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Capturing single-cell heterogeneity via data fusion
improves image-based profiling
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Single-cell resolution technologies warrant computational methods that capture cell het-

erogeneity while allowing efficient comparisons of populations. Here, we summarize cell

populations by adding features’ dispersion and covariances to population averages, in the

context of image-based profiling. We find that data fusion is critical for these metrics to

improve results over the prior alternatives, providing at least ~20% better performance in

predicting a compound’s mechanism of action (MoA) and a gene’s pathway.
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As a very early large-scale, high-dimensional, single-cell-
resolution data type, high-throughput microscopy
experiments have presented one of the first exemplars of

the challenges in summarizing and comparing cell populations.
One of the key challenges is creating a profile of each cell

population. A profile is a summary of many features of a popu-
lation that enables efficient comparison with other populations
while simultaneously capturing their natural variations and pos-
sible subpopulations. Recent studies have yielded many insights
into cellular heterogeneity and its importance1–4.

Although anecdotal evidence of the value of capturing het-
erogeneity abounds, it has remained puzzling that so-called
average profiling, the practice of feature-averaging all single-cell
measurements together using measures-of-center (mean or
median), has remained the top-ranked approach in the field of
image-based (or morphological) profiling, whether those features
are raw or pre-processed using unsupervised learning, or whether
they derive from classical image processing or deep learning.

In image-based profiling, average profiling has been used as a
straightforward way of summarizing a cell population (a sample)
into a fixed length vector (a sample’s profile), with one value per
feature per sample. Various metrics of similarity between profiles
of two samples can then be used to infer whether they show
similar phenotypic responses to their respective treatments.
Average profiling typically results in a thousand-fold decrease in
data size (because there are typically around a thousand cells per
well in image-based profiling experiments conducted in multi-
well plates), which makes downstream processing both compu-
tationally manageable and potentially statistically more robust.

However, average profiling results in loss of information about
a population’s heterogeneity. The information loss can manifest
in different forms. For example, multiple configurations of dis-
tinct subpopulations of cells could yield identical average profiles.
Or, if two subpopulations with opposite phenotypes exist in a
sample, they might cancel out yielding a profile indistinguishable
from that of a sample that contains neither subpopulation. In
addition to information loss, averaging can result in misleading
interpretation of feature associations, e.g., Simpson’s paradox5.
Finally, averaging makes the implicit assumption that the joint
distribution of the underlying features is unimodal, which if
violated can lead to artifacts. In this paper we investigate whether
including heterogeneity measures in the profiles of cells under-
going various treatment conditions can improve upon prior
methods that do not capture heterogeneity well.

Several methods have been developed in an attempt to capture
cell population heterogeneity while still allowing efficient com-
parisons between different populations. A simple solution is to
compute the cell population’s dispersion (e.g., standard deviation
or median absolute deviation, MAD) for each feature and con-
catenate these values with the average profile. Although feature
normalization brings features to comparable scales, features in
average profiles generally follow a probability distribution dif-
ferent from that of the features in dispersion-based profiles. This
discrepancy may lead to the correlation between profiles being
biased toward either only features of the average or the disper-
sion. Concatenation can also dilute the signal-to-noise ratio
(SNR) if one type of profile already has a low SNR6, i.e., the SNR
of concatenated data would be lower than the maximum of SNRs
across data types. In practice, concatenation of median and MAD
profiles has been shown to provide only a minor improvement
over median profiling alone7.

Measures of dispersion might only capture a small fraction of
the heterogeneity in the data, i.e., they disregard subpopulation
structures, because they involve processing each feature sepa-
rately. Instead of capturing dispersion for each individual feature,

