× 105 s−1, some seven orders of magnitude larger than the experimental dissociation
rate for ligand 32. Similar results were obtained in previous attempts to calculate ligand
dissociation rates using unbiased MD simulations and Markov chain analysis (Wong,
unpublished). If one uses the activation barrier from the potential of mean force, which is
smaller at about 8 kcal/mol, the dissociation rate deviates further from the experimental
value.
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Figure 1. (a) Contour plots of the free energy surface of the center of mass of ligands 32, 2, and 41
relative to FAK as determined from umbrella sampling simulations. Each image shows two contour
surfaces. The blue contour was obtained just below the free energy threshold before two neighboring
structures along the reaction coordinate could be connected. The red contour was obtained right
after the two structures could be connected. The free energies of the two colored contours thus
give us an idea on the energy threshold when the transition state started to form. Three images are
shown for ligand 41 because its more stable intermediate state gives a somewhat different picture. A
transition state can be seen that forms between the blue contour at 5.0 kcal/mol and the red contour
at 5.5 kcal/mol. However, because the barrier for dissociation from the intermediate state to the
unbound state is large, this contour does not extend towards the unbound state. The contours at
6.0–6.5 kcal/mol and 8.0–8.5 kcal/mol show the sequence as the unbound state is reached at higher
free energies. For ligands 32 and 2, the insets show close-up views when the transition states begin to
form. (b) One-dimensional potential of mean force as a function of the distance of the center of mass
of the ligand from the binding site.
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The profile of the one-dimensional potential of mean force (PMF) for ligand 2 is
quite different from that of 32. The global minimum corresponds to a bound structure
in which the center of mass of ligand 2 is approximately 6 Å away from the position
shown in the crystal structure of ligand 32. The height of the dissociation barrier is
approximately 4–4.5 kcal/mol above this global minimum. (Because of the averaging
involved in going from a three-dimensional free energy surface to a one-dimensional PMF,
this barrier appears to be only approximately 2 kcal/mol in the one-dimensional PMF.)
This is qualitatively consistent with the increased dissociation rate for ligand 2 compared
to 32 but may exaggerate it quantitatively. The potential of mean force for ligand 41
appears similar to that of 32, with a stable bound state and an intermediate state. The
free energy difference between the bound and unbound states are similar for the two
compounds, which is consistent with them having comparable binding affinities to FAK.
However, the energy barriers differ. The barrier for transition from the bound state to the
intermediate state is smaller than that of ligand 32, about 5 kcal/mol. The transition from
the intermediate state to the unbound state is about the same, approximately 4 kcal/mol.
The free energy surface shows that the bound and intermediate states start to connect
with each other between the contours at 5.0 kcal/mol and that at 5.5 kcal/mol. Between
6.0 kcal/mol and 6.5 kcal/mol, the intermediate state starts to connect with a dissociated
state. Between 8.0 kcal/mol and 8.5 kcal/mol, the ligand dissociates further out of the
protein. The highest barrier height from the potential of mean force appears to be about
5 kcal/mol, which is lower than the barrier height for ligand 32, despite 41 dissociating
more slowly.

2.2. Prediction of Experimental Dissociation Rates from Simulated Exit Times

The SMD simulations reported here used a force to push the ligands out of the binding
site, and consequently, the ligands exited the binding site on a much shorter timescale
in the simulations compared to experiments. Nevertheless, the time needed to exit the
binding site in the simulations was a natural choice for prediction of the experimental
dissociation rate. Figure 2 shows the correlation between the exit time as measured in
the SMD simulations and the experimental dissociation rates. The data was fitted to the
empirical power–law relationship

log10 kd,i = β0 + β1 log〈texit〉i + εi, εi ∼ N(0, σ2) (2)

where kd,i is the experimental dissociation rate for compound i, and 〈texit〉i is the average of
the exit times over the three SMD simulations carried out for compound i. (The experimen-
tal dissociation rate for compound 2 was very high and outside the instrument range [45].
For the regressions, the dissociation rate was assumed to be 1 s−1, which was the minimum
dissociation rate consistent with the measurement).

