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Nosema ceranae is a widespread fungal parasite for honey bees, causing bee

nosemosis. Based on deep sequencing and bioinformatics, identification of

circular RNAs (circRNAs) in Apis cerana workers’ midguts and circRNA-

regulated immune response of host to N. ceranae invasion were conducted

in this current work, followed by molecular verification of back-splicing sites

and expression trends of circRNAs. Here, 10185 and 7405 circRNAs were

identified in the midguts of workers at 7 days (AcT1) and 10 days (AcT2) post

inoculation days post-inoculation with N. ceranae. PCR amplification result

verified the back-splicing sites within three specific circRNAs

(novel_circ_005123, novel_circ_007177, and novel_circ_015140) expressed

in N. ceranae-inoculated midgut. In combination with transcriptome data

from corresponding un-inoculated midguts (AcCK1 and AcCK2),

2266 circRNAs were found to be shared by the aforementioned four groups,

whereas the numbers of specific ones were 2618, 1917, 5691, and

3723 respectively. Further, 83 52) differentially expressed circRNAs

(DEcircRNAs) were identified in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison

group. Source genes of DEcircRNAs in workers’ midgut at seven dpi were

involved in two cellular immune-related pathways such as endocytosis and

ubiquitin mediated proteolysis. Additionally, competing endogenous RNA

(ceRNA) network analysis showed that 23 13) DEcircRNAs in AcCK1 vs. AcT1

(AcCK2 vs. AcT2) comparison group could target 18 14) miRNAs and further link

to 1111 (1093) mRNAs. These target mRNAs were annotated to six cellular

immunity pathways including endocytosis, lysosome, phagosome, ubiquitin

mediated proteolysis, metabolism of xenobiotics by cytochrome P450, and

insect hormone biosynthesis. Moreover, 284 164) internal ribosome entry site

and 54 26) ORFs were identified from DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs.

AcT2) comparison group; additionally, ORFs in DEcircRNAs in midgut at seven

dpi with N. ceranae were associated with several cellular immune pathways

including endocytosis and ubiquitin-mediated proteolysis. Ultimately, RT-qPCR

results showed that the expression trends of six DEcircRNAs were consistent

with those in transcriptome data. These results demonstrated that N. ceranae

altered the expression pattern of circRNAs in A. c. ceranaworkers’midguts, and
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DEcircRNAs were likely to regulate host cellular and humoral immune response

to microsporidian infection. Our findings lay a foundation for clarifying the

mechanism underlying host immune response to N. ceranae infection and

provide a new insight into interaction between Asian honey bee and

microsporidian.
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Introduction

As a novel player in the world of non-coding RNA (ncRNA),

circular RNA (circRNA) has become a worldwide research

hotspot. Different from canonical alternative splicing, circRNA

is generated by the back-splicing of pre-mRNA (Li et al., 2018).

In comparison with linear RNA, circRNA is more resistant to

RNase R enzyme digestion owing to its special covalently closed-

loop structure; hence, circRNA is regarded as an ideal

endogenous biomarker (Meng et al., 2017). CircRNAs are

abundant in eukaryotic cells and have versatile functions such

as the regulation of source gene transcription (Li et al., 2015),

absorption of miRNAs or RNA binding proteins as “molecular

sponges” (Han et al., 2020), and translation into peptides or

proteins (Wang C. et al., 2020). Accumulating evidence suggests

that circRNAs are involved in the occurrence and development of

human disease, such as cervical (Chen R. X. et al., 2019) and lung

cancers (Wang Z. Y. et al., 2020). The biological function of

circRNAs as competing endogenous RNAs (ceRNAs) has only

been deeply studied in humans and a few other model species

(Han et al., 2020; Li et al., 2020). For example, Li et al. (2020)

reported that circTLK1 was highly expressed in renal cell

carcinoma (RCC) and could promote RCC progression

through the miR-136–5p/CBX4 pathway, and circTLK1 could

serve as a diagnostic molecules and therapeutic targets for renal

cancer. However, research on insect circRNAs are limited, and

the few studies have mainly focused on Drosophila melanogaster

(Westholm et al., 2014; Huang C. et al., 2018; Krishnamoorthy

and Kadener, 2021), Bombyx mori (Wang and Wang, 2015; Gan

et al., 2017; Hu et al., 2018a; Hu et al., 2018b), and honey bees

(Chen X. et al., 2019; Thölken et al., 2019; Chen D. F. et al., 2020).

Westholm’s group predicted more than 2 500 circRNAs using

transcriptome data from Drosophila, and revealed that circRNAs

were abundantly expressed in the brain and accumulated over

time (Westholm et al., 2014). Wang C. et al. (2020) discovered

that Bombyx mori CircEgg was mainly located in the cytoplasm

and circEgg overexpression inhibited the production of linear

transcripts of BmEgg, circEgg inhibited methylation of histone

H3 lysine nine by acting as a “sponge” of bmo-miR-3391–5p. Our

group previously conducted a comprehensive investigation of

circRNAs in the midguts of European honey bee Apis mellifera

and Asian honey bee Apis cerana. Chen et al. identified

1101 circRNAs in Apis mellifera ligustica workers using a

combination of RNA-seq and bioinformatics (Chen D. F.

et al., 2020), Xiong et al. analyzed the expression profile of

circRNAs during the developmental process of Apis cerana

workers’ midguts, and uncovered the potential regulatory role

of differentially expressed circRNAs (DEcircRNAs) (Xiong et al.,

2018).

