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Gene expression is controlled by multiple regulators and their interactions. Data from
genome-wide gene expression assays can be used to estimate molecular activities of
regulators within a model organism and extrapolate them to biological processes in
humans. This approach is valuable in studies to better understand complex human
biological systems which may be involved in diseases and hence, have potential
clinical relevance. In order to achieve this, it is necessary to infer gene interactions that
are not directly observed (i.e. latent or hidden) by way of structural equation modeling
(SEM) on the expression levels or activities of the downstream targets of regulator genes.
Here we developed an R Shiny application, termed “Structural Equation Modeling of In
silico Perturbations (SEMIPs)” to compute a two-sided t-statistic (T-score) from analysis of
gene expression data, as a surrogate to gene activity in a given human specimen. SEMIPs
can be used in either correlational studies between outcome variables of interest or
subsequent model fitting on multiple variables. This application implements a 3-node SEM
model that consists of two upstream regulators as input variables and one downstream
reporter as an outcome variable to examine the significance of interactions among these
variables. SEMIPs enables scientists to investigate gene interactions among three
variables through computational and mathematical modeling (i.e. in silico). In a case
study using SEMIPs, we have shown that putative direct downstream genes of the GATA
Binding Protein 2 (GATA2) transcription factor are sufficient to infer its activities in silico for
the conserved progesterone receptor (PGR)-GATA2-SRY-box transcription factor 17
(SOX17) genetic network in the human uterine endometrium.
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INTRODUCTION

While gene expression data in public repositories provides a valuable resource for investigators to
infer regulatory processes (Edgar et al., 2002), the causal or unobserved (i.e. latent) gene interactions
are a challenge to detect. Moreover, the extrapolation of biological processes and regulatory networks
from experimental model systems to humans in order to infer causation of diseases can be a
formidable task. Fortunately, genome-wide gene expression assays on human specimens capture
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observations of correlations among the gene expression levels as
well as between RNA abundances and phenotypic outputs. These
gene expression assays can also determine the downstream
targets of a factor of interest in model systems that are
relevant to the particular type of human specimen via genetic
or pharmacological perturbations (Koot et al., 2016). The
resulting gene signature, comprised from the expression of
these downstream target genes in response to a perturbation,
could unbiasedly serve as a surrogate of the activity of the factor of
interest in a given context. Assuming that gene activities and
biological functions are preserved between humans and relevant
model systems, the degree of similarity between the gene
expression signature of the regulator of interest and the model
organism’s gene expression profile can be quantitatively
estimated by a T-score calculation from t-tests of gene
expression data to represent gene regulatory activities in the
targeted organism (Creighton et al., 2008; Creighton et al.,
2009; Luo et al., 2009; Qin et al., 2014). This scoring system
has been employed to establish correlations between the
prognosis outcome and manifestation of activities of the factor
of interest in corresponding tumors (Creighton et al., 2008;
Creighton et al., 2009; Luo et al., 2009; Qin et al., 2013; Qin
et al., 2014). The T-score calculation has also been utilized to
determine the association among activities of factors of interest or
between the activities of an upstream regulator and levels of its
downstream targets within a set of human specimens (Wu et al.,
2015; Rubel et al., 2016). Results of these studies demonstrated
applications of such a surrogate score of molecular activities in
investigation of gene functions and inference of regulatory
processes (Grace 2006).

To determine the relationships among multiple variables,
structural equation modeling (SEM) is a statistical technique to
indicate the strength of influence among variables (Edgar et al.,
2002; Grace 2006). We were motivated to develop a Structural
Equation Modeling of In silico Perturbations (SEMIPs) R Shiny
application (app) to facilitate casual inference of gene regulatory
processes, especially on multifactorial impacts on outcome
variables concurrently. SEMIPs enables quantification of a
projected activity metric (T-score) and allows users to fit
desired SEM models using gene variables of interest. For
hypothesis generation purpose, SEMIPs provides two different
bootstrap random sampling procedures (elimination with or
without replacement) to test the significance of the model
(Creighton et al., 2008). Previously, the T-score and SEM were
applied to gene expression data to evaluate gene interactions that
regulate the progesterone signaling pathway in the mouse uterus
and infer gene regulation processes in human uterine specimens
(Rubel et al., 2016). SEMIPs streamlines this process and allows
scientists to perform the computations and analyses through a
user-friendly interface.