one can alternatively model the heterogeneity by clustering cells
using all features simultaneously. In this approach, a subset of
data is used to estimate clusters of cells (representing sub-
populations) and profiles are calculated as the feature averages
within subpopulations8. Alternatively, cells can be classified into
pre-determined phenotype classes using a supervised approach,
and the profile is then defined as the fraction of cells in each
phenotype class9. However, many cell phenotypes are better
considered as a continuum of varying morphologies rather than
discrete populations. Further, there may exist some rare sub-
populations that are unique to a small portion of the data that
may be overlooked in the clustering step. As a remedy, if we
instead try to cluster each sample separately, the subpopulations
may not be appropriately matched across samples, which makes
the profiles uncomparable across the samples. Unfortunately,
despite their intuitive appeal, none of these ideas have proven to
significantly improve upon the baseline average profiling, at least,
on the single public dataset with available ground truth, which are
annotations of the mechanism of action (MOA) of a small set of
compounds. In a comparison of profiling methods, average
profiling (after dimensionality reduction) outperformed methods
that attempted to capture heterogeneity in the data7. More recent
work demonstrated a deep learning approach to feature extrac-
tion that yielded the highest performance yet, but nonetheless
relied on average profiling10.

Here, we test fusing information from the dispersion profiles
with the average profiles at the level of profiles’ similarity
matrices. This avoids inclusion of features with inherently dif-
ferent probability densities in the final profile. Modeling profile
similarity matrices from disparate data types using a graph has
been shown to be effective in handling heterogeneous data
sources such as DNA methylation, miRNA expression, and
mRNA expression6.

We also consider alternate heterogeneity representations that
do not explicitly model subpopulation information, but never-
theless capture heterogeneity. Higher order moments, which
consider combinations of features (as opposed to univariate
moments of single features such as mean/median or standard
deviations) are excellent candidates. As shown schematically
(Fig. 1), two cell populations may differ dramatically but have
identical means and standard deviations. However, there is a
substantial difference in the covariance (a second moment) of two
features between the control (on the left) and treatment (on the
right) cell populations, making this information useful to include
in the populations’ profiles.

We also motivate the use of higher order joint statistical
moments for profiling from a more theoretical standpoint. In the
terminology of estimation theory, we aim to find a sufficient
statistic for the unknown subpopulations to serve as the sample
profile. A sufficient statistic is a summary of data that provides
maximal information about the unknown parameters of a model
that is used to explain the data. Previous work has shown that
under certain assumptions, the first, second, and third order
moments, collectively, are approximately a sufficient statistic for
modeling subpopulations given a large enough sample size11

(Methods). Unfortunately, for typical single-cell datasets, sample
sizes are too small, and computational requirements are too high,
for estimating third order moments.

Here we find that even sparse random projections12 of cov-
ariances (second-order moments) can provide a substantial
improvement in the ability to accurately compare cell populations
for phenotypic similarity, when combined with median and MAD
profiles via data fusion.

Testing profiling methods against each other is not a trivial
exercise, given that the true similarities and differences among

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10154-8

2 NATURE COMMUNICATIONS |         (2019) 10:2082 | https://doi.org/10.1038/s41467-019-10154-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


large sets of cell populations is rarely known. We therefore tested
the approach on three different publicly available datasets where
some ground truth (i.e., expected results), albeit imperfect, is
known. Cell measurements in the datasets are based on Cell
Painting, which is an image-based assay designed to capture cell
morphology13. For these benchmark datasets, our laboratory had
released the image data14,15 but for this study we collected ground
truth to create a proper testing scenario. We used datasets that
had a sufficient number of perturbations for the data fusion
technique to work (Methods), and therefore did not include the
dataset reported in a previously published study7.

To summarize, to account for the single-cell heterogeneity in
comparing cell populations, we propose to fuse information from
average, dispersion, and randomly projected covariance profiles at
the level of profiles’ similarity matrices. On three new benchmark
datasets, the resulting fused similarity matrix shows significant
improvement of concordance to the known ground truth com-
pared to similarity matrices that are based on each type of profile
alone, and some methods that were previously proposed to cap-
ture population heterogeneity.

Results
Fused profile similarities improves performance. To evaluate
each profiling method, we tested whether pairs of cell populations
that look most alike, according to the computed image-based
profiles, have been treated with perturbations that are annotated
as having the same mechanism of action (for compounds) or the
same pathway (for gene overexpressions). Similarity between
pairs of image-based profiles are established based on the profiles’
correlation (Methods).