Nosema ceranae, an emergent fungal parasite, infects not

only the midgut epithelial cells of adult bees but also bee larvae

(Huang and Evans, 2020). It was first identified in Apis cerana

colonies reared in China (Fries et al., 1996) and then spread to A.

mellifera colonies in Europe (Higes et al., 2010), America (Emsen

et al., 2020), and other parts of the world (Giersch et al., 2009). N.

ceranae spores enter the midgut of the bee host through ingestion

of contaminated food or water and then germinate due to

activation by the special physical and chemical conditions

inside the midgut. The infective sporoplasm is injected into

the host midgut epithelial cell and replicates by stealing host

material and energy. As the quantity of spores increases, the host

cell finally ruptures, and the released spores in the feces become

new sources of infection via the feeding and cleaning activities

inside the colonies, or are disseminated into the environment

(Higes et al., 2007; Gisder et al., 2011). N. ceranae infection has a

negative influence on bee hosts, such as midgut epithelial cell

damage, energy stress, immunosuppression, cell apoptosis

inhibition, and lifespan reduction (Antúnez et al., 2009;

Mayack and Naug, 2009; Goblirsch et al., 2013; Kurze et al.,

2018; Panek et al., 2018). Additionally, N. ceranae infection

severely weakens health and productivity of bee colonies in

conjunction with other biological or environmental stresses

(Doublet et al., 2015). A. c. cerana, a subspecies of A. cerana,

is mainly distributed and widely used in Asian countries

including China. Compared with A. mellifera, A. cerana is

more adaptive to extreme weather conditions and is good at

collecting scattered nectar sources (Zhao et al., 2020).

Additionally, A. c. cerana has been used as a model for

investigating host‒pathogen interactions (Huang S. K. et al.,

2018). The reference genome of A. cerana (Park et al., 2015)

was published in 2015, much later than the A. mellifera genome

(Honeybee Genome Sequencing Consortium, 2006). Currently,

study on the omics and molecular biology of A. cerana is lagging

when compared with those of A. mellifera, and the interaction

between A. cerana and parasites or pathogens is still largely

unknown. Previously, our team investigated the immune

Frontiers in Genetics frontiersin.org02

Zhu et al. 10.3389/fgene.2022.1013239

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1013239


response of A. c. cerana workers to N. ceranae infection (Xing

et al., 2021), and deciphered the differential expression profile of

host miRNAs during microsporidian infection and DEmiRNA-

regulated host response (Chen D. F. et al., 2019).

CircRNAs have been identified in both A. c. cerana (Chen D.

F. et al., 2020) and N. ceranae (Guo et al., 2018b) by our

group. CircRNAs have been suggested to be crucial regulators

engaged in host-pathogen interactions. However, research on the

interaction between Asian honey bees and N. ceranae is still

lacking. Our group previously conducted deep sequencing ofA. c.

ceranae workers’ midgut tissues at 7 days post-inoculation (dpi)

and 10 dpi with N. ceranae (AcT1 and AcT2 groups) and

corresponding un-inoculated midgut tissues (AcCK1 and

AcCK2 groups), and identified 9589 circRNAs using

transcriptome data from un-inoculated groups (Chen D. F.

et al., 2020). Here, to unclose the circRNA-regulated

responses of Asian honey bee workers to N. ceranae infection,

utilizing the obtained high-quality transcriptome data, the

differential expression pattern of circRNAs in A. c. cerana

workers’ midguts in response to N. ceranae invasion was

analyzed followed by an in-depth investigation of the host

response mediated by DEcircRNAs, with a focus on cellular

and humoral immune responses. To the best of our knowledge,

this is the first documentation of a circRNA-regulated response

of Asian honey bee to microsporidian invasion. The findings in

this current work can not only lay a key foundation for clarifying

the underlying mechanism but also provide novel insights into

Asian honey bee-microsporidian interactions.

Materials and methods

Honey bees and microsporidians

Three A. c. cerana colonies located in the teaching apiary of the

College of Animal Sciences (College of Bee Science) in Fujian

Agriculture and Forestry University were used for this study.

Microscopic observations and PCR identification verified that

these colonies were N. ceranae-free. Varroa was not observed

before and during the experiment. RT-PCR was conducted to

detect the prevalence of seven common bee viruses (DWV, KBV,

ABPV, CBPV, IAPV, SBV, and BQCV) and two bee microsporidia

(Nosema apis and N. ceranae) in the newly emergent workers based

on previously described specific primers (Stoltz et al., 1995;

Benjeddou et al., 2001; Ribiere et al., 2002; Genersch, 2005; Chen

et al., 2008; Singh et al., 2010; ChenD. F. et al., 2019), and agarose gel

electrophoresis (AGE) indicated that no bands specific for the

aforementioned viruses and microsporidia were amplified (Chen

D. F. et al., 2019; Xing et al., 2021).

Foragers were collected from a N. ceranae-infected colony in

an apiary in Fuzhou city, Fujian Province, China. N. ceranae

spores were previously prepared using the Percoll discontinuous

centrifugation method by our group (Chen D. F. et al., 2019).

Source of strand-specific cDNA library-
based RNA-seq data

Midgut tissues of N. ceranae-inoculated A. c. cerana workers

at seven dpi and 10 dpi and corresponding un-inoculated

workers’ midguts were previously prepared by our team (Xing

et al., 2021). There were three biological replicates for each

treatment group or control group. RNA isolation, cDNA

library construction, deep sequencing, and data quality control

were previously conducted (Xing et al., 2021). The 12 constructed

cDNA libraries were sequenced on an Illumina HiSeq

4000 platform (Illumina). Raw data are available in the NCBI

Short Read Archive database (http://www.ncbi.nlm.nih.gov/sra/)

under BioProject number: PRJNA406998. In total,

1,809,736,786 raw reads were produced from RNA-seq and

1,562,162,742 clean reads were obtained after quality control.