A strong correlation between simulated exit time and experimental dissociation rate
was observed for all four forces used for SMD simulations; a force of 450 pN gave the
highest correlation. The values and standard errors for the exponent β1 and the correlation
coefficients are shown in Table 1. The root mean squared deviation of the residuals εi was
approximately 0.5–0.7 log10 units, which implies that the experimental dissociation rate can
be predicted within a factor of approximately 4–5. Despite the strong correlation, the exit
time could vary by an order of magnitude for individual SMD simulations with the same
ligand. Ligand 29 appeared to be an outlier; the correlations were much higher and the root
mean squared error lower when this ligand was removed. Nevertheless, these correlations
are encouraging, considering the approximations employed by the SMD simulations to
substantially reduce simulation time.
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Figure 2. Simulated exit times in steered molecular dynamics (SMD) simulations correlate strongly
with experimental dissociation rates. Plots of simulated exit time versus experimental dissociation rate,
together with power–law regression according to Equation 2, for simulations conducted with a force of
(a) 350 pN; (b) 400 pN; (c) 450 pN; (d) 500 pN. All regressions include ligand 29, which was found to
be an outlier (see Table 1).

Table 1. Outlier nature of ligand 29. Slope and standard error of regression line, Pearson correlation coefficient, and root
mean squared deviation of the residuals for fits of Equation (2) with and without ligand 29. Root mean square errors are
given in log10 units of the experimental dissociation rate.

With 29 Without 29

Force (pN) Slope Correlation Residual RMS Slope Correlation Residual RMS

350 −0.61 ± 0.30 −0.50 0.91 −0.89 ± 0.28 −0.70 0.76
400 −0.73 ± 0.21 −0.71 0.62 −0.92 ± 0.19 −0.82 0.52
450 −0.86 ± 0.21 −0.76 0.63 −1.06 ± 0.19 −0.86 0.51
500 −0.54 ± 0.23 −0.56 0.68 −0.78 ± 0.19 −0.77 0.53

2.3. Prediction of Experimental Dissociation Rates from Structural and Energetic Variables

Given the wide range over which simulated exit times were found to vary for each
compound, predictive models were also constructed using other independent variables
that could be calculated from the simulations. For these regressions, the simulations with
an applied force of 400 pN force were used. While the correlation of simulated exit time
with experimental dissociation rate was slightly less for an applied force of 400 pN than for
a force of 450 pN, we chose to analyze the 400 pN trajectories because they are longer and
provide more structural data than the 450 pN trajectories.

The independent variables for which predictive models were constructed included
the exposed solvent-accessible surface area of the ligand and the total surface area buried
between the protein and ligand, as well as the total interaction energy between ligand
and protein (determined using FACTS) and its components. The following model was
fitted using the following regression to relate the experimental dissociation rate kd,i to an
independent variable xi.

log10 kd,i = β0 + β1〈x〉i + εi, εi ∼ N(0, σ2) (3)
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Here, 〈x〉i is the mean value of either one of the interaction energy terms or one of the
surface area terms, calculated over all three simulations for each ligand i. Figure 3 shows
these regressions for the total interaction energy and its components. The total interaction
energy showed a strong correlation to the experimental dissociation rate, slightly greater
in absolute value than the simulated exit time for the same force (0.76 vs. 0.71). All of its
components except the electrostatic interaction energy also showed strong correlations
with the experimental dissociation rate; the strongest was for the nonpolar solvation
component, at −0.79. Since the nonpolar solvation component of the FACTS energy
function is proportional to the surface area [51], similar regressions were carried out using
various surface areas. Figure 4 shows regressions for the ligand surface area and total
buried surface area. These also featured strong correlations, although not as high as those
for exit time or interaction energy terms.
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Figure 3. Distribution of total interaction energy between the ligand and protein, and its components,
over all three simulations performed for each ligand for a 400 pN force. Regression fits of Equation (3)
relating the experimental dissociation rate to the mean values of each distribution are also shown; the
slope and standard error of each regression line, Pearson correlation, and p-value are shown in Table 2.
(a) for the total interaction energy; (b) for the van der Waals component; (c) for the electrostatic
component; (d) for the polar solvation component; (e) for the nonpolar solvation component.
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Figure 4. Distribution of ligand or buried solvent accessible surface areas over all three simulations
performed for each ligand for a 400 pN force. Regression fits of Equation (3) relating the experimental
dissociation rate to the mean values of each distribution are also shown; the slope and standard error
of each regression line, Pearson correlation, and p-value are shown in Table 2. (a) SASA of the ligand
in the context of the entire system; (b) total buried SASA.