We find that the enrichment of top-correlated perturbation
pairs, whether genetic or chemical, in having the same
mechanism of action or the same pathway (Methods), is
improved when median absolute deviation and/or covariances
are combined with the median profiles through Similarity

Network Fusion (SNF) (Methods) (Fig. 2a and Supplementary
Tables 1 and 2). Covariances are summarized by sparse random
projections to avoid the curse of dimensionality. The enrichment
score we use here is appropriate for applications where the aim is
to identify the most highly correlated treatment pairs rather than
to classify every treatment into a class7. Examples in drug
discovery include lead-hopping, identifying gene function, and
matching genetic and chemical perturbations. An increase in
enrichment score would directly translate to a proportional
increase in the chances of finding a novel connections between
genes, compounds, and diseases.

The improvements are observed even when MOAs/pathways
with few (fewer than five) compound/gene pairs are removed,
confirming that the improvement was not driven by a few outlier
groups. We also evaluated another method that implicitly
accounts for heterogeneity (Factor Analysis on single-cell data7),
which performed poorer than the proposed method (but had
been the best performing in a previously published, smaller
dataset in a different application7), as well as methods that do not
account for heterogeneity (Supplementary Fig. 1). The improved
intra-MOA similarities, especially in certain MOAs (Fig. 2b, c,
Supplementary Tables 3–5), indicates that median, MAD, and
sparse projections of covariances are complementary sources of
information.

The improvement in enrichment of top-correlated perturba-
tion pairs is observed across the three datasets, which involve
different experimental conditions and perturbation/annotation
types. Although trivial concatenation of dispersion measures with
the median profile has shown marginal improvement in the past7,
combining MAD and covariance with medians via data fusion
provides consistent and substantial improvement (typically
around 20%) in the mentioned enrichment score.

We conclude that capturing cell-to-cell heterogeneity is of
value in image-based profiling of cell populations. Mean-averaged
metrics from deep learning-based feature extractors have shown
promise in image-based profiling; these metrics would likely also
be improved by the method presented here. These and other
strategies can now be tested and the results shared, because we
provide the datasets publicly. Source code, image processing
pipelines, and gene/compound annotation data to reproduce
these results are available (https://github.com/carpenterlab/
2018_rohban_natcomm).

Methods
Annotations. We used the Repurposing hub16, https://clue.io/repurposing-app, to
annotate compounds with their mechanism of action (accessed on 28 February
2018). For missing annotations, we used other resources such as https://www.
drugbank.ca. The gene overexpression dataset contains biological pathway anno-
tations, generated by domain experts at our institution. For pathways marked as
having canonical and non-canonical members, we merged all members.

Rationale. The theoretical basis we present assumes that the cellular phenotypes
can be modelled as a mixture of gaussians. This model has been shown to be
effective in capturing subpopulations in imaging data8,17. In this model, the sub-
populations and their proportions correspond to mixture centers and mixture prior
probabilities, respectively. Both of these quantities are considered as unknown
parameters.

It has been shown that, under mild assumptions, these unknown parameters
can be estimated using the first, second, and third moments of data11. More
specifically, if the mixtures are spherical Gaussians, and their centers are linearly
independent, all the unknown parameters can be estimated with high precision
given a sufficiently large number of data points (see Theorems 2 and 311). In other
words, the first, second, and third moments of the data constitute an approximate
sufficient statistic for the unknown parameters in GMM when the sample size is
sufficiently large. Average profiling uses only a small portion of this sufficient
statistic–the first moment–to represent the sample. We can make this
representation richer by also including the second and third moment profiles.
Going beyond the third moment does not add any additional information with
regard to the GMM (Theorems 2 and 311).

