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The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory 
responses by mediation of chemotactic activity in leukocytes, although it is expressed 
on different cell types. It has been shown to act as co-receptor for the human and 
simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies 
(Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of 
immunoglobulins from healthy donors and from several cohorts of either HIV-exposed 
but uninfected subjects (ESN) or HIV-infected individuals who control disease progres-
sion (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of 
autoimmune disease is still unknown; however, the presence of these Abs specific for 
CCR5 or for other immune receptors and mediators probably is related to homeostasis 
maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus 
and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not 
bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization 
of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in 
either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones 
described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization 
allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and 
ERK1 proteins. The signalosome degradation and the subsequent de novo proteins syn-
thesis determine the CCR5 reappearance on the cell membrane with a very long-lasting 
kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and 
mode of action may represent a novel mode to fight viral infection in either vaccinal or 
therapeutic strategies.

Keywords: CC chemokine receptor 5, anti-CC chemokine receptor 5 antibodies, CC chemokine receptor 5 
signalosome, Hiv infection, Hiv protection, CC chemokine receptor 5-based vaccine, CC chemokine receptor 
5-based therapy

iNTRODUCTiON

The CC chemokine receptor 5 (CCR5) belongs to G protein-coupled receptors (GPCRs), which rep-
resent the largest known superfamily of signal transducers and play functional roles in the response 
to exposure to light and odor as well as in cellular response to different types of signaling molecules 
(1). They consist approximately 4% of coded human genome (2) and represent one of the most 
important and largest groups of targets for therapeutics (3). Among them, the chemokine receptors 
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are responsible for immune and inflammatory responses by 
mediation of chemotactic activity in leukocytes, even though they 
are expressed on a wide range of cell types, such as T and B cells, 
monocytes–macrophages, granulocytes, NK, DC, astrocytes, and 
neurons, and also on epithelium, endothelium, vascular smooth 
muscle, and fibroblasts (4–8).

CCR5 has also been implicated in hematopoiesis and it has 
been demonstrated that it act as co-receptor for the human and 
simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) either 
independently of, or together with, the receptor CD4 (9–12). In 
particular, binding of viral gp120 of HIV-1 to CD4 triggers a 
conformational change in gp120 itself, which permits its binding 
to CCR5 and finally the viral entry into the cells (13, 14).

CCR5 is undoubtedly the main HIV-1 and HIV-2 co-receptor, 
involved in virus entry and cell-to-cell spread (15); interestingly, 
these R5-tropic viruses (CCR5 dependent strains) are associated 
with the initial infection (16), while HIV strains using the CXCR4 
co-receptor are detected rarely in the early infection (11, 15, 17).

It is well known that chemokine receptor agonists, such as the 
β-chemokines RANTES (CCL5), MIP-1α (CCL3), and MIP-1β 
(CCL4), inhibit HIV infection of susceptible cells in vitro (18–21).

Interestingly, the number of CCR5 molecules expressed on 
cell surface is correlated with the levels of viral infection (13) and 
it has been described a variation of the level of CCR5 molecules 
among individuals (15), which is due to both environmental and 
genetic aspects. Indeed, it has been shown that high levels of CCR5, 
in some developing countries such as Africa, is environmentally 
driven and it has been hypothesized that it is due to parasitic 
infections (22). Whereas a CCR5-negative phenotype has been 
described in either some subjects, which are resistant to HIV 
infection (exposed to HIV but seronegative subjects, so called 
ESN) or in Caucasians and in other ethnic groups worldwide; 
the reduced or absent expression of CCR5 in these populations 
has been attributed to a genetic mutation, named Δ32, a deletion 
of 32 base-pair in CCR5 gene that produces a truncated form of 
the receptor, which is not expressed on the cell membrane (23). 
Several clinical studies underlined that homozygous mutation 
affecting the expression of CCR5 confers a total resistance against 
HIV infection (24–28); whereas heterozygotes for CCR5Δ32 are 
not associated with complete HIV protection (15) but progress 
slowly in the infection, most likely due to the reduction of 
CCR5 levels on the cell surface (29). CCR5Δ32 is spontaneous 
in 4–18% of Askenazi Jews and European people but it has not 
been found in Pacific and Asian indigenes (21, 24, 25, 28); this 
mutation occurs mostly like a heterozygous defect on CCR5 
gene (10–20%), with the highest frequencies in Nordic European 
countries, and only less than 1% is a homozygous mutation, as 
reported in several study population (24, 25, 30–33). In addition, 
it has been shown that the frequency of CCR5Δ32 genotype 
is higher also among ESN and HIV-infected individuals who 
control disease progression without treatment (so called LTNP) 
compared to HIV-1 treated seropositive subjects and people from 
the general population (34, 35). Of note, different levels of CCR5 
expression among different individuals do not affect immune 
functions (36), in fact its absence is not associated with medical 
dysfunction (37). Nevertheless the prevalence of homozygosity 
for CCR5Δ32 mutation, which results in the absence of CCR5 

expression, has been found increased in either West Nile infected 
subjects or in tick-borne encephalitis (38, 39) and reviewed in 
Venuti et al. (21).