Table 2. Correlation between experimental dissociation rate and components of the interaction energy and surface area
measurements. Slope, standard error, Pearson correlation coefficient, RMS of residuals and p-value (for a two-sided test of
the null hypothesis of zero slope) for fits of Equation (3) against the mean value of the indicated independent variables over
all three simulations conducted for each ligand. Energies are measured in kcal/mol and surface areas in Å

2
; the residual

RMS is in log10 units of the experimental dissociation rate.

Independent Variable Slope Correlation Residual RMS p-Value

total interaction energy 0.0247 ± 0.0061 0.76 0.56 0.002
van der Waals interaction energy 0.1688 ± 0.0521 0.68 0.63 0.007

electrostatic interaction energy 0.0128 ± 0.0603 0.06 0.86 0.835
polar solvation interaction energy 0.0249 ± 0.0069 0.72 0.60 0.003

nonpolar solvation interaction energy −0.9763 ± 0.2205 −0.79 0.53 0.001

ligand SASA −0.0144 ± 0.0046 −0.67 0.64 0.008
buried SASA −0.0082 ± 0.0027 −0.66 0.65 0.011

In order to study whether contact between the ligand and particular residues could
be used to predict dissociation rate, further regressions, also fitted using Equation (3),
were conducted in which the experimental dissociation rate was correlated against the
minimum distance between the ligand and each residue of the protein. These regressions
were done with data points from each of the 42 simulations. Figure 5a shows the backbone
of FAK colored by the magnitude of the correlation observed in each regression. Of the 273
residues in the protein, 114 showed positive correlations greater than 0.5. Four residues (Ile
497, Leu 486, Lys 454, and Ser 509) were chosen based on the magnitude of the correlation,
their distance from the ligand binding site, and their position in the sequence. Figure 5b–e
show the regressions for these individual residues. The highest correlation of 0.86 was
observed for Ile 497.
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Figure 5. Correlation between experimental dissociation rate and minimum distance between ligand
and individual residues. (a) The backbone of FAK, color-coded according to the correlation between
experimental dissociation rate and minimum distance for each residue. Inset shows the positions of
residues Ile 497, Leu 486, Lys 454, and Ser 509 and the bound conformation of ligand 32 for reference.
(b–e) Correlation plots of experimental dissociation rate vs. minimum distance for selected individual
residues. (b) Ile 497; (c) Leu 486; (d) Lys 454; (e) Ser 509.
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3. Exit Pathways for Ligands in SMD Simulations

Figure 6 illustrates the pathway taken by the center of mass of the ligand in each of
the SMD simulations with a force of 400 pN. For most ligands, the exit pathways obtained
from the three simulations are similar near the binding pocket, but may diverge when the
ligands reach the surface of the protein. Ligands 30, 35, 39, and 48 showed larger variations
even near the binding pocket, but the variations were not substantial.

2 28 29 30 31

32 33 34 35 37

39 41 4842

Figure 6. Exit pathways for each ligand in SMD simulations with a force of 400 pN. The pathway
taken by the center of mass of each ligand is shown, along with a cartoon representation of FAK for
reference. The three exit pathways are shown in three different colors (red, blue and green) for the
three independent SMD simulations.

4. Discussion
4.1. Low Barrier in Free Energy Simulations

A free energy simulation was carried out using umbrella sampling to identify the
location and magnitude of the barrier to exit for three of the ligands (32, 2 and 41). For 32,
this simulation gave an estimate of the barrier height that corresponds to a dissociation
rate seven orders of magnitude larger than the experimental rate. There are a number of
possible reasons for this discrepancy. The transmission coefficient κ in Eyring’s equation
might be much less than 1, although not likely to change the results by more than several
orders of magnitude.

The umbrella sampling simulations also exaggerated the differences in binding affinity
and dissociation rate of ligand 2 compared to 32, and produced a barrier height for 41
lower than that for 32, despite the former ligand dissocating more slowly. This further
demonstrates that, despite its computational cost, umbrella sampling simulation has its
own limitations in quantitatively predicting dissociation rates. Nevertheless, umbrella
sampling was able to broadly classify the ligands of very high (ligand 32 and ligand 41)
and very low (ligand 2) residence times.