The mean Q20 values of clean reads from the control groups and

treatment groups were 94.76% and 94.77%, respectively, and the

mapping ratios of clean reads to the reference genome of A.

cerana were 75.78% (AcCK1), 55.01% (AcCK2), 78.13% (AcT1)

and 44.19% (AcT2) (Chen D. F. et al., 2020; Fu et al., 2020). High-

quality strand-specific cDNA library-based RNA-seq data could

be utilized for circRNA identification and DEcircRNA

investigation in this work.

sRNA-seq data source

In another previous study, midgut tissues of N. ceranae-

inoculated A. c. cerana workers at seven dpi and 10 dpi and

corresponding un-inoculated workers’midguts were prepared by

our team (Chen D. F. et al., 2019). Three biological replicates

were performed for each treatment group or control group. RNA

extraction, cDNA library construction, sRNA-seq, and data

quality control were previously performed (Chen D. F. et al.,

2019). The 12 constructed cDNA libraries were subjected to

sequencing on an Illumina MiSeq platform with the single-end

strategy. A total of 127,523,419 raw reads were generated from

the sRNA-seq data, and 122,104,443 clean reads were obtained

after quality control. The Pearson correlation between every

replica in each group was above 0.9619 (Chen D. F. et al.,

2019). Thus, the high-quality sRNA-seq data could be used

for target prediction and regulatory network construction of

DEcircRNAs in this study.

Bioinformatic prediction of circRNAs

CircRNAs in the AcCK1 and AcCK2 groups were identified

in a previous study (Chen D. F. et al., 2020). In this work,

circRNAs in the AcT1 and AcT2 groups were identified following

our previously described method (Chen D. F. et al., 2020). Briefly,

firstly, clean reads were mapped to the A. cerana reference
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genome (assembly ACSNU-2.0) using TopHat software (Kim

et al., 2013); secondly, 20 nt at both ends of unmapped reads were

then extracted and independently mapped to the reference

genome; thirdly, the mapped anchor reads were submitted to

find_circ software (Memczak et al., 2013) to perform circRNA

identification according to the following criteria: circRNA

length <100 kb, best qual A > 35 or best qual B > 35, anchor

overlap ≤2, n uniq >2, edit ≤2, n uniq > int (samples/2), and

breakpoints = 1.

Identification of DEcircRNAs

The expression level of each circRNA was normalized to the

mapped back-splicing junction reads per million (RPM)

mapped-reads value. Following the threshold |FC (fold

change)| ≥ 2, p value <0.05, and false discovery rate (FDR) ≤
1, DEcircRNAs in the AcCK1 vs AcT1 and AcCK2 vs

AcT2 comparison groups were identified using DESeq

software (Wang et al., 2010).

Analysis of the source genes of
DEcircRNAs

CircRNAs can regulate the expression of source genes via

interactions with RNA polymerase II, U1 ribonucleoprotein, and

gene promoters (Zhang et al., 2013; Li et al., 2015). According to

the method described by Chen D. F. et al (2020). The source

genes of DEcircRNAs were predicted by mapping the anchor

reads at both ends of DEcircRNAs to the A. cerana reference

genome (assembly ACSNU-2.0) using Bowtie software. Gene

Ontology (GO) term analysis of the circRNAs’ source genes was

conducted with the DAVID tool (http://david.abcc.ncifcrf.gov/)

(Huang et al., 2007), and the GO categories were clarified using a

two-sided Fisher’s exact test, while the FDR was calculated to

correct the p value (Jung, 2014). A Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis was performed

according to the annotation of the KEGG database (http://

www.genome.jp/kegg/) (Du et al., 2014).

Construction and investigation of
DEcircRNA-miRNA and DEcircRNA-
miRNA‒mRNA regulatory networks

In combination with previously identified miRNAs based on

sRNA-seq data (Chen D. F. et al., 2019), target miRNAs of

DEcircRNAs were predicted following a previously described

protocol by Chen D. F. et al. (2020). Briefly, according to the

criteria of p ≤ 0.05 and free energy ≤ −35 kcal/mol, potential

target miRNAs of DEcircRNAs were predicted using three

software programs, namely, mireap, miranda (v3.3a) and

TargetScan (version: 7.0), followed by construction of the

DEcircRNA-miRNA regulatory network; subsequently, target

mRNAs of DEcircRNA-targeted miRNAs were further

predicted, and then the DEcircRNA-miRNA-mRNA

regulatory network was constructed; finally, the regulatory

networks were visualized by Cytoscape software (Smoot et al.,

2011) with the default parameters. GO term and KEGG pathway

investigation of the target mRNAs was further conducted using

the abovementioned methods.

RT‒PCR and sanger sequencing of
circRNAs

Three circRNAs (novel_circ_005123, novel_circ_007177,

and novel_circ_015140) shared by the AcT1 and AcT2 groups

were randomly selected for molecular verification. Following our

previously described method (Chen D. F. et al., 2020), divergent

primers for these circRNAs (Table 1) were designed using

DNAMAN eight software (Lynnon Biosoft, United States) and

then synthesized by Shanghai Sangon Biological Co., Ltd. Total

RNA ofN. ceranae-inoculated workers’midguts at seven dpi and

10 dpi was extracted with an AxyPre RNA extraction kit

(Axygen, China), and then digested with 3 U/mg RNase R

(Geneseed, China) at 37°C for 15 min to remove linear RNA.

