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Abstract

The utility of genetically isolated populations (population isolates) in the mapping and identification
of genes is not only limited to the study of rare diseases; isolated populations also provide a useful
resource for studies aimed at improved understanding of the biology underlying common diseases
and their component traits. Well characterized human populations provide excellent study samples
for many different genetic investigations, ranging from genome-wide association studies to the
characterization of interactions between genes and the environment.

Over the past few years, understanding how genetic
variation in individuals and in populations contributes to the
biological pathways involved in determining human traits
and mechanisms of disease has become a reachable goal for
genetic research. Following on from the achievements in
molecular studies of monogenic disorders, recent studies
have used strategies of hypothesis-free fine mapping of
genes and loci to identify underlying factors in common
complex diseases with major impacts on public health.
These diseases, which include cancers, coronary heart
disease, schizophrenia, autism and multiple sclerosis, arise
from complex interactions between environmental factors
and variation in several different genes. Until recently,
detection of the genes underlying these diseases met with
only limited success, but the past two years have witnessed
the identification of more than 100 well established loci.
These successes mainly involved the collection of very large
study cohorts for any individual trait and international
collaborations on an unprecedented scale [1].

The detection of genes underlying common complex
diseases might not always need large global population
samples. Samples of individuals from genetically isolated
populations, or ‘population isolates’, have already proved
immensely useful in the identification of rare recessive
disease genes. Such genes are only detectable in isolated

populations with a limited number of founders, where rare
disease alleles are enriched, thus resulting in homozygote
individuals affected by the disease. Impressive accomplish-
ments in disease-locus mapping and gene identification
using genome-wide scans of only a handful of affected
individuals in such populations have been reported, typically
based on linkage analyses and homozygosity scanning [2,3].
It is becoming increasingly apparent that studies locating
genes underlying complex phenotypes also benefit from the
study of samples from homogeneous populations with a
limited number of founders - ‘founder populations’ (Table 1).

Success stories from population isolates

One of the most impressive examples of the resourceful use
of known genealogy, large extended families and vast
amounts of medical data in genetic studies is provided by the
company deCODE genetics in Iceland, where more than 50%
of the adult population have volunteered their medical and
genetic information to be used in genetic research [4,5].
Although the Icelandic population does not represent a
population isolate as conventionally defined, genetic drift
over generations has reduced the amount of variation within
it relative to the rest of Europe [6]. This, among other
benefits of a geographically isolated population, has enabled
the identification by means of linkage, and more recently by
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Recent genetic studies of complex diseases and traits in special populations

Complex disease/trait Gene/locus Population/isolate Reference
Affective disorders Several loci Northern Sweden [34]
Asthma IRAK-M (interleukin-| receptor-associated Sardinia [74]
kinase M)
Asthma CHI3LI (chitinase 3-like I) Hutterites [25]
Asthma NPSRI (neuropeptide S receptor |) Finland [24]
Atrial fibrillation 4q25 Iceland [r
Bipolar disorder 5q31-34 Antioquia (Colombia), Central [29]
Valley of Costa Rica
Bone mineral density Several loci Iceland [75]
Breast cancer 5pl2, 2q35, 16ql2 Iceland [76,77]
Myocardial infarction 9p2l Iceland [8,78]
Coronary heart disease 8p22 French Canadians [79]
Crohn’s disease Several loci French Canadians [80]
Fasting glucose levels G6PC2 (glucose-6-phosphatase, catalytic, 2)/ Finland, Sardinia [81]
ABCBI | (ATP-binding cassette, sub-family B
(MDR/TAP), member | 1) region
Exfoliation glaucoma LOXLI (lysyl oxidase-like I) Iceland [82]
Height Several loci Iceland [13]
Height GDF5 (growth differentiation factor 5)/ Finland, Sardinia, Amish [83]
UQCC (ubiquinol-cytochrome c reductase
complex chaperone) locus
Nicotine dependence and smoking-related 15q24 Iceland [84]
diseases
Obesity FTO (fat mass and obesity associated), Sardinia [28]
PFKP (phosphofructokinase, platelet)
Parkinson’s disease GBA (B-glucocerebrosidase) Ashkenazi Jews [37]
Pigmentation Several genes Iceland [14,15]
Prostate cancer Xpl1.22,2pl5, 17q Iceland [12,85]
Psychotic and bipolar spectrum disorders TSNAX (translin-associated factor X)/ Finland [86]
DISCI (disrupted in schizophrenia |) locus
Psychosis TGIF (TGFB-induced factor) Central Valley of Costa Rica [87]
Schizophrenia DRD2 (dopamine D2 receptor) Basques [30]
Type 2 diabetes CDKALI (CDKS regulatory subunit associated ~ Iceland [10]