More interestingly, anti-CCR5 natural Abs have been 
 discovered and they also showed HIV-blocking properties 
(40–43).

Overall, several numbers of strategies aimed to the prevention 
of CCR5 function in the HIV entry has been developed and tested.

MeCHANiSM OF GeNeRATiON OF  
ANTi-SeLF ANTiBODieS (Abs)

Natural Abs represent the first line of defense against pathogens; 
they are usually present in human serum as IgG3, IgM, and IgA 
and are generated in the absence of previous immune activation 
(44, 45).

The identification of B-1 cells (a subset of B cells), able to pro-
duce different self-reactive Abs, has demonstrated the capability 
of the immune system to interact with self-repertoire (45–47). It 
has been established that, in human, B cells are able to proliferate 
and to secrete Abs after exposure to lipopolysaccharide (LPS) 
from the Gram-negative bacteria membrane independent to the 
specific B-cell receptor (BCR) (48). Nevertheless, natural human 
Abs can also cross-react with microbial antigens, thus allowing 
host protection to pathogen independent of the previous micro-
bial invasion (44).

B-1 cells are detected in the pleural and peritoneal cavity and 
represent the first line of defense, but they are present in the spleen 
and bone marrow as well, in which they secrete a higher propor-
tion of circulating natural Abs (40, 45). The activation status of 
B-1 cells is BCR independent (49) and after their fast redistribu-
tion from the body cavities, B-1 cells are able to  differentiate and 
to secrete abundant amounts of IgM and/or IgA (50).

The partial differentiation of B-1 cells and their ability to 
respond rapidly are fundamental for the Abs production to 
elucidate host protection to pathogens infection via mucosal 
surfaces and blood. In fact, the production of natural IgM at a 
steady state by B-1 cells represents a relevant protection against 
pathogen  replication before the development of the antigen-
specific response (40, 44, 45, 51, 52).

Many functions have been proposed for natural Abs such 
as a first line role in host defense and also a regulative part in 
homeostasis maintenance (40, 45, 53, 54). In addition, B-1 cells 
produce IgM that stimulate B-2 cells to elicit IgG (45, 55, 56), but 
they can also lead to induce the IgA production in response to 
antigen stimulation especially in the serum or in the intestinal 
lamina propria (40, 57).

Since the Eighties, when the AIDS was first described, several 
signals of autoimmune dysfunction were reported in subjects 
infected with HIV, such as B cell altered pathway, with produc-
tion of high quantity of Abs and also of anti-cell Abs (58–60). 
These abnormalities, at the beginning, were related to HIV-vs-
host activity but other pieces of evidence suggested that some 
anti-cell Abs may be considered like a host-vs-HIV reactions. 
Actually, it was shown that some broadly neutralizing human 
Abs produced during the HIV infection were autoreactive (61). 
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The finding led to suppose that immunotolerance mechanisms 
represent a disadvantage for these types of Abs (62, 63). Notably, 
the studies regarding the follow-up of HIV patients treated with 
three broadly neutralizing Abs, established that only one of them 
exhibited a low level of in vivo autoreactivity, while autoimmune-
related adverse events were not detected in the study (64).

Many healthy donors displayed the presence of natural reac-
tive Abs specific for CCR5 in several pools of immunoglobulins 
(41). Interestingly, different types of HIV-blocking Abs have 
been isolated from several cohorts of either ESN or HIV-infected 
individuals (40). The reason of development of anti-CCR5 Abs 
in the absence of autoimmune disease is still unknown; however, 
the presence of these Abs specific for CCR5 or for other immune 
receptors and mediators probably is related to homeostasis 
maintenance (40). Virus-induced alterations of self antigens can 
provide an increase of either auto-immunogenic proteins and the 
corresponding auto-Abs. Host factors itself, or other concomitant 
or latent viral infections, could activate these perturbations in the 
host cells, leading to conformational changes in host receptors 
and to remodeling from a self protein to a non-self antigenic 
epitope, as reviewed by Lopalco (40).

CCR5 AND iTS ReLATeD Abs

CCR5 shows a classic structure composed of seven transmem-
brane domains with N-terminus and three extracellular loops 
(ECL1, 2, and 3), which have immunogenic properties. The two 
longer domains (N-terminus and ECL2) are recruited for HIV 
binding (65–67). Its preferential ligands are MIP-1α, MIP-1β, 
and RANTES and the binding of these molecules could interfere 
sterically with the viral envelope protein (Env) gp120 of HIV 
binding resulting in an inhibition of viral infection (15). An 
alternative model of protection is that ligand-induced chemokine 
receptor internalization eliminates the co-receptor from the cell 
surface (68); obviously, these two mechanisms are not mutually 
exclusive.

Anti-CCR5 natural Abs were found also in individuals with 
Δ32 mutation, sexual partners of subjects who were wild type 
for CCR5 gene, thus suggesting that CCR5 can be considered as 
an alloantigen (40, 42, 69, 70). Moreover, hemophilic patients 
subjected to continuous blood transfusions, ESN and LTNP show 
Abs to CCR5 directed specifically to the first external loop (ECL1) 
(21, 29, 41–43, 69, 71–75); these natural Abs have been identified 
in serum and also in other biological fluids, such as semen, cer-
vicovaginal secretion and saliva in subject with different genetic 
background (75).