MATERIALS AND METHODS

Overview of SEMIPs
The SEMIPs R Shiny app allows users to compute T-scores from
gene expression data to infer the activities of genes of interest in a

quantitative manner. Shown in Figure 1, the SEMIPs app
(highlighted in the orange dotted rectangle) facilitates the
hypothesis generation and testing framework. This app also
provides a 3-node model fitting function using the SEM to test
the joint regulation of a target gene by two upstream regulators in
silico. In addition, for hypothesis generation purposes, a two-class
bootstrap method, elimination with replacement or elimination
without replacement, is included in the app to examine the
impact of removing genes that belong to the same signaling
cascade from the downstream targets of the gene of interest.

T-Score Calculation
The T-score calculation requires the input of two components: 1) a
normalized gene expressionmatrix of the human specimens and 2)
a gene signature of the factor of interest from the model organism.
To generate the normalized gene expression matrix of human
tissues (microarray or RNAseq data) the expression values of each
gene are centered to the median across all samples. If a gene has
multiple probes or transcripts, the probe/transcript with the
highest variation (i.e. the standard deviation) was chosen to
represent that gene. The gene signature is first determined by
identifying downstream target genes whose RNA abundance are
associated with the levels of the upstream regulator. The
downstream targets are further subgrouped based on the
positive (up-regulated signature) or negative (down-regulated
signature) correlations on the RNA abundance between the
upstream regulator and the downstream targets. The T-score is
then calculated based on the following formula:

T − score � dpTINV(p, df)

where d � 1 if the average expressions of homologous genes of up-
regulated signature genes is larger than the average expressions of
homologous genes of down-regulated signature genes, otherwise
d � -1; TINV is the function for the two-tailed inverse of the
t-distribution; p is the p-value from two-tailed t-test of the
expressions of homologous genes of up-regulated signature
genes and the expressions of homologous genes of down-
regulated signature genes assuming equal variance; and df is
the degrees of freedom (the total number of the homologous
genes of signature genes minus 2).

The hypothesis generation relies on results obtained from a
perturbation of an animal model system, then projects into
human or other animal model systems when either the direct
perturbation is not possible or the variables of interest are not
directly measurable (Rubel et al., 2016). The SEMIPs R Shiny app
provides a user-friendly way to calculate the T-scores via the tab
labeled “T-Scores” as shown in Figure 2. The application will
conduct the analysis and produce inferred activity results that can
be used in subsequent downstream analyses. Users can use the
“T-scores” calculation feature to calculate T-scores from any
custom prepared gene lists obtained from microarray or
RNAseq experiment either in mouse gene symbols or human
gene symbols (shown in Supplementary Figure S1).

Structural Equation Modeling
The second feature of the SEMIPs app is the SEM.We implemented
the SEM using the lavaan R package (Rosseel, 2012) to provide a 3-
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node model fitting function to test the joint regulation of a target
gene by two upstream regulators in silico. T-scores and/or
normalized RNA levels of two upstream regulators are the two
input variables, while the outcome variable is the value of the RNA
expression level of a chosen downstream reporter gene that is
expected to be regulated by the two upstream regulators. The SEM
fit can be assessed using various criteria, including the root mean
square error of approximation (RMSEA), along with a 90%
confidence interval, the Comparative Fit Index (CFI), the
Tucker-Lewis Fit Index (TLI), and the standard root mean
square residual (SRMR). For RMSEA, the general rule of thumb
is that values < 0.05 indicate close fit, values between 0.05 and 0.10
indicate marginal fit, and values > 0.10 indicate poor fit
(MacCallum et al., 1996). For both the CFI and the TLI, a value
of 1 indicates perfect fit, and the general rule of thumb is that values
> 0.90 indicate adequate fit (Hu and Bentler 1998; Hu and Bentler
1999). Also, SRMR values< 0.08 indicate a very good fit between the
model and the data.