Elongation

Area Area

Elongation

Neg. Control Treatment

Mean Elongation = 0
Std. Dev. Area = � Std. Dev. Elongation = �

Cov(Area, Elongation) ≈ 0 Control
1 Treatment

Mean Area = 0 

� �

Fig. 1 Features’ covariance can capture cell phenotypes better than feature
averages or dispersion. In this synthetic example, the negative control sample
(on the left) consists of cells displaying heterogeneous morphologies. The
treatment, on the other hand, shows two distinct subpopulations. In both
cases, the scatter plot helps to see that the mean and standard deviation of
both measured cell features (area and elongation) are equivalent in the two
cases. However, the two features positively correlate in the treatment
condition as opposed to the control. In such a case, the covariance can
distinguish the phenotypes better than simple averages (e.g., means and
medians) and measures of dispersion (e.g., standard deviations and median
absolute deviations)
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We did not test the third moment because our datasets contain in the order of a
few thousand cells per sample, whereas millions of cells would be needed to
robustly compute third moments (O(d3), where d is the dimensionality of the
feature space; on the order of 100 in our case). As well, the dimensionality of the
final profiles rapidly grows as d increases. Although computing second-order
moments is more feasible, it nonetheless requires dimensionality reduction to be of
practical use: for 500 features, the second moment is nearly 125,000-dimensional,
which is both computationally and statistically difficult to work with in forming the
treatments similarity matrix. We use sparse random projections12 of the vectorized
covariance matrices to reduce the dimensionality to 3000 while approximately
preserving pairwise profile distances.

Combining first and second-order moments. Because the statistical distributions
of mean, MAD, and covariance profiles can be different in general (Supplementary
Fig. 2), we combined them at the sample similarities level, rather than simply
concatenating the profiles. We use Similarity Network Fusion (SNF)6, which

operates on a graph representation of the dataset in each data type (in our case,
three: medians, MADs, and covariances). A graph diffusion process is then used to
combine the graph for each data type into the final network, which encodes the
pairwise similarity values. SNF has shown great promise in fusing biological
readouts when the number of samples is on the order of few hundreds6. The
method is expected to be less effective when sample size falls below a threshold as
local neighbors start to become less similar, violating the assumptions made in the
method18. For this reason, we did not use the prior benchmark dataset in ref. 7.

Parameter settings. We used the SNFtool R package (Ver. 2.2.1) for data fusion to
combine data types (median, MAD, and covariance profiles), and set the neigh-
borhood size k= 7 in the similarity graph, gaussian weight function bandwidth
μ= 0.5, and number of iterations T= 10 (for two data types) and T= 15 (for three
data types) in SNF, which are typical choices for the algorithm. To avoid over-
fitting, we did not test alternative values of these parameters. Prior to applying SNF,
similarity matrices are z-scored based on median and MAD and then linearly
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Fig. 2 Fusing metrics of cell heterogeneity increases the percentage of validated connections. a When median, MAD and random projections of covariance
profiles are combined through SNF (red line), the enrichment in having same MOA/pathway annotations is improved, especially for the strongest, most
relevant connections above 0.5%. This is shown in three separate experiments involving small molecules (left, right) and gene overexpression (middle).
Enrichment is versus a null distribution, which is based on the remainder of the connections. b Similarity graphs for the mechanism of action (MOA) class
Adrenergic receptor antagonists, using different types of profiles in CDRPBIO-BBBC036-Bray. This MOA was chosen because it showed the highest
improvement upon combining different profiles. The goal is a qualitative view on how data fusion improves within-MOA connectivities. Each node
represents a compound, and two nodes are connected if the similarity of their corresponding profiles is ranked among the top 5% most-similar pairs.
Median, MAD, and random projections of covariance profiles seem to be complementary for this MOA, as they cover mostly non-overlapping compound
connections. The overall connectivity of compounds in this MOA is improved once these profiles are combined through SNF. Graph layouts are the same
across data types and are based on the similarities in median+MAD+ cov. (SNF); note that this causes the left-most graph to appear less cluttered and
less connected, but the main purpose of the visualization is to observe the structure of connections, not the number of connections (which is quantified
systematically in part a). c Weighted similarity graph as in the previous plot except that edge thicknesses are based on an exponential weighting of the
ranked similarity values. Sub-clusters that are moderately present in two or three profile types (such as the one marked in red in bottom left) became
stronger after applying data fusion using SNF
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scaled to map 99.9th percentile to 0.999. This helps to make sure that the similarity
values are on the same scale across data types.

We used 3000 sparse random projections with the density of p= 0.1 (the
probability of an entry in the random projection matrix of being non-zero) to
reduce the dimensionality of the covariance profiles in all the datasets. We observed
reasonable consistency against randomness in the treatment correlation matrices
when using around 3000 random projections (Supplementary Fig. 3). Pearson
correlation of profiles is used to form similarity matrices, which are used as the
inputs to SNF.