The majority of anti-CCR5 Abs is directed to HIV binding 
site (N-terminus and ECL2) of the receptor. Conversely, Abs to 
ECL1–CCR5, which induce a long-lasting internalization of the 
receptor (29), are capable to block HIV infection in either CD4+ 
T lymphocytes or epithelial cells, this latter one through transcy-
tosis, which mimics mucosal transmission (76) and this mecha-
nism differs from that induced by all the other ligands directed to 
CCR5 (40). First of all, the natural Abs recognize ECL1 whereas 
CCR5 agonists specifically bind to the ECL2 of CCR5. Second 
and more important, the long-lasting internalization of CCR5 
with natural anti-CCR5 Abs seems to be a unique mechanism 

not demonstrated for other CCR5 modulating molecules so far. 
Indeed, by using monoclonal antibodies (mAbs) that recognize 
the N-terminus and the second loop of CCR5, it has been shown 
a differentially modulation of receptor activity; thus suggesting 
that each CCR5 extramembrane region can display different 
properties (65, 77, 78).

A clinical study, related to the presence and the activity of Abs 
to ECL1 in the sera of some LTNP, clearly demonstrated that the 
loss of these Abs observed during the follow-up of these subjects 
was significantly associated with the clinical progression of the 
disease (29). Moreover, in another studies, a total of 206 Asian 
and Caucasian ESN subjects have been tested for the presence of 
anti-CCR5 Abs directed to ECL1 and 9% resulted positive (43, 
75, 79), similar percentage (9.8%) have been found in different 
cohorts of HIV seropositive subjects (total subjects 336) (29, 
80), although only in LTNP anti-CCR5 Abs have been associated 
with resistance and showed anti HIV property in vitro (29, 81). 
Strikingly, anti-CCR5–ECL1 Abs resulted HIV protective only 
when they were directed to a conformational epitope within 
ECL1 loop (43, 75). A total of 325 healthy controls have even 
analyzed as well but none resulted positive for anti-CCR5 Abs, 
thus suggesting that these Abs could be elicited by low levels of 
viral antigenic stimulation; that could explain why these Abs 
have been found in ESN and LTNP people but not in subjects 
who were not exposed to HIV or progressed and developed 
AIDS. Another hypothesis could be that anti-CCR5 Abs are 
elicited during other antigenic stimulations (different from 
HIV), which induce alterations of self-repertoire, thus eliciting 
anti-self responses. Finally, the priming due to endogenous ret-
roviral proteins, which share homology with HIV env protein, 
could elicit in some HIV-exposed subjects a specific immune 
response.

Of note, these ECL1 specific Abs do not induce alteration in 
immune functions, as demonstrated by healthy subjects with 
anti-CCR5 Abs (45) or by elicited anti-CCR5 Abs in animal 
models such as mice and macaques (82–84) as further specified 
in the section of CCR5 immunization as vaccination strategy.

The ECL2 domain represents the binding site for both HIV 
and chemokines, so the Abs that recognize this site can prevent 
chemokine binding and/or signaling (66), although N-terminus is 
specific for viral binding only. For example, 2D7 is one of the most 
potent mAb directed to ECL2 that blocks HIV-1 entry into CD4 
T cells, but not the transcytosis carried out with epithelial cells 
(66, 76, 85). An anti-CCR5 mAb named PRO140 is a humanized 
mAb that targets a conformational epitope between N-terminus 
and ECL2 and it deeply blocks viral entry (86). Another fully 
human IgG4 mAb with a strong activity against various HIV-1 
isolates is CCR5mAb004 (87).

A recent study has demonstrated for the first time that the 
region designated as the membrane-proximal region (MPR), 
between the N-terminus and the ECL1, is important for HIV-1 
infections (16). In fact, the Abs directed to this epitope block the 
infection of R5-tropic HIV-1 without affecting X4-tropic strain; 
furthermore, the substitution of MPR with the equivalent region 
of CCR2b, CXCR4, or CCR3 significantly abrogates viral infec-
tion (16). Both these findings provide an argument against the 
possible use of a target therapy with CCR5-specific Abs.
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eNDOCYTOSiS AND DE NOVO 
SYNTHeSiS OF CCR5 wiTH NATURAL 
ANTi-CCR5 Abs

Ligands binding to CCR5 leads to conformational changes, 
which include desensitization and internalization (88). Two 
major mechanisms of rapid receptor regulation have been 
distinguished, specifically homologous (agonist-specific) and 
heterologous (agonist-nonspecific) desensitization, and both 
mechanisms are really important in fine tuning leukocyte 
responses (89, 90). Homologous desensitization requires phos-
phorylation of the receptor binding mediated by members of 
the GPCR kinases (GRK) family (91). This in turn leads to the 
association of β-arrestin1/2 with the receptor and to desensiti-
zation via uncoupling of the receptor and G protein (77, 92); 
in particular, β-arrestins bound physically with the receptors 
and initiate endocytosis through clathrin-coated vescicles and 
also act as scaffold proteins in crosstalk with other signaling 
pathways (93). Conversely, heterologous desensitization is tra-
ditionally defined as a state of cellular refractoriness to different 
agonists after receptor phosphorylation sites different from GRK 
mediated by second messenger-activated protein kinases, such 
as PKC (90).