The app comes packaged with a sample data file
“app_installation_dir/dataSEM/sampleDAT.txt”. When the
SEM tab is selected (Figure 2), this data file will be loaded
and users can select three variables from the drop-down list to
test the SEM model. The SEMIPs app also provides a data file
template “app_installation_dir/dataSEM/_sampleDAT.txt” that
users can modify and save as “sampleDAT.txt” to overwrite
the default data. As a result, the users’ data will be loaded
when the app is launched subsequently. Users can save the
modeling figures and all fitting statistics from the app.

Bootstrap Simulation
The third feature (the “Bootstrap” tab shown in Figure 2) assesses
the potential impact from a perturbation on the proposed genetic

network such as removing a downstream molecular pathway or
the gene signature of a downstream effector from the upstream
regulator. We implemented a two-class (elimination with or
without replacement) bootstrap resampling for statistical
inference (Figure 3), which eliminates unrelated signatures
and provides statistical significance to the SEM fitting. For this
feature, it is assumed that the user has successfully run a T-score
analysis. The user also need to enter the signatures associated with
the downstream system of interest to evaluate. To improve the
rigor of the statistical test, it is recommended to run the bootstrap
a minimum of 1,000 iterations to potentially obtain a p-value as
small as 0.001. Since this feature involves bootstrapping
simulation, it requires multicore hardware and can take longer
to complete the computations depending on howmany iterations
the user choose.

Sample Data
The SEMIPs app is packaged with four test datasets and
data templates for the user to test the app and further modify
to suit their own study. The test data are located at
“app_installation_dir/testData”.

Hardware and Software Requirement
SEMIPs was written in R with the Shiny package (Xie, 2014) that
is known for its light weight web development framework with
shiny-related features. The lavaan package (Rosseel, 2012) was
used for the SEM. Dependent packages will be instansiated or
they need to be installed if not already available. The application
requires modern multicore CPUs for the backend parallel
processes. SEMIPs was developed under Linux CentOS7 and
has been successfully tested on MacOS (v. 10.14.6) and
Windows10. To install and run this application, users can

FIGURE 1 | The workflow and application of SEMIPs. The left four rectangles and arrows indicate our hypothesis testing and generation schema; the components
bounded by the dotted orange rectangle are features provided in the Rshiny App web-application. A biological hypothesis is tested in a model system (i.e. mouse) on
relationship between two interacting factors (Fac1 & Fac2) and their endpoint through a 3-node SEMmodel indicated by the green rectangle. The hypothesis is translated
to another species (i.e., human in our research) via T-score computation (represented by the upper blue arrow noted as “assisted by”) and verified with the SEM
model (represented by the lower blue arrow noted as “achieved through SEM”). This process is accomplished with our R Shiny app indicated by two curved arrows. c11
and c21 are correlation coefficients and ξ1 is the model residual. The two-class bootstrap resampling is shown in the red rectangle box. Hypothesis generating and
exploring steps are explained by the bottom two rectangles.
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follow the detailed instructions provided in the README. txt file.
The SEMIPs Shiny app and source code are freely available at
https://github.com/NIEHS/SEMIPs under the MIT license.

RESULTS

An Integrated Hypothesis Generation and
Testing Framework
As shown in Figure 1, the SEMIPs workflow depicts a genetic
interaction among genes of interest that is initially revealed in a
model system and then tested for its manifestation in human
specimens via model fitting. SEMIPs is designed to test
concurrent contributions of regulatory effects of two upstream
regulators “Fac1” and “Fac2” to the expression of a downstream
reporter gene “Endpoint”. Meanwhile, two-directional
interactions between the two upstream regulators are
examined. Under this structure, users can test the relationships

among the gene expression levels of all three variables. If a
hypothesis involves testing of molecular activities of two
upstream regulators, gene signatures of the upstream
regulators are first projected to a gene expression matrix of
human specimens of interest (e.g., an expression dataset that
are derived from human biopsies) through the T-score
calculation function. The resulting T-scores will serve as the
surrogate molecular activities to test for the manifestation of
the proposed genetic network in human specimens via model
fitting.