Next, the first-strand cDNAs were synthesized via reverse

transcription with random primers. The PCR system was

20 μl in volume and contained 1 μl of template, 10 μl of

Mixture (Yeasen, China), 1 μl upstream primers (10 μmol/L),

1 μl downstream primers (10 μmol/L), and 7 μl ddH2O. The

reaction was carried out on a T100 thermocycler (Bio-Rad,

United States) under the following conditions: 94°C for 5 min;

followed by 36 cycles of 94°C for 40 s, an appropriate annealing

temperature (according to the melting temperature of the

primers) for 30 s; 72°C for 30 s; and 72°C for 5 min. The PCR

products were detected on 1.5% agarose gel electrophoresis

(AGE) followed by TA cloning and Sanger sequencing.

RT-qPCR validation of DEcircRNAs

Four DEcircRNAs in AcCK1 vs AcT1 comparison group

(novel_circ_010689, novel_circ_005734, novel_circ_016924,

novel_circ_0176939) and two DEcircRNAs in AcCK2 vs.

AcT2 comparison group (novel_circ_008642,

novel_circ_005927) were randomly selected for RT-qPCR.

Divergent primers for these DEcircRNAs were designed and

synthesized (Table 1). Total RNA from the AcCK1, AcT1,

AcCK2 and AcT2 groups was isolated and then subjected to

reverse transcription. The resulting cDNA was used as a template

for the internal control (actin) and DEcircRNAs. The RT-qPCR

system was 20 μl in a volume containing 1 μl upstream primers

(10.0 μmol/L), 1 μl downstream primers (10.0 μmol/L), 1 μl
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cDNA, 10 μl SYBR Green Dye, and 7 μl DEPC H2O. RT-qPCR

was performed on an ABI Q3 Real-time PCR Detection System

(Applied Biosystems, United States) under the following

conditions: predenaturation step at 94°C for 5 min;

36 amplification cycles of denaturation at 94°C for 50 s,

annealing at 60°C for 30 s, and elongation at 72°C for 1 min;

and a final elongation step at 72°C for 30 s. The data were

calculated using the 2-△△Ct method and presented as relative

expression levels from three parallel replicates and three

biological replicates, followed by analysis and visualization

using GraphPad Prism 6.0 software (GraphPad, United States).

Statistical analysis

Statistical analyses were conducted utilizing SPSS 16.0 (IBM,

Armonk, NY, United States) and GraphPad Prism 6.0

(GraphPad, United States) software. Data were shown as the

mean ± standard deviation (SD). Statistical analyses were

performed on basis of an independent-sample t test. Fisher’s

exact test was conducted to filter the significant GO terms and

KEGG pathways with R software 3.3.1 (R Development Core

Team, https://www.r-project.org/). p < 0.05 was considered

statistically significant.

Results

Identification, investigation, and validation
of circRNAs in N. ceranae-inoculated A. C.
ceranae workers’ midguts

Totally, 524100096 and 615893838 raw reads were generated

from the AcT1 and AcT2 groups, and 515604182 and

601712328 clean reads were obtained after quality control,

respectively; additionally, 338500740 and 570789154 anchor

reads were identified, among which 31889778 (28.28%) and

35037206 (20.60%) were respectively aligned to the reference

genome of A. cerana.

In the AcT1 and AcT2 groups, 10185 and 7405 circRNAs

were identified respectively. Combined with the previously

identified circRNAs in the un-inoculated groups, the Venn

analysis indicated that 2266 circRNAs were shared by the

AcCK1, AcCK2, AcT1, and AcT2 groups, while 2618, 1917,

5691 and 3723 ones were specific to each group, respectively

(Figure 1A). Additionally, annotated exonic circRNA was the

most abundant type in both the AcT1 and AcT2 groups, followed

by antisense circRNA and single exonic circRNA (Figure 1b).

Moreover, the length of circRNAs in the N. ceranae-inoculated

groups ranged from 1 nt to more than 2000 nt, and circRNAs

with a length distribution of 401–600 nt were the most abundant

(Figure 1C).

PCR amplification was performed to further validate the

three specific circRNAs identified in N. ceranae-inoculated

midguts, and AGE suggested that fragments with expected

sizes could be amplified using specific divergent primers for

novel_circ_005123 (approximately 162 bp), novel_circ_007177

(approximately 195 bp), and novel_circ_015140 (approximately

108 bp) (Figure 2A). Additionally, the back-splicing sites of these

selected circRNAs were successfully detected using Sanger

sequencing (Figure 2B).

Differential expression pattern of circRNAs
involved in the host response to N.
ceranae infection

A total of 83 DEcircRNAs were identified in the AcCK1 vs

AcT1 comparison group, including 57 up-regulated circRNAs

and 26 down-regulated circRNAs (Figure 3A, see also

Supplementary Table S1. The expression levels of the

DEcircRNAs were between 0.001 and 353.49, and the most

TABLE 1 Primers for RT-PCR and RT-qPCR conducted in this work.

Forward primer Sequence (59-39) Reverse primer Sequence (59-39) Purpose

novel_circ_005123-F AGTGGAGGATTGCTGGGTAG novel_circ_005123-R GCTTTGACAGTCGTATTCGG RT-PCR

novel_circ_007177-F GCAAGCAAAGCATCGTTAC novel_circ_007177-R AATACTGCCAGGTTCTCACAG RT-PCR

novel_circ_015140-F CCTTCAATGTCTCCCTCTGTC novel_circ_015140-R TGGCACTACGACCAAATCC RT-PCR

novel_circ_016536-F ATCTCCTACTTCGCACTGGG novel_circ_016536-R ATCGTATCACTTCCCTCGC RT-PCR

novel_circ_010689-F GCTCTCGTTTACCTCTTCAGA novel_circ_010689-R CGCTATCTTCTCCACTATTTGG RT-qPCR