protein |-like I)

genome-wide association (GWA) studies, of an impressive
number of variants contributing to the development of
common/complex disease [5]. Among these are gene loci for
myocardial infarction and stroke (ALOX5AP and chromo-
somal region 9p21) [7,8], type 2 diabetes (TCF7L2 and
CDKAL1) [9,10], atrial fibrillation (4q25) [11] and prostate
cancer (2p15 and Xp11.22) [12]. In addition to disease genes,
the Icelandic population has revealed genes contributing to a
number of complex traits, such as adult stature (several loci,

including ZBTB38) [13] as well as skin and hair pigmentation
(SLC24A4, KITLG, TYR, OCA2, MC1R and 6p25.3) [14,15].
The continuing work by deCODE genetics on 50 common
diseases is sure to result in a slew of additional gene findings
and help to characterize the allelic spectrum of disease-
predisposing variants. The wisely designed strategy of fully
harvesting the unique population and the combined power
of linkage and association has been the basis of the success
of genetic research in Iceland.
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Another population isolate with proven value in gene mapping
is the population of Finland, where genes for 35 monogenic
diseases that are more frequent than in other populations
have been identified [16]. Features of the Finnish population
have also been an advantage in studies of schizophrenia
spectrum disorders: a balanced translocation
(1;11)(q42.1;q14.3) segregating with schizophrenia was first
described in a large Scottish family [17] and evidence for
association of the gene DISC: with the disorder was
subsequently obtained in Finnish families with diagnosed
schizophrenia [18,19]. Large pedigrees from the Finnish
population were also used successfully in a study of familial
combined hyperlipidemia that identified the gene for
upstream stimulatory factor 1 (USF1) as a risk factor for this
complex disease [20]. This association was subsequently
replicated in other populations, and evidence of the func-
tional significance of the gene variants and their association
with cardiovascular disease and dyslipidemia at the popula-
tion level has also been obtained [21-23]. Another excellent
example from Finland is a gene conferring susceptibility to
asthma (INPSR1), discovered in Kainuu and North Karelia
subpopulations of Eastern Finland representing regions of
the late-settlement [24].

The communal lifestyle and genetic isolation of the Hutterites,
who live in the northern United States and western Canada,
have especially aided studies of asthma and related traits
[25]. Recently, the chitinase 3-like 1 gene was identified as
an asthma-susceptibility gene in Hutterites, and the finding
subsequently replicated in two population cohorts of Euro-
pean descent [25]. Studies of type 2 diabetes and obesity
have used Pima Indians [26], as well as other genetic isolates,
such as Finland and Sardinia [27,28]. Genes contributing to
neuropsychiatric disorders are sought, and previous gene
discoveries are confirmed, in studies of special populations,
such as people from the Antioquia in Colombia and the
Central Valley of Costa Rica [29], Basques from Spain [30],
the Micronesian population of the islands of Kosrae [31] and
Palau [32], Bulgarian Gypsies [33], and sub-isolates from
Sweden [34] and Israel [35]. Other special populations
utilized in recent genetic studies of complex diseases include
French Canadians [36], Ashkenazi Jews [37], Mennonites
[38], Newfoundlanders [39], sub-isolates from the Nether-
lands [40] and the Amish [41].

The important observation from all these studies is that the
genetic variants identified within isolates and/or exceptional
families seemingly segregating a common disease in a near-
Mendelian fashion are not restricted therein, but are being
replicated in large-scale population samples and uncovering
new pathways behind these disease processes.