For hypothesis generation purposes, a subset of genes that are
associated with pathways of interest or downstream effectors can
be removed from the upstream regulator’s gene signature as an in
silico perturbation to infer the potential impact of losing the
downstream signaling on the activities of the upstream regulator
(Creighton et al., 2008). Based on the SEM model, a presumed
relationship can be tested in humans by determining the
significance of the inference via a non-parametric bootstrap

FIGURE 2 | The SEMIPs user interface. The main panel contains four tabs: “T-Scores”, “Bootstrap”, “SEM”, and “Instructions”. The right panel shows the screen
when the “T-Scores” tab is selected and generated. In the left panel, the application accepts two inputs: 1) a list of signatures (in Entrez gene symbol format) and 2) a data
matrix of expression measurement with the top lines shown for viewing. The green “Go!” button is clicked to launch the T-score generation and grayed out to denote the
process is running. The first 10 rows of the T-scores matrix are shown; however, the entire matrix can be downloaded by clicking the “Download T-Scores” button.
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resampling framework. Any resulting perturbed pathways that
are significant would help to prioritize experiments in model
systems. These workflow steps are shown within the dotted
rectangle on the right side of Figure 1 with the three major
features implemented in the SEMIPs app as the function tabs
(Figure 2).

T-Score Calculation to Aid in Translational
Research
The T-score was employed to project molecular activities of a
gene of interest from a model system experiment to human
specimens where a perturbation was not directly applicable
(Creighton et al., 2008; Creighton et al., 2009; Luo et al., 2009;
Qin et al., 2014). In a model system, the subjects are randomly
assigned into two groups, where one group will receive “placebo”
and/or no treatment and the other group will receive a treatment
as a perturbation. Experimental measurements will be properly
collected from both groups (i.e., gene expression profiles from a
genome-wide gene expression experiment). Significantly changed
genes/probes (signatures) will be obtained from this analysis
according to pre-determined thresholds followed by a
statistical analysis with directionality (up/down regulation).
Such a list of genes/probes are deemed collectively as the
“gene signature” of biological responses to a particular
perturbation in a given context such as cell or tissue types of
interest. In addition, these downstream target genes of the
perturbed system are referred to as “signature genes”. This
gene signature information will be projected into the human
specimen of interest bearing the assumption that the biological
functions of the genes of interest are conserved between the
chosen model system and the human specimen.

In the gene expression dataset (i.e., human) of which the
molecular activities of the factor of interest on individual samples
are to be estimated, the orthologs of the signature genes are first
identified and grouped based on the directionality of the signature
genes. The T-scores of individual samples in the dataset are
derived from a t-test between the two groups of measurements
to compose a single number as a quantitative surrogate of
molecular activities of interest. Samples with T-scores larger
than 0, which share a similar signature gene expression profile
from the model system, were classified as having gene activities
and vice versa.

As an example of how to use the SEMIPs app, we provide: 1) a
list of a human gene signature in Entrez gene symbol
format (Human Sig. xlsx) and 2) a data matrix of human gene
expression profiles (HumanArray2Shiny.xlsx) located under
“/app_installation_dir/testData/t-score/“. Once the data files
are uploaded, the top few lines of data are visible for preview
(Figure 2). As an additional example, we also provide the mouse
signature genes (Mouse Sig. xlsx) and homologus human
signature file. After the species is properly matched by
selection, the T-scores will be calculated by clicking the green
“Go!” button. The top 10 rows of the T-scores will be shown for
preview. The usercan download the T-scores for further analysis.
Since the T-scores are calculated from a two-side t-test, the
corresponding p-values are also reported (the second column
in T-scores results shown in Figure 2).

Structural Equation Modeling
The impact of genetic interactions among regulators on
downstream target genes is often tested by simultaneous
manipulations on levels or activities of the regulators in a
model system. The SEMIPs app takes advantage of publicly