novel_circ_005734-F GGAGGCTATCCGAGATGAT novel_circ_005734-R CTTCGTTGGTGGTGACTTC RT-qPCR

novel_circ_016924-F TCGGGACGGTAGCAGTAAT novel_circ_016924-R CAGTGGTATCCTCGTGTCGT RT-qPCR

novel_circ_017693-F CACTGTCGTGGTAGCCAAA novel_circ_017693-R GGGAAGAACCTGGAACATC RT-qPCR

novel_circ_008642-F TACGGGACAGCGAGAAGTT novel_circ_008642-R CGTGTATCCAATCATCACCG RT-qPCR

novel_circ_005927-F AGTTGCCGTAAATGGTGTC novel_circ_005927-R CGACTCGGTTCTTCCAAAT RT-qPCR

actin-F GGTTGTTGATAGTGGAGATGG actin-R CACGACCAGCAATAGGAAT RT-qPCR
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FIGURE 1
Number, type, and length distribution of circRNAs in the midguts of A. c. cerana workers inoculated with N. ceranae. (A) Venn diagram of
circRNAs in AcCK1, AcCK2, AcT1, and AcT2 groups. (B)Number statistics of circRNAs derived from various genomic origins. (C) Length distribution of
circRNAs.

FIGURE 2
PCR amplification (A) and Sanger sequencing (B) of three A. c. cerana circRNAs. Black arrows indicate the direction of primers for PCR
amplification, and green arrows indicate back-splicing sites within circRNAs.
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up-regulated and down-regulated circRNAs were

novel_circ_012754 (log2FC = 18.16) and novel_circ_017486

(log2FC = -17.05), respectively. Comparatively, 28 up-

regulated circRNAs and 24 down-regulated circRNAs were

detected in the AcCK2 vs. AcT2 comparison group

(Figure 3A, see also Supplementary Table S2. The expression

levels of the circRNAs were among 0.001–445.77, and the most

up-regulated and down-regulated circRNAs were

novel_circ_002265 (log2FC = 18.77) and novel_circ_011100

(log2FC = −17.50), respectively. In addition, none of the

DEcircRNAs were shared by the two abovementioned

comparison groups (Figure 3B).

GO term and KEGG pathway analyses of
the source genes of the host DEcircRNAs

GO classification suggested that 78 source genes of

DEcircRNAs in the AcCK1 vs AcT1 comparison group were

predicted; among these, 23 ones were classified into 10 functional

terms associated with molecular functions, cellular components,

and biological processes, such as binding, localization, and

membrane (Figure 4A). Additionally, 45 source genes of

DEcircRNAs in the AcCK2 vs. AcT2 comparison group were

predicted, among which 13 ones were grouped into 10 functional

terms including catalytic activity, cell part, and metabolic

processes (Figure 4B).

The KEGG pathway analysis suggested that the source genes

of DEcircRNAs in the AcCK1 vs AcT1 comparison group were

involved in 12 pathways, such as endocytosis and the Hippo

signaling pathway (Table 2). Comparatively, the source genes of

DEcircRNAs in the AcCK2 vs. AcT2 comparison group were

engaged in five pathways, including the sphingolipid metabolism

and the mTOR signaling pathways (Table 3).

DEcircRNA-miRNA regulatory network
associatedwith theN. ceranae response of
A. C. cerana workers

In the AcCK1 vs. AcT1 comparison group, 23 DEcircRNAs were

predicted to target 18 miRNAs; among these DEcircRNAs,

novel_circ_015903 could target three miRNAs,

novel_circ_016623 and novel_circ_010617 could target two

miRNAs, whereas another 20 DEcircRNAs could target only one

miRNA (Figure 5A). In addition, 13 DEcircRNAs in the AcCK2 vs.

AcT2 comparison group were found to target 14 miRNAs; among

these DEcircRNAs, fiveDEcircRNAs could target twomiRNAs, while

another eight DEcircRNAs could only target onemiRNA (Figure 5B).

DEcircRNA-miRNA-mRNA regulatory
network engaged in the host response to
N. ceranae infestation

Further investigation showed that 23 DEcircRNAs in the

AcCK1 vs AcT1 comparison group can target 18 miRNAs and

further target 1111 mRNAs Supplementary Table S3. These target

mRNAs were annotated to 10 cellular component-related terms, such

as cell andmembrane; eightmolecular function-related terms, such as

catalytic activity and transporter activity; and 11 biological process-

related terms, such as cellular process and biological regulation

Supplementary Table S5. Additionally, these target mRNAs could

also be annotated to 72 pathways, including endocytosis, RNA

transport, and ubiquitin-mediated proteolysis Supplementary Table

S6. Comparatively, 13 DEcircRNAs in the AcCK2 vs

AcT2 comparison groups can target 14 miRNAs and further target

1093 mRNAs Supplementary Table S4. These target mRNAs were

involved in 10 cellular component-associated terms, including

organelle and cell; eight molecular function-associated terms,

FIGURE 3
Number statistics of DEcircRNAs in AcCK1 vs. AcT1 and AcCK2 vs. AcT2 comparison groups. (A) Number of up- and down-regulated circRNAs
(B) Venn analysis of DEcircRNAs.
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FIGURE 4
GO categorization of DEcircRNAs’ source genes in AcCK1 vs AcT1 (A) and AcCK2 vs AcT2 (B) comparison groups.

TABLE 2 KEGG pathways enriched by source genes of DEcircRNAs in AcCK1 vs AcT1 comparison group.