Reduced haplotype complexity
The increasing information in public databases on single
nucleotide polymorphisms (SNPs) and their
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haplotype-tagging properties [42-44] as well as advances in
genome-wide data collection using advanced technology
platforms [45] have facilitated the recent deluge of studies
utilizing the genome-wide SNP-association strategy to
identify loci influencing disease phenotypes. This GWA
approach is essentially ‘hypothesis free’. It circumvents the
necessity of understanding disease pathogenesis, which has
previously guided studies of candidate genes selected for
their biological relevance. In a GWA study, a dense set of
SNPs totaling up to 1 million across the genome is genotyped
using a standard platform and tested for association with a
disease or quantitative trait. Successful gene identification
by GWA studies, which operates very much under the
common-disease, common-variant hypothesis, requires that
the susceptibility variant itself, or a variant highly correlated
with it, is among the markers typed.

As a result of the International HapMap Project [44], the
linkage disequilibrium (LD) patterns of most genomic
regions are known and SNP genotyping platforms have been
designed to detect a restricted number of haplotype-tagging
variants with the hypothesis that they should capture most
of the common variation within genomic regions [46,47].
Ultimately, the LD structure of each study population
determines the number of genotyped SNPs needed for
complete coverage in a GWA study.

Several studies have been undertaken to characterize differ-
ences in the magnitude and distribution of LD in global
populations [48-51]. Even though the density of SNPs
required for 100% coverage of the genome in whole-genome
genotyping efforts in various global populations remains
unknown, on the basis of the size of LD blocks in ‘young
isolates’, populations that are relatively recently (less than
2,000 years ago) inhabited or isolated, it has been concluded
that GWA studies in populations such as that of Finland, the
Dutch isolate referred to above, Costa Rica, Antioquia,
Sardinia or the Ashkenazim require some 30% fewer markers
than in more outbred populations, and that the current
GWA panels provide excellent genome-wide coverage with a
very small number of gaps (Figure 1) [48]. In an isolated
population there are a potentially fewer number of
haplotypes being segregated through the population and the
haplotype-tagging SNPs should also be able to detect those
haplotypes that carry more rare alleles. In a more outbred
population with considerably higher numbers of haplotypes
for a given locus, the causative allele is more likely to be
located on several haplotypic backgrounds, thereby diluting
its signal to an extent that precludes its identification by
genetic means. The value of population isolates and their
genomic LD patterns may thus be even greater when lower-
frequency (less than 5%) variants are considered [52].

The problem of GWA studies carried out in genetic isolates is
that the strong LD that initially helped identify the disease
locus may in the end hamper efforts to distinguish the
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Considerable differences in LD map length across populations. The length
of the LD map in LD units (as defined in [88]) in |2 different population
samples is depicted in order of decreasing map length. AZO, Azores;
CAU, outbred European-derived sample; SAF, Afrikaner; NFL,
Newfoundland; SAR, province of Nuoro in Sardinia; ASH, Ashkenazi; ERF,
a village in southwestern Netherlands; FIP, Finland nationwide; ANT,
Antioquia; CR, Central Valley of Costa Rica; FIC, early-settlement Finland;
FIK, Finnish sub-isolate of Kuusamo. Adapted from [48].

biologically relevant variants from insignificant polymor-
phisms in complete LD with them. Comparing the GWA data
across isolates from different populations should help pin
down the potential causative variants for functional studies.

Restricted allelic and locus heterogeneity

Extensive allelic and locus heterogeneity, a key feature of
common complex diseases, can obscure the association
signal within disease-associated genomic regions. This
problem is reduced in population isolates. When combined
with geographic isolation that prevents the influx of new
alleles, genetic drift acts to randomly raise some alleles to
fixation and send others to extinction, thus reducing
heterogeneity. A representative example of such drift, and of
the founder effect, is the enrichment of various recessive
diseases in founder populations, such as Ashkenazi Jews
[53] and Finns [54], and an exceptionally low prevalence of
other diseases in Finns, such as cystic fibrosis or phenyl-
ketonuria, which are common in other European popula-
tions. In founder populations, these recessive diseases are
often characterized by a presence of one founder mutation,
whereas numerous mutations in the same genes are identi-
fied in the global population [16]. Although allelic hetero-
geneity is expected to exist behind common diseases even in
isolated populations, it is a reasonable expectation that the
number of predisposing alleles will be more restricted than
in more heterogeneous populations.
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Furthermore, isolated populations may facilitate studies of the
possible joint actions of associated gene loci as well as studies
of the population effect of these associated markers, even
before the actual causative variant has been identified. This
may be possible as in isolated populations with a high degree
of LD, the tagging of specific allele is more reliable than in
heterogeneous populations in which broader allelic diversity
of associated alleles can obscure these examinations.