CCR5 internalization can also induce a different second path-
way, which recruits caveolae and it is independent of clathrin-
coated pits. Caveolae are microdomains able to be internalized 
under precise conditions or in a controlled manner (13, 94).

It is well known that, after endocytosis, the GPCR proteins 
are also classified in receptors that are recycled, slowly or  rapidly, 
to the cell membrane after their resensitization and those that 
should be degraded (77, 95–97). CCR5 is usually recycled after 
desensitization (4): after stimulation with natural ligands, CCR5 
is internalized into the trans-Golgi network (TGN) via the endo-
some recycling compartment (ERC) (98) and, when the resensi-
tization process is complete, it can return to the cell surface (4, 
98). However, rare examples of post-endocytic sorting for GPCRs 
mediated by ligands have been reported (77, 99–101).

Bönsch and colleagues have recently shown that different 
ligands of the same GPGR are able to induce different phospho-
rylation pathways, which may be a relevant factor for the inter-
action with β-arrestins (77, 102). In addition, ligands trigger a 
characteristic short-term kinetics of CCR5 internalization, which 
transiently involves β-arrestins with consequent rapid recycling 
or degradation on the cell membrane; conversely, natural anti 
ECL1-CCR5 Abs induce a specific long-lasting kinetics of CCR5 
internalization (29) with the recruitment of an ERK1-mediated 
pathway (70, 77). Of note, a hitherto unrecognized mechanism 
of CCR5 modulation mediated by G-protein-dependent ERK1 
was comprehensively reported; in particular, natural anti-CCR5 
Abs led to activation of ERK1 which is localized predominantly 
in the cytosol and it interacts directly with the CCR5 protein, 
thus inducing the degradation of CCR5 with a consequent de 
novo synthesis (70); the re-expression of CCR5 on the cell surface 
needs several days (70). This finding is actually important for 
the design of suitable microbicide or therapeutic tool that could 
inhibit HIV infection for several days after application by using a 

specific molecule able to induce long-lasting internalization and 
degradation of CCR5.

Furthermore, it is largely reported that GPCRs, considering the 
stability of interaction with β-arrestins after agonist stimulation, 
can be functionally divided into two general classes: (i) “Class A” 
receptors, such as β2 adrenergic receptor (β2AR), develop tran-
sient complexes with β-arrestins transiently ubiquinated and with 
weak activation of ERK1/2; by contrast, (ii) “Class B” receptors, 
such as vasopressin V2 receptor (V2R), develop tight receptor–β-
arrestins complexes, regulated by its constant ubiquitination and 
a durable activation of ERK1/2 which is located mainly into the 
endosomes. Endosomes complexes containing activated GPCRs, 
activated and ubiquitinated β-arrestins and phosphorylated ERK 
are called “signalosome” (77, 102, 103). In fact, it is well under-
stood that the ubiquitination status of β-arrestin has a relevant 
role for its interaction with proteins responsible for endocytosis 
(e.g., clathrin) and for signaling (e.g., ERK1/2), and influences 
temporal and spatial dissociation of the complex (104–108). 
Overall, CCR5 is classified as a “Class A” receptor, but stimulation 
with anti-CCR5 Abs lead to the translation into a very long-lasting 
Class B type (77, 102, 106).

Very recently, it has been published the different ability of two 
RANTES analogous (5P14 and PSC) to induce the development 
of stable complexes between CCR5 and β-Arrestin1. Briefly, 
PSC-RANTES is able to induce a long-duration of recruitment of 
β-Arrestin1 to CCR5 compared to 5P14-RANTES, which elicits a 
temporary recruitment. Notably, the experiments have been car-
ried out and the results assessed at short time only (50 min) (1). 
Therefore, it is possible to determine the fate of the  internalized 
receptor by the aid of specific CCR5-ligands, suggesting that the 
stability of ligand-induced receptor–arrestin complexes has a 
crucial role in the sorting mechanism (1, 77).

In a very relevant way, these published data underline that the 
binding of natural Abs induces modifications in CCR5  signaling, 
which leads ligand-induced post-endocytic sorting in a very 
long-lasting Class B trafficking (77). Furthermore, in T  cell, 
anti-CCR5 Abs that recognize ECL1 are able to induce a CCR5-
negative phenotype, ERK1-mediated, by the strong support of 
β-arrestin2 (as shown in Figure 1); otherwise, it is possible that 
this mechanism could be specific for T cells only (77, 109).