Pathway Ko number Number
of source gene

Gene id

Spliceosome ko03040 2 107997744, 108004399

Endocytosis ko04144 2 107993574, 108001896

Mucin type O-glycan biosynthesis ko00512 1 108003572

Tyrosine metabolism ko00350 1 107994400

Other glycan degradation ko00511 1 108001667

ECM-receptor interaction ko04512 1 107997219

Insulin resistance ko04931 1 107999877

FoxO signaling pathway ko04068 1 107999607

Hippo signaling pathway-fly ko04391 1 107995510

Ribosome biogenesis in eukaryotes ko03008 1 107995090

Ubiquitin mediated proteolysis ko04120 1 108001789

RNA transport ko03013 1 107998561
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TABLE 3 KEGG pathways enriched by source genes of DEcircRNAs in AcCK2 vs. AcT2 comparison group.

Pathway Ko number Number
of source gene

Source gene id

Sphingolipid metabolism ko00600 1 107995902

ECM-receptor interaction ko04512 1 107998342

mTOR signaling pathway ko04150 1 107997811

Insulin resistance ko04931 1 107999331

Neuroactive ligand-receptor interaction ko04080 1 107993584

FIGURE 5
DEcircRNA-miRNA network engaged in N. ceranae-response of A. c. cerana workers. (A) Regulatory network in AcCK1 vs AcT1 comparison
group (B) Regulatory network in AcCK2 vs AcT2 comparison group.
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including binding and catalytic activity; and 11 biological process-

associated terms, including biological regulation and single-organism

process Supplementary Table S7. In addition, these target mRNAs

could also be annotated to 72 pathways, such as endocytosis, purine

metabolism, RNA transport, protein processing of the endoplasmic

reticulum, and ubiquitin-mediated proteolysis Supplementary Table

S8. Moreover, target mRNAs in both the AcCK1 vs AcT1 and

AcCK2 vs AcT2 comparison groups were relevant to six cellular

immune-related pathways, including endocytosis, lysosomes,

phagosomes, ubiquitin-mediated proteolysis, metabolism of

xenobiotics by cytochrome P450, and insect hormone biosynthesis

(Table 4); however, no target was found to annotate to any humoral

immune pathway.

In total, 284 IRESs and 54 ORFs were identified from the

DEcircRNAs in the AcCK1 vs. AcT1 comparison

group. Supplementary Table S9, S10. These ORFs were involved

in two biological process-associated terms, four molecular function-

associated terms, and two cellular component-associated terms

Additionally, these ORFs were associated with eight pathways,

namely, endocytosis, other glycan degradation, ECM-receptor

interaction, insulin resistance, other glycan degradation, FoxO

signaling pathway, ribosome biogenesis in eukaryotes, ubiquitin-

mediated proteolysis, and spliceosome Supplementary Table S11.

Comparatively, 164 IRES and 26 ORF were identified from the

DEcircRNAs in the AcCK2 vs AcT2 comparison group

Supplementary Table S12. These ORFs were enriched in two

biological process-related terms, four molecular function-related

terms, and two cellular component-related terms Supplementary

Table S13. In addition, these ORFs were relative to four pathways

involving sphingolipid metabolism, ECM-receptor interaction,

insulin resistance, and neuroactive ligand‒receptor interaction

Supplementary Table S14.

RT-qPCR validation of DEcircRNAs

Six DEcircRNAs were randomly selected for RT-qPCR

validation, and the results showed that their expression trends

were consistent with those in high-throughput sequencing data,

which confirmed the reliability of the transcriptome data used in

this current work (Figure 6).

Combining findings in this current work, a working model of

DEcircRNA-regulated response of A. c. cerana workers to N.

ceranae infection was summarized and presented in Figure 7.

Discussion

CircRNAs were abundantly expressed in A.
C. cerana workers’ midguts and their
expression pattern altered during N.
ceranae infection

Here, based on previously obtained high-quality

transcriptome data from N. ceranae-inoculated and un-

inoculated midguts of A. c. cerana workers, the regulatory

roles of circRNAs involved in the N. ceranae-response of A. c.

ceranaworkers were investigated for the first time. InN. ceranae-

inoculated workers’ midguts at seven dpi and 10 dpi, 10185 and

7405 circRNAs were respectively identified, among which

annotated exon circRNA was the most abundant type

(Figure 1b); additionally, the length distribution of the

identified A. c. cerana circRNAs were ranged from 201 nt to

800 nt (Figure 1C). Similarly, we previously identified 6530 and

6289 circRNAs in un-inoculated workers’ midguts using the

TABLE 4 Summary of cellular immune pathways enriched by DEcircRNA-targeted mRNAs within ceRNA networks.

Pathway Number of target
mRNA in AcCK1 vs
AcT1

Number of target
mRNA in AcCK2 vs
AcT2

Ko number

Endocytosis 28 28 ko04144

Lysosome 4 4 ko04142

Phagosome 3 3 ko04145

Ubiquitin mediated proteolysis 2 2 ko04120

Metabolism of xenobiotics by cytochrome P450 1 1 ko00980

Insect hormone biosynthesis 1 2 ko00981

FIGURE 6
RT-qPCR verification of DEcircRNAs.Student’s t test, “*”
indicates p ≤ 0.05 and “**” indicates p ≤ 0.01.
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same bioinformatic approach, and found that their length

distribution was among 201 nt~800 nt and the most abundant

type was also annotated exon circRNA (Chen H. Z. et al., 2020).