The SMD simulations also produced varied trajectories for ligand exit for many of
the bound ligands. While an effort was made to use long trajectories as a basis for the
umbrella sampling simulations in order to base them on the most realistic exit trajectory
possible, this variation may have an influence on the calculated barrier heights. Previous
simulations have similarly identified multiple pathways for the exit of benzene from the
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binding site of the T4 lysozyme L99A mutant [52]. This problem is not limited to SMD
simulations but also to approaches that use reaction coordinates specified by structural
parameters.

As Markov state analysis and the milestoning method also gave comparable disso-
ciation rates as the umbrella simulations, perhaps the most probable explanation for the
deviations from experiment would be an error in the force fields. While the CHARMM36
force field for proteins is extensively tested, the CGenFF force field relies on algorithms
to choose from a large database of parameters and guess which ones are most chemically
appropriate. The CGenFF force field generator also provides a “penalty score” for each
parameter, indicating the level of confidence it has in that parameter. Several dihedral
parameters for rotatable bonds had high penalty scores, indicating that the CGenFF force
field generator had little confidence in the chemical analogy between the parameters in its
database and in the molecule. These included the bonds connecting the sulfonamide to
the pyridine ring, linking the pyridine ring to the fused pyrrolo-pyridine ring, and linking
the pyrrolo-pyridine ring to the benzene ring. Incorrect parameters for these bonds could
possibly affect the conformational behavior of 32.

4.2. Choice of Solvation Model for SMD Simulations

Since it was found that simulations were not able to accurately predict the absolute
dissociation rate for ligand 32, we sought to determine whether dissociation rates could be
predicted in a more qualitative fashion using more approximate, less expensive computa-
tional techniques. In particular, a strong correlation between simulated exit time in SMD
simulations and experimental dissociation rates was observed for 14 ligands, confirming
the result previously obtained for three of the ligands [44]. This result was obtained despite
the use of a relatively approximate simulation setup. Steered molecular dynamics simu-
lation started with only three initial conditions, and an implicit solvent model was used
instead of explicit solvent. The FACTS implicit solvent model is a generalized Born model
which provides an approximate description of solvation and hydrophobic effects. With
the settings used in this work, it can estimate the electrostatic solvation energy of protein
conformations to within approximately 3% compared to numerical solutions of the Poisson-
Boltmann equation [51]. Although the use of explicit solvent coupled with the particle mesh
Ewald method is generally considered to be a superior method of treating these effects, the
use of explicit solvent in this instance can also result in frictional and hydrodynamic effects
that would not be realistic given the accelerated timescale for ligand exit in the simulations.
The FACTS model is also more computationally efficient than previous generalized Born
models because it makes use of geometrical calculations rather than numerical integration
to calculate the Born radii, supporting our goal of developing a model for qualitative
prediction of ligand dissociation rates with minimal computational cost.

4.3. Outlier Nature of Ligand 29

One of the compounds, ligand 29, appeared to be an outlier in this regression, with a
significantly longer simulated exit time than would be expected based on the correlation
involving the other ligands. It is not clear why this is the case. The only ligand for which a
bound crystal structure was available was ligand 32, so in creating starting structures for
the simulations, it was assumed that all the ligands bound in a similar way. If this is not
the case for ligand 29, then this ligand could be encountering different free energy barriers
to exit from the binding site compared to the other ligands, possibly explaining the outlier
nature of the simulated exit times for this ligand.

4.4. Forces Influencing the Experimental Dissociation Rates

In order to determine which forces are responsible for the wide range of experimen-
tal dissociation rates among the studied ligands, we studied the correlation between the
experimental dissociation rate and average values of the total interaction energy and its
components. There is a positive correlation between the experimental dissociation rate
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and the mean value of the total interaction energy, indicating that stronger interactions
(with more negative interaction energies) result in slower dissociation. All of the com-
ponents of the interaction energy also showed statistically significant correlation, except
for the electrostatic component. The polar and nonpolar solvation components show the
strongest correlations, suggesting a significant role for solvation effects in determining the
dissociation rates.

Regressions involving structural features of the protein-ligand complex were also
carried out in order to further confirm the type of forces involved and to determine if
these quantities could be used to create better models for predicting the dissociation rate.
Figure 4 shows regressions for the ligand surface area and total buried surface area. For
both surface areas, there is a negative correlation with the dissociation rate, indicating that
ligands that are more deeply buried in the binding site dissociate more slowly.