In contrast to the ‘gene-breaking’ mutations underlying most
monogenic diseases, variants that affect susceptibility to
complex diseases are suggested to be ones that leave gene
structure untouched and instead affect the dynamics of gene
expression. Such variation can be situated in enhancer
elements in the vicinity of the phenotype-causing genes or in
the promoters of these genes where various transcription
factors bind (cis-acting variants). SNPs elsewhere in the
genome (trans-acting variants) may affect the phenotype via
the function of the protein or RNA that the trans-acting gene
encodes. These cis- and trans-acting variants account for
much of the variation in gene expression between individuals.
A good example of the identification of a trait-associated
variant in a strong cis-regulatory element, using LD and
samples from a population isolate, was the finding of the DNA
variant behind lactose tolerance/intolerance: the variant was
initially found among Finns and later confirmed to represent
the common Caucasian mutation. This led to the identification
of a regulatory DNA region with enrichment of mutations
underlying the trait in numerous global populations [55].

Identification of rare variants

Susceptibility to common complex diseases probably involves
the contribution of both common variants and rare mutations
[56] and the relative significance of each in particular traits
and disease phenotypes will have to be determined by large-
scale resequencing studies of associated loci in large study
samples. Whereas several common variants are likely to
explain a substantial fraction of the heritable variation in
complex traits, rare variants probably contribute significantly
by having greater effects on the phenotype, as proposed for
extreme lipid levels [57,58] (Figure 2). Furthermore, although
rare variants are by definition rare by themselves, in a
particular population there could exist a myriad of these
variants and in combination they might explain a con-
siderable proportion of the variance in a trait of interest [58].
Consequently, in addition to the interrogation of common
polymorphisms, the rare variants implicated in many
Mendelian diseases along with structural variation in the
genome are now studied with increasing interest [59]. Identi-
fication of rare high-impact alleles may be of critical impor-
tance for our detailed understanding of the biology behind
common diseases or traits.

A whole-genome strategy based on common haplotype-
tagging SNPs is unlikely to be very successful in detecting
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Contribution of rare and common variants to the distribution of a
quantitative phenotype. Although common genetic variants explain the
majority of the phenotypic variance in the population, the contribution of
rare variants with strong effects may be observed at the extreme ends of
the phenotypic distribution.

rare variants that increase disease susceptibility [60]. The
statistical power to detect susceptibility alleles is positively
correlated with the frequency and the penetrance of the
allele. Even though detection of rare alleles with high
penetrance is essentially as feasible as the detection of
common alleles with more modest penetrance, it is unclear
how well these rare variants are captured with the GWA
arrays designed to tag common SNPs. Thus, while genome-
wide association studies are likely to continue to identify the
‘low-hanging fruit’, study of linkage and association in
exceptional families as well as in population isolates may be
necessary to identify and define those risk alleles (the
majority) that, although significant, are lost in the sea of
peaks that fail to reach genome-wide significance in GWA
studies as a result of their rarity or population-specific effect
[60]. The founder effect, genetic bottlenecks and genetic
drift have worked to increase the frequency of certain rare
alleles in the population isolate, thus improving the power to
detect those in genome-wide studies.

Notably, owing to founder effect and genetic drift, each
genetic isolate typically has a unique profile of rare disease
alleles [61]. Some rare variants that are readily detected in
one population isolate may go unnoticed in others, necessi-
tating the use of multiple isolates to get a picture of the full
spectrum of variants with effects on phenotype [62]. Impor-
tantly, if the impact of the rare variants on the disease
phenotype is really high, measuring them in a clinical setting
might turn out to be of critical importance for ‘family-
specific’ or personalized medicine, revealing individuals with
the highest genetic risk. The existence of such population- or
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family-specific alleles is entirely possible - even expected -
and personalized medicine just might become more personal
than we ever dreamed of.