FIGURE 3 | A two-class bootstrap resampling (elimination with or without replacement) simulation. From the initial GATA2 significant gene list represented as the
yellow rectangle, the downstream target genes (“N”) are eliminated in the without replacement simulation (left side) giving rise to the shrunk significant gene list
represented by a smaller yellow rectangle; in the elimination with replacement simulation (right side), the same number of genes as that of the targeted subset of genes
(“N”) are eliminated giving rise to the shrunk significant gene list, and then restored back to the original size by adding back randomly draw (“N”) represented by the
far right green oval from the gene pool represented by the blue cylinder. In the elimination without replacement, the resulting shrunkenGATA2 gene list is used to calculate
the T-scores, then fed into the SEM model indicated by the green rectangle. In the elimination with replacement, the restored gene list is used to calculate the T-scores,
then fed into the SEM model. The simulation can be repeated for a large “number of bootstraps” to generate a non-parametric distribution for statistics significance.
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available or existing gene expression information to examine such
potential interactions in silico by SEM. SEMIPs supports the
testing of hypotheses in which two upstream regulators (“Fac1”
and “Fac2”) concurrently regulate the levels of one downstream
reporter gene (Endpoint) in a 3-nodemodel (Figure 1). The input
variables for upstream regulators can be either the gene
expression levels or the molecular activities in T-score format.
Our current SEM model tests both upstream regulators in
relation to the “endpoint”, where γ11 and γ21 are the
coefficients in the regression model and ε1 is the residual
(Figure 1). Once the SEM tab is selected, the default data will
be loaded and all features are available for the user to choose from
the drop-down windows (Figure 2). The two exogenous variables
(Fac1 & Fac2) are hypothesized as “causal factors” in the SEM
model and one endogenous variable (Endpoint) as the “effect”
(Figure 1). The app reports model fitting statistics and the three-
node SEM figure both of which can be downloaded. This feature
also allows users to test a separate system by uploading their
relevant dataset. The dataset requires the same format as the
example data. Results derived from SEMIPs could possibly aid in
the prioritization of wet lab experiments and the establishment of
clinical relevance.

Two-Class Bootstrap Simulation
Biological signaling is often transduced by a cascade of
downstream effectors in a hierarchical manner. The gene
signature of an upstream regulator is usually a collective
presentation of activities of multiple downstream effectors
whose mRNA abundance may or may not be altered upon
stimulations. In silico dissection of the contribution of
effectors to the upstream regulators’ effect has been utilized
previously by removing genes that reflect the effector’s
activities from the upstream regulator’s gene signature
(Creighton et al., 2008). In the SEMIPs app, genes that are
associated with biochemical pathways, or belong to the
downstream effector’s gene signature, can be tested with two-
class bootstrap resampling (elimination with or without
replacement) for statistical significance (Figure 3). In the
“elimination without replacement” process, we attempt to
eliminate the same number (N) of irrelevant genes, then
continue with the following SEM modeling steps etc. On the
other hand, in the “elimination with replacement” process, we
first eliminate “actual downstream target genes (N)”, and then
randomly select the same number of “irrelevant genes” from the
pool (indicated by the blue cylinder as shown in Figure 1) and put
them back into the shrunken list to restore back to the same
number of genes as the “GATA significant gene list” followed by
the following SEM modeling steps.

The app package comes with four downstream gene sets to test
the boostrap resampling. Under the “Bootstrap” tab, the user can
load these gene sets and run the bootstrap simulation analysis.
The impact on the downstream system can be assessed by either
elimination without replacement or with replacement. To ensure
the rigor of the statistical test, it is recommended to run the
bootstrap a minimum of 1,000 times. Depending on the hardware
configuration, this analysis can take a considerable amount of
time. Users can download the zipped results after the analysis is

completed (shown in Supplementary Figure S2). The results
derived from this analysis could potentially serve as a rationale to
further genetic or pharmacological experiments.

A Use Case Application
Previously we demonstrated that the mouse gene signatures of
GATA Binding Protein 2 (GATA2) and progesterone receptor
(PGR) allow inference of the interaction between the two
transcription factors for regulation of SRY-box transcription
factor 17 (SOX17) expression in the human endometrial tissues
(Rubel et al., 2016). The full GATA2 gene signature consists of both
direct and indirect downstream genes of the transcription factor in
the uterus (Rubel et al., 2016). Since GATA2 is a transcription
factor that occupies cis-acting elements and confers genomic
regulation activity, we hypothesize that the expression levels of
GATA2’s direct downstream targets reflect its activities in silico.
Here, a direct downstream target of GATA2 is defined as a
GATA2-regulated gene with GATA2 genomic occupancy within
the 2-kilobase vicinity of its transcription start site in the uterus
(Gene Expression Omnibus (GEO) accession: GSE40659 (Rubel
et al., 2016)). This stringent criterion led to the identification of a
list of 634 genes (Supplementary Table S1), which is termed the
“GATA2 direct signature”. The GATA2 activity, as represented by
the GATA2 direct signature in a T-score, was quantified by the
SEMIPs app from gene expression data of the endometrium tissue
for each individual human subject (GEO accession: GSE58144
(Koot et al., 2016)). T-scores for the uterine GATA2 in all 115
patients were calculated by the app with the GATA2 direct
signature and the data matrix of GEO accession: GSE58144
(Supplementary Table 2). Similarly, T-scores for the uterine
PGR (termed the “PGR signature”) were obtained using the
GEO accession: GSE39920 dataset (Rubel et al., 2016) on the