We also studied the correlation of experimental dissociation rate with the minimum
distance between the ligand and specific residues of the protein, in order to identify the
residues whose interaction with the ligand contributed the most to the differences in
dissociation rates. The highest correlations were observed with the minimum distance
between the ligand and specific residues of the protein. However, it is to be expected that
residues that are nearby in the protein will also show similar correlations, so not all of these
correlations represent residue-ligand interactions with a direct effect on the dissociation
rate. In order to narrow down these interactions, additional criteria were applied. Only
residues that had a minimum distance to the ligand of less than 6 Å were considered further.
Of these residues, those with the highest correlations and not adjacent in sequence were
chosen for further investigation. This analysis pointed to four residues that had the highest
correlation: Ile 497, Leu 486, Lys 454, and Ser 509. Of these residues, two (Ile 497 and Leu
486) have hydrophobic side chains. Ile 453 actually has a slightly higher correlation than
Lys 454, but the side chain of Ile 453 faces away from the ligand, while the hydrocarbon
part of the Lys 454 side chain comes toward the ligand. Ser 509 was previously identified
in the umbrella sampling simulations as being near the transition state, possibly forming
some steric hindrance to ligand exit. Hydrogen bonding did not appear to play a significant
role in the interactions between these residues and the ligand. A hydrogen bond analysis
of the SMD trajectories did not reveal any significant hydrogen bonds between the protein
and ligands other than those between the pyrrolopyrimidine ring and Cys 502 that are
present in the crystal structure of ligand 32 bound to FAK [45].

5. Materials and Methods
5.1. Ligands, Initial Structures and Force Fields

Simulations were performed of FAK in complex with compounds 2, 28, 29, 30, 31,
32, 33, 34, 35, 37, 39, 41, 42, and 48 from the work of Heinrich et al., [45], based on the
crystal structure of FAK in complex with compound 32 (PDB code 4GU6) presented in
that same work. The structures of the compounds are shown in Figure 7 and Table 3. The
FAK protein was modeled using the CHARMM22 force field [53] while the ligands were
modeled using the CHARMM36 CGenFF force field [54]. (The CHARMM36 force field
for proteins could not be used because it is incompatible with the FACTS implicit solvent
model [51] that was used for this work.) An initial reference structure of FAK in complex
with ligand 32 was prepared based on the crystal structure of this system from the work of
Heinrich et al. [45] (PDB code 4GU6). Hydrogen atoms were added and tautomeric states
for histidine assigned using the CHARMM-GUI web server [55].

Each ligand was constructed in Schrodinger Maestro [56] from the initial reference
structure, ensuring consistent atom names, and saved in mol2 format. Force fields for each
of these ligands were constructed from the mol2 files using the CGenFF web server [54].
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Figure 7. Markush structures of FAK ligands simulated in this work. R groups are shown in Table 3.

Table 3. R groups for structures of FAK ligands simulated in this work, corresponding to Markush structures shown in
Figure 7. Experimental data as measured using surface plasmon resonance taken from Ref. [45]. * The dissociation rate of
compound 2 was outside the instrument range; the value shown is the minimum value possible.

Ligand R R′ Experimental KD (nM) Experimental Dissociation Rate (s−1)

2 – H – H 4760 1.0 *
28 – CH3 – H 1700 0.56
29 – H 4-fluorophenyl 6380 0.80
30 – CH3 4-fluorophenyl 554 0.071
31 – CN – H 147 0.40
32 – CN phenyl 44 0.022
33 – CN 4-fluorophenyl 603 0.019
34 – CN cyclohexyl 242 0.12
35 – CN 4-n-butylphenyl 430 0.028
37 – CF3 4-fluorophenyl 24 0.011
39 – CF3 pyridon-5-yl 12 0.026
41 – CF3 4-morpholin-4-yl-phenyl 35 0.0026
42 – CF3 6-morpholin-4-yl-pyridin-3-yl 9 0.0042
48 – CF3 4-fluorophenyl 33 0.029

5.2. Steered Molecular Dynamics Simulations

We conducted steered molecular dynamics (SMD) simulations of the exit of the various
ligands of FAK in order to develop models that could be used to predict the dissociation rate.
These simulations used an implicit solvent model in order to limit the computational cost.
CHARMM [57] was used for initial minimization and heating and the SMD simulations,
while NAMD [58,59] was used for the umbrella sampling simulations in explicit solvent
described below. The FACTS implicit solvent model [51] was used together with the
CMAP corrections originally developed for the GBSW implicit solvent model [60] and also
recommended for FACTS. A switching function from 10 to 12 Å was used for the van der
Waals interaction as recommended in the FACTS documentation. A hydrophobic surface
tension coefficient of 0.015 kcal/mol Å

