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Abstract

Background: Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development
and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many
computational models have been proposed. However, because of the lack of systematic analysis and comparison of the
different computational models, there remain limitations in designing more effective algorithms and selecting more useful
features. There is therefore an urgent need to review and analyze previous computation models to obtain general
conclusions that can provide useful guidance to construct more effective computational models to predict ADRs.

Principal Findings: In the current study, the main work is to compare and analyze the performance of existing
computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used
for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent
and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing
the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this
finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance
among the algorithms investigated in this paper.

Conclusion: Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting
optimal features and algorithms.
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Introduction

Early and accurate identification of ADRs is critically important

for drug development and clinical safety. Traditional clinical trials

to recognize ADRs are expensive and time-consuming. Converse-

ly, computer-aided methods for predicting ADRs are much

cheaper and quicker than clinical trials and highly reliable [1–3].

Constructing machine learning models by combining intrinsic

features of drugs and ADRs with topological features of drug-ADR

association networks has been one of typical computer-aided

methods for predicting ADRs [4,5]. However, many other state-

of-the-art methods have been proposed to predict drug targets [6–

15]. Computer-aided prediction of drug targets is similar to

prediction of ADRs: there are close relationships between ADRs

and drug targets that have been identified in biological systems

[16,17]. In addition, in terms of mathematics, the prediction of

ADRs and drug targets can both be abstracted into link prediction

models on a bipartite network; therefore most of the computa-

tional processing steps are similar between these two systems. We

therefore hypothesize these series of state-of-the-art methods,

which have been successfully applied in the prediction of drug

targets, could also achieve excellent performance in the prediction

of ADRs. Our results also support this hypothesis indirectly.

Hence, in recent years, many computational methods have been

proposed to predict ADRs or drug targets, whereas less attention

has been paid to compare and analyze existing computational

methods and features. Here, we summarize the existing compu-

tation methods and features that have been proposed, extract

classical methods and features to construct different representative

computational models for predicting ADRs, and compare and

analyze these methods and features. Finally, useful findings are

provided for searching optimal features, appropriate algorithms

for predicting ADRs. A brief illustration of the main workflow in

this paper is shown in Figure 1.

Materials and Methods

Materials
In this paper, two drug-ADR association networks were

constructed; one was called the training network, and the other

was called the testing network.

To construct the training network, drug data were collected from

the following databases: DrugBank [18], Kegg [19], FDA Adverse

Event Reporting System (FAERS, website: www.fda.gov/

Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/

AdverseDrugEffects/default.htm) of 2005, and SIDER [20]. To
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reduce the proportion of false positives in drug-ADR associations

from SIDER and FAERS (in 2005), an interacting drug-ADR pair

was taken only when the drug-ADR pair was recorded in both

databases. In addition, according to the Medical Dictionary for

Regulatory Activities (MedDRA) [21], ADRs can be divided into

five different levels: the System outraged Class (SOC), the High

Level Group Term (HLGT), the High Level Term (HLT), the

Preferred Term (PT), and the Lowest Level Term (LLT). Here, only

ADRs in the HLT Level were considered; therefore, ADRs recorded

in FAERS and SIDER that belonged to PT or LLT were first

mapped to HLT.

We obtained the testing network by adding drug-ADR

associations recorded in both FAERS and SIDER from 2006 to

2011 to the training network. Finally, the network node sets

(consisting of drug nodes and ADR nodes) were identical in the

training and testing networks, whereas the network edge sets

(interacting drug-ADR pairs) were different. The related quanti-

tative statistics of the drug-ADR networks are provided in

Table 1 and Figure 2.

Problem formalization
The problem of predicting ADRs of drugs can be abstracted to

the problem of predicting new interactions in a drug-ADR

association network. Formally, Xd~fd1,d2:::,dnd
g and

Xa~fa1,a2:::,ana
g represent a set of the drug nodes and ADRs

nodes in a drug-ADR association network, respectively, and the

edges in the network represent interacting drug-ADR pairs.