Further analysis showed that the number of circRNAs enriched

in each length or circularization type in theN. ceranae-inoculated

groups was higher than that in the un-inoculated groups,

implying that A. c. cerana workers may respond to N. ceranae

infection by altering circRNAs’ length and circularization type. In

addition, 2266 circRNAs were shared by the AcCK1, AcCK2,

AcT1, and AcT2 groups, while the numbers of specific circRNAs

were 2618, 1917, 5717, and 3742, respectively (Figure 1A),

indicative of the developmental stage- and stress stage-specific

expression of A. c. cerana circRNAs, similar to the expression

characteristic of circRNAs identified in other animals and plants

(Hu et al., 2018a; Liang et al., 2019). Since the information about

circRNAs in Asian honey bees is scarse, the circRNAs

discovered here could well enrich the reservoir of A. cerana

circRNAs. Furthermore, 83 and 52 DEcircRNAs were

identified circRNAs in the AcCK1 vs. AcT1 and AcCK2 vs

AcT2 comparison groups, respectively (Figure 3B), which

suggested that the expression profile of circRNAs in host

midguts was altered due to N. ceranae infection. It is

inferred that these host-derived DEcircRNAs were involved

in the N. ceranae-response. Interestingly, it is noticed that no

DEcircRNA was shared by the aforementioned two

comparison groups, suggesting that different circRNAs may

be utilized by host to respond to the same microsporidian at

different timepoints during infection, which deserved more

efforts and further investigation. Apis mellifera ligustica, a

subspecies of western honey bee (Apis mellifera), is widely

reared bee species in China and many other countries.

Recently, we discovered that nine up-regulated and

10 down-regulated circRNAs were shared by Apis

mellifera ligustica workers’ midguts at seven dpi and

10 dpi with N. ceranae (Chen et al., 2022). Together, the

results indicated that some circRNAs were adopted by

western honey bee at various timepoints during the N.

ceranae infection, reflecting the difference of circRNA-

regulated strategies used by Asian honey bee and western

honey bee.

DEcircRNAs putatively modulated cellular
renewal and immune response of A. C.
cerana workers to N. ceranae infection by
regulating transcription of source genes

Accumulating evidence suggests that circRNAs are able to

exert their functions by regulating the transcription of source

genes (Zhang et al., 2013; Li et al., 2015). To steal host cell-

produced material and energy for fungal proliferation, N.

ceranae prolongs the survival time of infected cells by

inhibiting apoptosis of A. mellifera midgut epithelial cells

(Kurze et al., 2018; Paris et al., 2018). Additionally, N.

ceranae could also cause structural damage to midgut

epithelial cells of A. mellifera (Panek et al., 2018). The

Hippo signaling pathway plays a crucial role in regulating

cell proliferation as well as organ growth and regeneration

(Tang et al., 2022). Emerging evidence demonstrated the

participation of the Hippo signaling pathway in the

regulation of immune defense in mammals and insects

(Buchon et al., 2009; Hong et al., 2018). In this work, it is

detetcted that in the AcCK1 vs AcT1 comparison group

78 source genes of 83 DEcircRNAs (novel_circ_008114)

FIGURE 7
A working model of DEcircRNA-regulated response of A. c. cerana workers to N. ceranae infection.
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were involved in the Hippo signaling pathway, suggesting the

roles of these DEcircRNAs in detecting damage to the midgut

epithelial cell structure caused by N. ceranae infection. It is

speculated that the corresponding DEcircRNAs were

employed by the host to regulate source gene transcription,

thereby further modulating the Hippo signaling pathway to

facilitate cell renewal and regulate the immune response.

Insects defend against pathogenic microorganisms based

on cellular and humoral immunity, with the former involving

endocytosis, phagocytosis, enzymatic hydrolysis,

melanization, and antimicrobial peptide synthesis and

release (Lavine and Strand. 2002). In honey bees,

endocytosis is a main cellular immune pathway (Aronstein

and Murray. 2010). Clathrin-mediated endocytosis is one of

the most clearly studied endocytosis pathways. Kim et al.

(2009) discovered that when compared with wild-type cells,

deletion of FgEnd1 gene in Fusarium graminearum resulted in

a significant downregulation of the endocytic marker FM4-64

and a decrease in the mycelium growth rate . Hodgson et al.

(2019) disrupted two early and late endosome marker genes

Rab5 and Rab7 in DrosophilaDL1 cells using RNAi, the results

showed that progeny virions of Autographa californica

multiple nucleopolyhedrovirus (AcMNPV) were

significantly reduced. Ubiquitin-mediated proteolysis is a

classic cellular immune pathway, that involves the E1

(ubiquitin activase), E2 (ubiquitin binding enzyme) and

E3 enzymes (ubiquitin ligase); E3 can specifically recognize

different substrates and then bind to the E2 enzyme, which is

finally recognized and degraded by the protein enzyme body

(Sutovsky, 2003). Here, it is observed that two source genes of

novel_circ_005307 and novel_circ_017023 in the AcCK1 vs

AcT1 comparison group were engaged in endocytosis, while

one source gene of novel_circ_016946 was involved in

ubiquitin-mediated proteolysis. Together, these findings

suggested that the corresponding DEcircRNAs were likely

to regulate the two aforementioned cellular immune

pathways by regulating source gene transcription, and then

further participate in the response of host to N. ceranae

infection. Intriguingly, in our previous work, we observed

that the source genes of DEcircRNAs in A m ligustica workers’

midguts during N. ceranae infection were enriched in four

cellular immune-related pathways, including endocytosis,

ubiquitin-mediated proteolysis, lysosomes, and phagosomes

(Chen et al., 2022). Collectively, these results indicated that

both A. c. cerana and A m ligustica workers likely regulate

endocytosis and ubiquitin-mediated proteolysis via the

control of source gene transcription by DEcircRNAs,

further responding to N. ceranae invasion, but only A m

ligustica workers were capable of modulating another two

cellular immune pathways lysosomes and phagosomes

utilizing differential expression of specific circRNAs. The

identified novel_circ_005307, novel_circ_017023, and

novel_circ_016946 may be candidate targets for further

functional study and bee nosemosis control, additional

work is required to develop novel circRNA-based control

strategies.