FIGURE 4 | Major model fitting statistics for the joint regulation of the
SOX17 gene expression levels by GATA2 and PGR activities in the GEO
accession: GSE58144 dataset illustrated in the 3-node SEM. Two exogenous
variables are “Gene Signature of GATA2 Direct Downstream Targets”
and “PGR Gene Signature” respectively, and one endogenous variable is
“SOX17 Expression Levels”.
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same datamatrix via the application’s T-score calculation function.
To test whether the GATA2 direct signature fits the model of the 3-
node PGR-GATA2-SOX17 genetic network, the application via the
SEM tab, was fed with T-scores of the GATA2 direct signature and
the PGR signature as exogenous variables, and the SOX17
expression levels as the endogenous variable. The analysis
results show that given the GATA2 direct signature in place of
the full gene signature, the model significantly fits the GEO
accession: GSE58144 dataset with all proposed paths (Figure 4)
and this model is considered not rejected by the human data. This
finding suggests that the expression levels of the GATA2 direct
downstream targets, a subset of the full GATA2 regulated genes,
can serve in silico as surrogate reporters of the GATA2 activities in
the human endometrium tissues. This supports the hypothesis that
gene expression patterns of GATA2 direct downstream target
genes are capable of reflecting GATA2’s activities in this
context. Results of this analysis not only reduce the number of
reporter genes for GATA2 activities to 634, but also implicate
possibilities of a further reduction with additional filtering criteria
on the gene list. A small and manageable panel of markers for
GATA2 activities could serve as a future diagnostic tool for
pregnancy failure (Diaz-Gimeno et al., 2011).

DISCUSSION

The SEMIPs R Shiny app offers an easy to use in silico
perturbation testing system with several advantages. First, it
has the capability of calculating gene activities using large
datasets representative of biological systems. Second, it
leverages the power of SEM to test the relationship among
end points in a study and provides users with the flexibility
for testing new hypotheses. Lastly, it integrates a non-parametric
testing procedure for assessing statistical significance.

This app allows users quick assessments of genetic interactions
and subsequent hypothesis generation without having to know
computer programming or statistical modeling. Due to its
simplicity in design, this app is limited to a 3-node model
fitting. Models of higher complexity can be tested using the R
package MplusAutomation that focuses on automating the SEM
modeling which was originally implemented in the commercial
software Mplus (Hallquist and Wiley 2018). MplusAutomation
uses open-source R to mirror Mplus functionality and automates
modeling threemajor aspects of latent variablemodeling, including
creating a group of models, running them in batches, and
extracting the model fitting statistics. Our SEMIPs app is
similar to MplusAutomation in that the SEM model is
implemented but rather in R instead of Mplus for wide
availability. We use the lavaan package, a highly credited/cited
package in the research community since 2012 to implement the
SEMmodel and extract all the statistics from the modeling output.
The goal of SEMIPs is to provide a convenient and easy to use tool
that bridges bioinformatic assessments and scientists who have
minimum computation background for hypothesis generation and
inferring biological processes across experimental systems. This is
achieved by employing R shiny to render a user friendly web front
end, as demonstrated in the manuscript.

Currently, the two-class bootstrap analysis can only be
conducted separately. Integration of these into the SEMIPs
methodology for formulation into a single test will be
investigated for future design, development, and implementation.
As noted in the manuscript and mentioned previously, the SEMIPs
app has been adopted by wet lab researchers with a few papers
published recently (Liu et al., 2019;Wetendorf et al., 2020).We hope
that it can serve a wider research community to address additional
scientific questions.
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