2
and Debye-Huckel correction corresponding to an

ionic strength of 0.15 M were used.
Using this energy function, the initial structure of FAK in complex with each ligand

was minimized under harmonic restraints. Each system was then heated to 300 K over 1.5 ns
with harmonic restraints of 1.0 kcal/mol Å

2
on each non-hydrogen atom in the system,

and equilibrated while relaxing the restraints over a subsequent 1 ns of equilibration. For
each system, three steered molecular dynamics simulations [35,36] were then undertaken,
starting with the heated and equilibrated configuration and reassigning the velocities in
order to ensure independence of the simulations. A choice of four possible applied forces
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(350 pN, 400 pN, 450 pN, or 500 pN) were used, applied in such a way as to push the
N5 atom of the indole or benzimidazole ring away from the amide nitrogen of Cys 502.
This choice is based on previous SMD simulations and has been found to give the lowest
dissociation barrier and therefore contribute most significantly to dissociation rate [44].
A 2 fs step size was used together with SHAKE to constrain all bonds involving hydrogen.
The temperature was maintained at 300 K using Langevin dynamics [61] with a low friction
coefficient of 0.1 ps−1. Coordinates were recorded every 100 fs. The simulations were
continued until the distance between these two atoms exceeded 100 Å, at which point the
ligand was deemed to have exited the binding site, the simulation was terminated and the
time noted as exit time. This condition was chosen to be sure that the ligand had indeed
come out of the protein. From the potential of mean force shown in Results, the ligand can
be considered outside at about 20 Å. The difference between 20 Å and 100 Å might appear
large but the time to travel this distance is insignificant in comparison to the time spent
inside the protein and thus has negligible contribution to the total exit time.

5.3. Structural and Energetic Analysis of the SMD Simulations

In order to identify structural features that could be used to predict the experimental
dissociation rates of each compound, the SMD trajectories were analyzed using CHARMM,
VMD [62] and MDAnalysis [63,64]. MDAnalysis was used to compute the minimum
distance between the heavy atoms of each ligand and of each amino acid residue for each
frame in each SMD trajectory. From this, the minimum distance of the ligand from each
residue was determined over the whole trajectory for each simulation. VMD was used to
compute solvent-accessible surface areas of the ligand, the protein, and the entire system,
each in its own context, as well as the solvent-accessible surface area of the ligand in the
context of the whole system. The buried surface area was determined as the sum of protein
and ligand surface areas, each in its own context, less the total surface area of the system.
CHARMM was used to compute the interaction energy of the ligand and protein for each
frame, which was then decomposed into van der Waals, electrostatic, polar solvation and
nonpolar solvation components according to the FACTS implicit solvent model. Regression
analysis was then used to determine the correlation of each of these quantities with the
experimental dissociation rate, as discussed further in the Results section.

5.4. Umbrella Sampling Simulations and Free Energy Surfaces

In order to characterize the free energy surface for the exit of ligands 32, 2 and 41
from the FAK binding site, umbrella sampling simulations [40] of the three ligands in
complex with FAK were carried out. These simulations were based on exit pathways
from initial SMD simulations carried out using low forces in the expectation that these
pathways would be more likely to be representative of the actual exit pathway. In the case
of ligand 32, the umbrella sampling simulation was based on a separate SMD simulation
with a force of 250 pN that had been carried out prior to the group of SMD simulations
described above. In the case of ligands 2 and 41, the umbrella sampling simulations were
based on the longest SMD exit simulations with a force of 350 pN taken from the main
group of SMD simulations. In each case, windows for umbrella sampling were identified
by first RMSD aligning the SMD trajectory with the reference structure along the peptide
backbone, then choosing frames in which the center of mass of the ligand was 1 Å from
the center of mass in any previous window. Each such center of mass was then used as
the center of a harmonic umbrella potential for one of the windows. 30 windows were
identified in this way for ligand 32 and 22 for ligand 2. In the case of ligand 41, an initial
set of 40 windows was identified in this way, but the umbrella sampling simulation did not
adequately sample near one of the free energy barriers, so an additional 6 windows had to
be added centered on frames from the SMD simulation.