DEcircRNAs potentially regulated cellular
immune as well as cell proliferation and
apoptosis of A. C. cerana workers via
ceRNA networks during the N. ceranae
infection

Increasing evidence suggests that circRNAs can regulate

target gene expression via the ceRNA network and further

affect various biological processes, such as the immune

response and development (Han et al., 2020; Li et al., 2020).

Here, 23 and 13 DEcircRNAs in the AcCK1 vs. AcT1 and

AcCK2 vs AcT2 comparison groups were predicted to target

18 and 14 miRNAs and further target 1111 and 1093 mRNAs,

respectively, implying that these DEcircRNAs may function as

ceRNAs during the host response toN. ceranae infection. Further

analysis indicated that target mRNAs in the worker’s midgut at

seven dpi were associated with six cellular immune pathways

including lysosome and phagosome, whereas targets in the

worker’s midgut at 10 dpi were involved in five cellular

immune-related pathways, namely, endocytosis, ubiquitin-

mediated proteolysis, and insect hormone biosynthesis.

Interestingly, none of the targets were enriched in the

humoral immune pathways. The results demonstrated that the

corresponding DEcircRNAs likely regulated the host cellular

immune responses to N. ceranae infection through ceRNA

networks.

The miR-182 gene was abundantly expressed in sensory

organs and regulated the development of the retina and inner

ear (Wei et al., 2015). Perilli et al. (2019) reported that

overexpression of miR-182 in humans could inhibit apoptosis

and promote cell proliferation as well as colorectal cancer cell

infection by altering tumor cell cycle dynamics and morphology.

Sun et al. (2010) revealed that miR-182 regulated RGS17 through

two conserved sites within the 3′UTR, and ectopic expression of

miR-182 conspicuously inhibited lung cancer cell proliferation

and anchorage-independent cell growth. FOX O 3a was

previously identified as a direct target of miR-182–5p, and

miR-182–5p played an inhibitory role in FOX O 3a

expression. Moreover, activation of the AKT/FOXO3a

pathway promoted HCC proliferation and invasive ability,

which further resulted in higher death rates (Cao et al., 2018).

Wu et al. (2021) observed that miR-182–5p directly targeted the

3′ UTR of the tumor suppresser gene STARD13, which

significantly relieved the inhibitory effect of decreased miR-

182–5p on cell proliferation, migration, and invasion in lung

adenocarcinoma. Here, miR-182 was detected to be targeted by

novel_circ_016924 (log2FC = 17.25, P= 0.0020) and

novel_circ_016946 (log2FC = 16.37, p = 0.0077) in the
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AcCK1 vs. AcT1 comparison group, , indicating that these two

DEcircRNAs may play a pivotal role in cell apoptosis and cell

proliferation in the N. ceranae-response of host by absorbing

miR-182. Therefore, miR-182 and its targeted DEcircRNAs were

promising biomarkers and molecular targets for diagnosis and

control of bee nosemosis frequently occurred in beekeeping

industry. In the near future, we plan to conduct

overexpression and knockdown of miR-182 and siRNA-based

RNAi of corresponding DEcircRNAs following our established

technical platforms (Ye et al., 2022; Zhu et al., 2022).

DEcircRNAs probably regulated
endocytosis and ubiquitin-mediated
proteolysis in A. C. cerana workers’
midguts via protein translation during the
N. ceranae infection

Eukaryotic translation depends on the ribosomal scanning

mechanism of the m7G cap structure (Haimov et al., 2015). Due

to the lack of a 5’ terminal and poly-A tail, circRNA was

previously considered unable to translate proteins. With the

rapid development of next-generation and third-generation

sequencing technologies, some circRNAs were verified to

translate into proteins or small peptides with biological

functions using an IRES-based manner (Wang and Wang,

2015; Pamudurti et al., 2017). Yang et al. (2018) reported that

FBXW7-185aa, a protein encoded by circRNA FBXW7 (circ-

FBXW7), plays an essential part in glioma carcinogenesis and

patient clinical prognosis. After transfecting Drosophila S2 cells

with artificially constructed circRNAs, including the gfp gene

containing IRES (Wang et al., 2015), Wang and Wang (2015)

detected that the constructed circRNA successfully expressed

GFP protein. Recently, Weigelt et al. (2020) documented that

overexpression of circSfl, a protein-coding circRNA, extended

the lifespan of the insulin mutant Drosophila. In this current

work, novel_circ_017023 and novel_circ_005307 in the

AcCK1 vs. AcT1 comparison group were predicted to

translate endocytic pathway-related proteins, and

novel_circ_016946 was predicted to translate proteins

associated with the ubiquitin-mediated proteolysis. The results

suggested that the abovementioned three DEcircRNAs were

likely to engaged in the cellular immune responses of A. c.

cerana workers to N. ceranae invasion through the protein

translation, which deserved further investigation in the future.

Conclusion

In the present study, we investigated for the first time the

expression profiles and potential functions of circRNA in A. c.

cerana workers’midguts in response to N. ceranae infection. It is

demonstrated that the expression pattern of circRNAs was

altered due to N. ceranae infection and DEcircRNAs may play

regulatory roles in the host cellular immune responses through

versatile manners, such as regulation of the transcription of

source genes,absorption of target miRNAs via the ceRNA

networks, and translation of proteins as templates. Our data

offer a foundation for clarifying the mechanism underlying the

immune responses of A. c. cerana workers to N. ceranae invasion

and provide novel insights into host-parasite interactions during

bee nosemosis (Figure 7).
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