Population isolates help to minimize the environmental
component of disease

In contrast to monogenic diseases, where the genetic compo-
sition of an individual often solely determines the disease
phenotype, environmental factors are critical risk factors for
complex diseases. The incidence and prevalence of many
common diseases may vary between founder populations
[63], and establishing whether this variation in disease
incidence is the result of genetic background or of environ-
mental factors characteristic for the population can be
challenging because of complex interactions between genetic
risk factors and environmental exposures [63-65]. Natural
selection induced by the environment can, for instance,
modify allele frequencies and may lead to distinctive disease
susceptibilities in different populations [66,67]. Further-
more, inbreeding in founder populations can increase the
incidence of some common diseases, for instance via
increased homozygosity of rare variants with large recessive
effects [68]. In addition to increasing the incidence of the
disease in a given population, environmental factors may
have an effect on the severity of the disease phenotype.

Data from model animals suggest that the impact of gene-
environment interaction on the phenotype may be consider-
able [69]. Therefore, accurate determination of phenotype,
minimally perturbed by differences in environment, is of
great importance for GWA studies - arguably even more so
than in linkage studies using family data. Although there is
variation in environmental exposures between individuals
even in the most homogeneous populations, in population
isolates the cultural, environmental and phenotypic homo-
geneity can facilitate disease-gene identification by reducing
variance caused by environmental background. More
uniform patterns of, for example, nutrition or exposure to
pathogens or homogeneous diagnostic standards, more
easily obtained for small populations, provide the best
human approximation to controlled experiments in uniform
conditions in inbred strains of experimental animals.

The importance of knowing the study population

Population isolates with diverse ethnic backgrounds and
different degrees of inbreeding have been described from
around the world. Each has its unique characteristics, and
may have its own advantages and disadvantages in research
into complex diseases (Table 2). Such facts should be
considered in study design. Several factors, such as the
demographic history of the population, age distribution,
number of founders, growth pattern, and degree of genetic
and cultural isolation since foundation, determine the
features of the genetic landscape of a population isolate [70].
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Table 2

Use of isolated versus outbred populations

Benefits of population isolates Benefits of outbred populations

Higher degree of LD More affected individuals

Less areas of very low LD (‘holes’) More polymorphic markers
Ability to map recessive genes More opportunity for replication
Fewer number of causative alleles

Good genealogical records

More uniform environment

Less migration

More standardized phenotyping

High participation rate in studies

Relatively young and small founding populations that have
experienced population bottleneck events in their history
followed by recent expansion in population size should be
ideal for initial locus identification using GWA scans. This is
because the population history has created a setting in which
the genomes are characterized by a high degree of LD and
low genetic diversity [48]. Distinguishing the biologically
relevant variants at the associated loci would require older
isolates with shorter LD intervals. In small, very ancient
isolates with limited population growth, such as the Saami of
northern Scandinavia, LD is the result of genetic drift, not a
founder effect. These old isolates may be very useful for
identifying common disease alleles by drift mapping [71].
Population isolates may also contain sub-isolates, which
display different LD intervals of disease alleles as well as
different mutation frequencies [72]: these sub-isolates may
thus be ideal for complex disease gene mapping even when
the founder population itself lacks any obvious advantage.

Population isolates have thus earned their place as an
indispensable resource for medical genetics through their
use in identifying numerous Mendelian disease genes. Their
utility is increasingly valued also in complex disease gene
mapping. Genetic, environmental and phenotypic homo-
geneity, good genealogical records, high participation rates
in genetic studies, extended LD in the genome, as well as
reduced allelic and locus heterogeneity are highly beneficial
features for such studies.

Not all genetic isolates are alike: each population has its
own advantages and disadvantages for studies of complex
diseases, and thus knowing the genetic makeup of the
study population is crucial. The choice and design of
statistical methods also deserve particular care in studies
utilizing population isolates [73] and the study strategy
should also differ depending on the allelic architecture of
the disease. The global wealth of population isolates with
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well established history and carefully phenotyped study
samples is paving the way to a more comprehensive
understanding of complex disease genetics. The scientific
community might observe the resource of population
isolates to be harnessed not only in medical genetics but
also in public-health genomics.
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