For each ligand, the chosen frames from the SMD simulations were each solvated in a
rhombic dodecahedral box of TIP3 water [65] and sodium chloride to an ionic strength of
150 mM, and simulated in explicit solvent with the CHARMM 36 force field [66,67] and
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the particle mesh Ewald method [68]. This simulation consisted of heating to 300 K and
equilibration under protocols similar to those used for the SMD simulations, followed by
20 ns of simulation for each window. Langevin dynamics also used to maintain constant
temperature, with a damping constant of 10 ps−1. All simulations were also conducted
at a constant pressure of 1 atm, with a barostat oscillation time of 100 fs and a decay time
of 50 fs. The production simulations used a harmonic umbrella potential centered on the
position of the center of mass in the initial frame taken from the SMD simulation and
having the following form:

U(x) = UFF(x) +
k
2
(rCM − rCM,0) (4)

where UFF(x) is the potential given by the force field, rCM is the center of mass of the ligand
after alignment of the protein backbone with the initial frame taken from the SMD simula-
tion, and rCM,0 was the corresponding position taken from that frame. (These positions

are shown in Figure 8.) The force constant k of the harmonic restraint was 1.0 kcal/mol Å
2
.

The use of backbone alignment ensured that overall rotation and translation of the protein
had no effect on the umbrella potential.

1 15 30

Umbrella window

Figure 8. Positions of umbrella potential centers obtained from SMD simulation of ligand 32 exit,
superposed on a close up view of the FAK binding site.

These simulations were carried out with NAMD [58,59] and the umbrella potential
was imposed using the colvars module within NAMD. The first 2 ns of each trajectory was
discarded. From the remaining 18 ns of each trajectory, a three-dimensional histogram of
the position of the center of mass of the ligand was constructed with a bin size of 0.25 Å
in each dimension. These histograms were then combined into a three-dimensional free
energy surface for each ligand using the weighted histogram analysis method [69,70].
This method simultaneously corrected for use of the biasing potential and constructed the
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minimum variance estimate of the free energy surface by combining the histograms from
each simulation using the following equations:

Zi
Z0

=
∫

p0(r) exp[−βUi(r)]dr (5)

p0(r) =
∑M

j=1 hj(r)

∑M
k=1 exp[−βUk(r)]

nkZ0
Zk

(6)

G(r) = −kBT ln p0(r) (7)

where G(r) and p0(r are the free energy surface and probability density in terms of the
center of mass r of the ligand, hj(r) is the histogram obtained from simulation j, Uj(r) =
k
2
(
rCM − rCM,j

)
is the biasing potential applied to simulation j, and nj is the number of data

points for simulation j. Zi
Z0

is the ratio of the partition function for simulation i to that of the
unbiased simulation. These equations were solved self-consistently by iterating until the
values of ln Zi

Z0
for all simulations i had converged to less than 0.001.

Using VMD, each resulting three-dimensional free energy surface was then visualized
as contour surfaces together with the protein. This made it possible to determine the
location of free energy basins and saddle points corresponding to transition states in
relation to the protein. To determine the locations, the isosurface of constant free energy
was visualized for increasing free energy levels until two energy basins could connect with
each other, as shown in Figure 1a. Each free energy surface was also used to produce a
one-dimensional potential of mean force in terms of the distance of the ligand center of
mass from its position in the reference structure. This was done by integrating p0(r), as
calculated from Equation (6) over all bins corresponding to a given center of mass distance
and converting to a free energy. Due to statistical error in the free energy surface, it is
not possible to estimate the transition state free energy with a precision much higher than
0.2–0.3 kcal/mol.

6. Conclusions

We have studied the dissociation of 14 ligands from focal adhesion kinase using a
combination of umbrella sampling free energy simulations and steered molecular dynamics
simulations. While a free energy simulation of three of the ligands showed barrier heights
too low to be consistent with the experimental dissociation rate, exit times obtained with
steered molecular dynamics simulations showed a strong correlation, making qualitative
comparisons possible. There were also strong correlations with most of the components of
the interaction energy, particularly the nonpolar component, and with distances to several
nonpolar residues. Regression models were also developed that may prove helpful in
predicting dissociation rates for other FAK ligands and designing molecules to have a
desired dissociation rate.
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