iNDUCTiON OF ANTi-CCR5 Abs AS 
vACCiNATiON STRATeGY

Published data, obtained in mice and macaques, demonstrate 
the capability of either anti-CCR5 Abs to display HIV-blocking 
properties or vaccines against CCR5 to prevent the problem of 
virus variability and viral escape (82, 110–113). Accordingly, the 
development of Abs as functional inhibitors of CCR5 is the big 
goal that could be reached, since Abs can provide protection by 
causing very low toxicity (113). Several groups have investigated 
the possibility to use in vivo Abs specific to CCR5 (82, 83, 111, 
112, 114–116). Interestingly, when a long-term intranasal 
immunization was performed, it has elicited specific IgA and 
IgG in both mucosal secretions and sera of the immunized 
mice. Such systemic and mucosal Abs induce a CCR5-negative 
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synthesis of the proteins complex (CCR5, β-arrestin2, and ERK1). As a consequence, CCR5 reappears on the cell surface with long-lasting kinetics (8 days).
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phenotype on both peripheral and mucosal cells, thus blocking 
HIV  replication in vitro (111). In accordance with this result, the 
use of ECL1–CCR5 peptide, chimeric-generated in the context of 
the capsid protein of Flock House Virus, elicits Abs able to induce 
CCR5 internalization and re-expression with a very slow kinetics 
which needs 4 weeks after immunization to be recovered (82). 
Furthermore, in a subsequent study, it has been published that 
the substitution of amino acids within ECL1 in position 95 and 
96 elicited Abs, which induced stronger long-lasting internaliza-
tion of CCR5, whereas amino acid substitutions in position 92, 
98 and 99 abrogated biological activity of such Abs (112), thus 
highlighting the importance of the epitope in driving different 
trafficking pathway. Moreover, in a recent study performed in 
mice, several aspects of anti-CCR5 immunization, including the 
use of all the extramembrane domains of CCR5 have been tested, 
to better understand the ideal schedule to reach long-lasting and 
strong immune responses. Interestingly, ECL1 and ECL2 showed 
stronger responses compared to the N-terminus; they achieved 
nearly complete CCR5 downregulation, and they blocked HIV 
infection (82). In addition, in this study was not observed any 
immune dysfunction in T  cell responses or histopathological 
alterations in organs and tissues in relation to the presence or 

the induction of Abs specific for CCR5. The possibility of long-
term toxicity and any functional impact of anti-CCR5 Abs needs 
additional studies; however, the findings showed in this latter 
study are supported by other published studies, where no adverse 
events were reported in CCR5-immunized macaques after 
3 years of follow-up (84). In addition, it has recently published 
that the prophylactic immunization of macaques with virus-like 
particle specific for two CCR5 regions is safe and immunogenic 
and is capable to reduce highly virus replication in a subset of 
the animals (83). On the other hand, Bogers and colleagues used 
an immunization approach to target both virus and CCR5 (three 
extracellular peptides of CCR5, an N-terminal HIV gp120 frag-
ment generated in transgenic plants and recombinant SIV p27) 
(117); this strategy of vaccination showed a significant block of 
the virus infection by eliciting good serum and vaginal quantity 
of Abs (117). More recently, Peabody et  al. demonstrated that 
the immunization with recombinant vectors, which enable the 
CCR5–ECL2 region to recreate its native conformation, over-
comes the issue of tolerance and induces the appropriate immune 
response (118).

Although several strategies aimed at inducing a CCR5-negative 
phenotype to prevent HIV-1 entry, the earlier immunization 
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studies in macaques observed little or no protection against SIV 
challenge (116, 118), probably due to poor selection of CCR5 
antigen or to the correct peptide sequence in the wrong confor-
mation. Indeed, it has previously demonstrated that immuniza-
tion with ECL1 domain, in a linear conformation, does not elicit 
serological Abs responses that bind to the native molecule (111) 
and, moreover, in macaques, the immunization with ECL2 in its 
native conformation induces immune responses with expected 
properties (84). Nevertheless, Chain and colleagues have recently 
defined a new linear epitope of CCR5 within the N-terminus 
domain recognized by two independently produced mAbs; in 
particular, they found that RoAb13 Ab is capable to bind to both 
linear peptide and native form of the epitope and the sulfation of 
tyrosines at CCR5 N-terminus enhanced its binding to the pep-
tide (119). RoAb13 has been previously reported to block HIV 
infection (120) but also blocks migration of monocytes after the 
chemokine binding to CCR5 or in the presence of inflammatory 
macrophage conditioned medium (119).

A significant challenge in the design of anti-CCR5 Abs is that 
they must be purely “blocking Abs” that either bind to the epitope 
in such a way to occlude the viral receptor or Abs binding results 
in receptor internalization. The most effective anti-pathogen Abs 
are able to engage host defense mechanisms, such as Complement 
or ADCC (Antibody-Dependent Cell-mediated Cytotoxicity), 
thus resulting protective against HIV infection (121) although 
these functions could result in inhibition of the effectiveness of 
immune responses. Moreover, as reported by Pastori et al., it is 
possible to elicit the production of murine serum anti-ECL1–
CCR5 Abs at levels 300-fold greater than those found in humans 
and that the quantity of murine CCR5-specific immunoglobulins 
reached 50% of total Igs (82). It is noteworthy that such HIV-1 
blocking Abs are present in serum and mucosal fluids from 
subjects with different genetic backgrounds (75), thus suggesting 
that it is possible to elicit these Abs in subjects coming from both 
developing as well as developed countries. In addition, an indi-
vidual who received a stem cell transplant from a CCR5-negative 
donor, for acute myeloid leukemia treatment, is believed to be the 
only patient to have been cured of HIV (119, 122).