Factor analysis. We performed exploratory factor analysis using factanal function
in R and a model is trained on a random sample of 25,000 control cells of each
dataset. Fifty factors were chosen, which accounted for ~76% of total variance.
Factor score coefficients (loadings) were computed using regression and Varimax
rotation of orthogonally uncorrelated factors. Loadings of standardized control
cells were used to estimate factor scores.

Principal component analysis. We performed principal component analysis using
prcomp function in R (Ver. 3.3.3), and a model is trained on a random sample of
25,000 control cells of each dataset. Fifty principal components were chosen, which
accounted for ~76% of total variance. Loadings of standardized control cells were
used to compute principal component scores by multiplying it with the normalized
data matrix.

Evaluation tasks. We evaluated different profiling strategies in this paper (Fig. 2)
based on whether the most-similar treatment pairs (above a given cutoff) are
enriched for having the same MOA/pathway annotation, after removing un-
annotated compounds. To ensure that strong profile similarities are not driven by
systematic effects that might make samples on the same plate look more similar to
each other than to those in other plates, all same-plate pairs were excluded in this
analysis. To avoid introducing additional parameters, we did not filter for per-
turbations with strong phenotypes, although in practice, this could be a valuable
step to further improve similarity predictions.

We rejected an alternative evaluation approach, accuracy in MOA/pathway
classification7, which only works well if MOAs are all well/equally represented in
the dataset. The approach we took is better suited for the MOA class imbalance
situation (as is the case for the datasets analyzed in this paper), as the enrichment is
calculated based on a null distribution that tends to normalize MOA class sizes
implicitly. Otherwise, treatments belonging to larger MOA classes tend to
dominate the classification accuracy. Note that the chemical datasets we have
presented reflect a huge variety of structures rather than a small number of
compounds hand-picked to belong to particular classes; furthermore, annotations
are sparse as many small molecules’ mechanisms are unknown. As a result, while
the number of samples are large, they are spread across many classes, resulting in
many classes with very few samples. Although alternate metrics such as F-score/
precision/recall can help to mitigate class imbalances, they cannot overcome the
small sizes for most classes in this dataset.

Enrichment score. We define enrichment score as the odds ratio in a one-sided
Fisher’s exact test, which tests whether having high profile similarity for a treat-
ment pair is independent of the treatments sharing an MOA/pathway. To perform
the test, we form the 2 × 2 contingency table by dividing treatment pairs into four
categories, based on whether they have high profile correlations, determined by a
specified threshold (in rows) and whether they share an MOA/pathway (in col-
umns). The odds ratio is then defined as the ratio of elements in the first row
divided by that of the second row in the contingency table. This roughly measures
how likely it is to observe same MOA/pathway treatment pairs in highly correlated
vs. non-highly correlated treatment pairs.

Data availability
We used three datasets to evaluate the profiling methods:
CDRPBIO-BBBC036-Bray: 2200 known bioactive compounds in U2OS cells. This
dataset is the bioactive subset of a publicly available dataset15. Raw images are available at
https://idr.openmicroscopy.org/webclient/?show= screen-1251.
Bioactives-BBBC022-Gustafsdottir: 1600 known bioactive compounds in U2OS cells.
This is the image set BBBC022v114, available from the Broad Bioimage Benchmark
Collection7. Raw images are available at https://data.broadinstitute.org/bbbc/BBBC022
and https://idr.openmicroscopy.org/webclient/?show= screen-1952. The compounds in
this dataset have some overlap with CDRPBIO.
TA-ORF-BBBC037-Rohban: ~200 genes in various signaling pathways are over-
expressed in U2OS cells19. Raw images are publicly available at https://idr.
openmicroscopy.org/webclient/?show= screen-1751.
In all three datasets, around 1700 single-cell image-based readouts were obtained by
running the Cell Painting assay13 and an image processing pipeline in CellProfiler20

software. The features are z-scored platewise in all datasets based on the negative
controls.
Extracted image-based features are publicly available in the following s3 bucket s3://
cellpainting-datasets under folders corresponding to the respective names of the datasets.

Code availability
Source code, image processing pipelines, and gene/compound annotation data to reproduce
these results are available (https://github.com/carpenterlab/2018_rohban_natcomm).
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