ANTi-CCR5 Abs iN THe iMMUNe-
PROPHYLAXiS AGAiNST Hiv iNFeCTiON

The Abs can prevent viral infection by several mechanisms of 
action: (1) can directly block virus attachment to the cell by  leading 
the Abs to bind either virus or receptor and/or co-receptor on 
host cells; (2) can block fusion at cell surface at the post-binding/
pre-fusion state as well (87). For reducing the development of 
viral escape variant, it has been highly considered to target the 
conserved cellular receptors, such as CCR5, for treatment of 
HIV infection. In particular, as HIV needs the presence of one 
co-receptor in dependence of the strain (CCR5 and/or CXCR4) 
in association with the receptor CD4, mAbs against cellular 
proteins have been developed and are being tested in clinical 
trials. A humanized mAb directed to CD4, named ibalizumab, 
exert an antiviral property not inhibiting the binding of gp120 
but by a post-binding conformational effects, which prevents 
the interaction between CD4-gp120 and CXCR4 or CCR5 (123, 

124). Three clinical trials have been reported, which underlined 
its efficacy (87). For sure, one emerging therapy is based on the 
use of CCR5-specific Abs; in particular, CCR5mAb004 appears 
safe and effective in the reduction of viral load when tested in 
clinical trials (87). Interestingly, another study involving the 
mAb PRO140 showed virologic suppression without blocking 
the response of the receptor to chemokines; however, the highest 
tolerated dose of this mAb has not been determined, proposing 
a substantial margin of safety for PRO140 in dependence of the 
site of administration (87, 125). In all these clinical trials, the 
use of anti-CCR5 Abs did not induce any alterations in other 
lymphocyte functions, thus confirming their safety.

Of note, the use of Abs instead of chemokines or classical 
antiretroviral therapy could reduce the complication related to 
drugs resistance and also the unwanted interactions with redun-
dant CCR receptors. For example, ST6 is a Fab fragment obtained 
from a mAb specific for a unique sequence of N-terminus CCR5 
and it was engineered in a single-chain antibody (scFv) fused 
with an ER retention peptide; the usage of such scFv by intracel-
lular immunization was able to downregulate the receptor from 
cell membrane both in macaques and in human cells, whereas the 
expression of CXCR4 was not affected. Moreover, the modified 
cells were not infected with R5-HIV (126). In a subsequent study, 
it has been demonstrated that transformed primary T cells, with 
a CCR5 intrabody (an Ab that binds its receptor at intracellular 
level), were resistant to HIV infection (21). Finally, scFvs directed 
to CCR5 were utilized, as well, to lead viral pseudotyped lentiviral 
vectors to cells that express CCR5 (127).

Very recently emerged the evidence that combinations of 
HIV-blocking Abs will likely be more effective that single one as 
reviewed by Margolis (128). Alternatively, the bio-engineering, 
which generates Abs either with different specificities (129) or 
anchored to target cells (130), has given a proof of concept to 
generate more potent HIV-blocking Abs.

OTHeR STRATeGieS AiMeD AT 
BLOCKiNG Hiv iNFeCTiON THROUGH 
CCR5

Anti-CCR5 strategies include also the utilization of small 
molecule drugs, such as Maraviroc, which binds in the trans-
membrane regions of CCR5 and it is a functional antagonist 
that prevents CCR5 signaling from cell surface and even if it is 
currently in clinical trials (131), it has been approved for use in 
many jurisdictions.1 Nevertheless, there is low enthusiasm to 
utilize it as front-line therapy in HIV-infected patients (23), thus 
it is currently in use in HIV treatment-multiexperienced patients 
only (132). Moreover, HIV-1 escape mutants to Maraviroc have 
been described and reviewed by Harada and Yoshimura (133).

Since the discovery that natural ligands of CCR5 (RANTES, 
MIP-1α, and MIP-1β) show anti-HIV activity (1, 19, 86, 134, 135), 
a large numbers of modified analogs have been tested due to their 
short half-lives (<10 min) (134, 136) but no one has been tested in 
human clinical trial due to low antiviral activity in vivo. The most 

1 https://aidsinfo.nih.gov/guidelines/search/1/CELSENTRI/0.
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FiGURe 2 | Main anti-CCR5 strategies working at target cell surface. CCR5 protein sequence (https://en.wikipedia.org/wiki/CCR5#/media/File:CCR5_Primary_
Protein_Sequence.png) (A). HIV entry process (B). Natural antibodies (Abs) to CCR5 bind to the ECL1 domain, induce long-lasting internalization of the receptor, 
and block HIV infection (C). Abs to either N-terminus or ECL2 domains of CCR5 compete with HIV-binding site and interfere with HIV infection (D). CCR5 allosteric 
modulators, such as MARAVIROC, do not allow HIV entry (e). Ligands (such as RANTES or its modified analogous) bind to the ECL2 or mimetic peptides bind to 
the either N-terminus or ECL2 and interfere with HIV entry process (F).
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promising described so far was PSC-RANTES that shows several 
non-natural, non-coded structures in the N-terminal region 
(137, 138). It displays an important inhibition of HIV entry, 
CCR5 dependent, in vitro (137) and also a full protection against 
R5-tropic SHIV infection in a macaque vaginal challenge model 
(139); although this high potency in vitro, it requires high concen-
tration to give protection in macaques (138, 139). Considering 
that it is capable to induce an intracellular sequestration of CCR5 
longer than RANTES, it could be helpful for topical HIV preven-
tion (140). Using a strategy based on phage display, Gaertner and 
collaborators obtained three different modified PSC-RANTES, 

which exhibit only natural amino acids: 6P4-RANTES, which 
prolongs the intracellular sequestration of CCR5; 5P12-RANTES 
has no detectable G protein signaling and does not bring about 
receptor sequestration; and 5P14-RANTES, which induces the 
internalization of CCR5 with no detectable G protein-linked 
signaling activity (138). Another relevant RANTES derivative 
is named AOP-RANTES and it was obtained by first generating 
an aldehyde-like group at the NH2-terminus of RANTES and 
then reacting with aminooxypentane; it is able to block R5-tropic 
strain infection on macrophages in  vitro (141). AOP-RANTES 
induces >90% downregulation of cell membrane expression of 

https://en.wikipedia.org/wiki/CCR5#/media/File:CCR5_Primary_Protein_Sequence.png
https://en.wikipedia.org/wiki/CCR5#/media/File:CCR5_Primary_Protein_Sequence.png
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CCR5 on monocytes/macrophages, lymphocytes and inhibits 
CCR5 recycling on cell surface whereas RANTES does not (142).

As HIV entry process requires expression of both CCR5 and 
CD4 on cell membrane, receptor- and co-receptor-mimetic pep-
tides (143, 144) have been proposed as an alternative strategy to 
block HIV entry but, as for chemokines, no one has been already 
tested in human clinical trial.

A summary of the immunologic approaches that use CCR5 as 
target to block HIV transmission/infection is showed in Figure 2.

Hematopoietic stem cell transplant using a CCR5Δ32 donor led 
to the only known cure of HIV-1 infection (122, 145) and T cells 
treated with engineered nucleases that introduce mutations at the 
CCR5 locus are resistant to HIV (146–150), accelerating ongoing 
efforts to develop gene editing- and cell-based therapeutic agents 
for HIV (15, 151, 152).

Another promising method of gene editing is the use of 
CRISPR/Cas9 system (Clustered Regularly interspaced palindro-
mic repeats sequences) to target human cells for the disruption 
of CCR5 gene, otherwise the off-targeting is still a major limit 
to be overcome (153–155). Furthermore, DNA binding proteins, 
for example, the transcription activator-like effectors (TALEs), 
which are vegetal proteins, have been used in vitro and showed 
effects similar to those obtained with engineered nuclease (156).

Zinc finger nucleases (ZFNs) are other common and versatile 
DNA binding proteins utilized in several cell types. In addition, 
CCR5–ZFN-modified autologous CD4+ T  lymphocytes have 
been used in a phase I clinical trial and this approach resulted 
safe (149).

To shutdown CCR5 expression, several RNA-based tech-
nologies have been used also with good results, such as RNA 
silencing (siRNA), antisense RNAs targeting different cellular 
and viral genes or ribozymes with catalytic activity (157–159); 
in particular, pseudotyped lentivirus and adenoviruses vectors 
have been used with good results for transducing siRNA-coding 
sequence into the cells. In the same way to that described for gene 
 editing, off-targeting activity and over-expression of antisense 
RNA could cause a toxic effect (160) and could activate innate 
immune response as well (161).

CONCLUSiON

The incidence of natural allo- or auto-responses in healthy peo-
ple, without symptoms or signals of autoimmune disease, and 
also the capability of eliciting and maintaining strong and long-
lasting HIV-blocking Abs in animal models, suggests that some 
autoimmune mechanisms could be positively utilized to give a 
better protection or a higher response to HIV in HIV-exposed 
individuals and in HIV-positive subjects. Allo- and auto-immune 
responses could allow a new key to analyze HIV tricks in immune 
escape and offer unexploited strategies to fight HIV with its own 
arms. CCR5 is the most important co-receptor in the early stages 
of infection, and half or more of all infected individuals move to 
AIDS harboring only CCR5 (R5)-tropic viruses. Epidemiology 
studies clearly established that CCR5 plays a crucial role in the 
transmission and pathogenesis of HIV in vivo.

As in CCR5-defective individuals were not found inflamma-
tory and immune alterations or disfunctions, CCR5 has been 

defined as a redundant molecule in humans (12, 141, 162, 163), 
and as the variability of HIV env, CCR5 has become a relevant 
target to generate drugs and immune modulatory molecules to 
block HIV transmission and subsequent infection.

Overall, these findings together with the data reported for 
in vivo (clinical trials) and in vitro (laboratory findings) studies 
support the view that CCR5 could represent an excellent target to 
fight HIV and a good alternative to classical antiviral approaches, 
although it should be taken into account the concomitant geo-
graphical location of CCR5Δ32 and other pathologies, such as 
West Nile infection or tick-borne encephalitis.

The development of a sterilizing vaccine capable to prevent 
HIV infection totally is the highest and the most expected effort, 
still far from being reached. Over the past 30  years, there has 
been a huge global effort to develop an effective prophylactic 
vaccine against HIV/AIDS. This is a significant challenge since 
no previously licensed vaccine in current use has been designed 
without the presence of a significant “convalescent population,” 
i.e., patients who have been patently infected and demonstrated 
subsequent clearance of the pathogen. Such a patient population 
usually supplies critical information for characterizing adaptive 
immunological responses associated with “protection.” One 
of the main reasons of failure in developing an effective AIDS 
vaccine could be the mainstream concept that the most relevant 
information derive from studying the immune responses in 
patients who have not cleared the virus. Thus, the design of a 
CCR5-based vaccine, which takes advantage of data generated 
in a small but significant clinical cohorts of individuals such as 
ESN or LTNP could represent an excellent target to generate new 
vaccination strategy, as these subjects represent a sort of vac-
cinated/cured subjects and this protective status can be induced 
and reproduced in all subject. It is relevant underline that natural 
anti-CCR5 Abs reproduce a protective status similar to that one 
observed for Δ32 mutation, although an approach based on 
CCR5 vaccine in individuals who can contract HIV infection 
may be a more possible and safe goal compared to gene therapy, 
taking into account the HIV epidemiology and the trouble of 
implementing CCR5 gene therapy in people living in developing 
countries.

Nowadays, there are many antiviral drugs used in therapy but 
the most related problem is the development of drug-resistant 
strain of virus that invalidates the positive effects obtained with 
the therapy utilized. Conversely, the possibility of using mono-
clonal Abs as therapy, with particular characteristics and mode of 
action, may represent a novel mode to fight viral infection disease. 
Overall, Abs show low toxicity together with high specificity and 
versatility.

It is well known that the first effective treatment of infectious 
disease was the “serum therapy” (administration of hyperim-
mune sera from immunized animals or human donors) and only 
after the discovery of antibiotic therapy in association with the 
development in vaccine design, this treatment was abandoned for 
mostly of infections (87, 164, 165).

The possibility of usage of Abs in clinical practice was 
opened from the opportunity of generate and manipulate Abs 
with different specific epitope recognition, such as the mAbs 
(87). In fact, in the last years, mAbs have begun a new class 

http://www.frontiersin.org/Immunology/
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of clinical drug utilized in inflammatory diseases, immunology, 
and oncology; only their development for infection treatment 
is going slowly.

Strategies aimed to prevent infection, such as usage of con-
doms, represent another effective line of defense to fight the 
HIV epidemic. However, social and ethnic “barriers” impede 
effective protection of many people. Therapeutic Abs to CCR5 
could offer an alternative for primary prevention of HIV and 
their availability would greatly empower women/men to protect 
themselves and their partners. Indeed, Abs formulated as a topi-
cal product could control the disease without affecting social and 
procreation aspects. In addition, proceeding directly at the HIV 
transmission level, the passive immunotherapy approach will 
help to prevent and reduce both further infection and disease 
incidence, respectively.

Other strategies involve ART (Anti Retroviral Therapy), which 
is a strong treatment program utilized to suppress HIV viral rep-
lication and the progression of HIV disease. The typical regimen 
combines three or more different drugs, such as nucleosidic or 
non-nucleosidic inhibitors of reverse transcriptase, protease, and 
integrase inhibitors. ART is the only current available treatment 
for HIV patients and it is being used in many developing coun-
tries with the help of WHO.2 Nevertheless, it has limitations in 
terms of high cost, intolerance, bad compliance, and insurgence 
of resistance (166, 167).

For this reason, a new strategy has emerged to identify 
blocking Abs against the HIV receptors or co-receptors, either 
as active-immunizations such as a vaccine or passive-immuni-
zations such as the use of CCR5-based immuno-prophylaxis.

2 WHO | Ten years in public health 2007-2017. WHO Available at: http://www.who.
int/publications/10-year-review/dg-letter/en/.

Interestingly, natural human Abs that recognize the ECL1 of 
the receptor induce a long-lasting internalization of CCR5 by 
triggering the recruitment of β-arrestin2; this event induces the 
accumulation of the two proteins (CCR5 and β-arrestin2) into the 
cytoplasm and leads to the activation of ERK1, which is retained 
into the cytosol as well. This stable CCR5 signalosome persists 
into the cells at least 48 h; after that, it may be targeted for degra-
dation with consequent de novo synthesis of the proteins complex 
and, consequently, CCR5 reappears on the cell membrane with 
long-lasting kinetics (8 days) (70, 77). This particular mechanism 
could be used for designing molecules that work synergistically 
for stable maintenance of the signalosome into the cells and for 
driving the complex to degradation; thus permits to reach a long-
lasting CCR5 disappearance from cell membrane which could 
inhibit HIV infection for a long time.

These findings may support the discovery of innovative thera-
peutic tools where CCR5 is an important player for microbial 
control and/or elimination (168) and as well as for the regulation 
T  cell function in autoimmune diseases, such as rheumatoid 
arthritis, type 1 diabetes, multiple sclerosis (169), and in tumori-
genesis (170, 171).
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