Furthermore, this bipartite network can be characterized as an

nd|na adjacency matrix Y. That is, ½Y �ij~1 if an existing

association is previously known between di and aj , and ½Y �ij~0

otherwise. In addition, to make it more convenient for later

description, the set of prediction scores for each drug-ADR pair

are characterized as an nd|na matrix bYY , where the element ½bYY �ij
represents the prediction score of the drug-ADR pair (di,aj). The

set of similarity scores of drugs and similarity scores of ADRs are

characterized as an nd|nd similarity matrix Sd and an na|na

similarity matrix Sa, respectively. The elements ½Sd �ij and ½Sa�ij
represent the similarities of the drug-drug pair (di,dj) and the

ADR-ADR pair (ai,aj), respectively. One of main tasks in this

paper was to compute the prediction score of each non-interacting

drug-ADR pair (di,aj) and then to determine whether an

association between di and aj existed using the prediction score

of the drug-ADR pair (di,aj).

Model features
Features of drugs or ADRs in this paper were used to

characterize the similarity of drugs or ADRs. Here, intrinsic

features and topological features of drugs’ and ADRs were

employed.

Topological feature. To extensively investigate the effect of

topological features on computational models for predicting

ADRs, six common topological features and a new topological

feature designed by us were employed to characterize the

similarity of drugs or ADRs.

1) Jaccard coefficient (denoted JC(x,y)):
C(x)\C(y)j j
C(x)|C(y)j j. Here,

C(x) and C(y) represent the neighborhood set of homology

nodes x and y, respectively. In drug-ADR association

network, there are two classes of nodes (drug nodes or ADR

nodes). Therefore, the relationship of any two drug (ADR)

nodes is homologous, while, the relationship between a drug

node and an ADR node is heterologous, here, if two nodes

both belong to drug or ADR nodes, we call them as homology

nodes. In addition, the symbol :j j represents the number of

elements in a set.

2) Gaussian interaction profile kernel (denoted GK(x,y)): this

feature is proposed in by the scholar Laarhoven and has been

successfully applied to predict drug-target interactions [12].

Figure 1. Overview of the main workflow in this paper. First, data were integrated from multiple sources, including network data (drug-ADR
associations) and intrinsic data (chemical structures and ATC taxonomies of drugs and MedDRA taxonomies of ADRs). Next, topological features and
intrinsic features were constructed based on network data and intrinsic data, respectively, and then integrated features were constructed by
integrating topological features with intrinsic features, Finally different algorithms were selected to construct models to predict ADR, and
comparative analyses were performed for features, algorithms and prediction results based on modeling experiments.
doi:10.1371/journal.pone.0105889.g001
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3) A topological feature proposed by the scholar Allali [22]

(denoted WRCN(x,y)):
P

Z[C(x)\C(y)

1

C(z)j j;

4) Neighbors Product (denoted NP(x,y)): C(x)|C(y)j j;
5) Common Neighbors (denoted CN(x,y)): C(x)\C(y)j j;
6) A feature proposed by the scholar L.A.Adamic [23] (denoted

WLCN(x,y)):
P

z[C(x)\C(y)

1

log( C(z)j j);

7) A new feature is designed by us, which is similar to JC

(denoted JCPN(x,y)):
C(x)\C(y)j j

C(x)|C(y)j j{ C(x)\C(y)j j;

Intrinsic features. The intrinsic features were obtained from

chemical structures or biological functions of drugs or ADRs. The

intrinsic features of drugs were based on chemical structures and

the ATC taxonomy of drugs [24,25], and the intrinsic features of

ADRs were based on the MedDRA taxonomy of ADRs. The

chemical similarities between drugs were computed using

SIMCOMP [26], and the ATC taxonomy similarities between

drugs and the MedDRA taxonomy similarities between ADRs

were both computed using the semantic similarity algorithm

[5,11,27].

Classification algorithm
There are many state-of-the-art methods to predict drug targets.

In this study, we selected the regularized least – squares classifier,

semi-supervised link prediction classifier and the nearest –

neighbor classifier from these existing methods to predict ADRs.

There are several justifications for this selection. The performance

of methods [7,8,9,12,13,14] have been tested on a same dataset

[7], the performance of method [12] based on the regularized least

– squares and method [9] based on the semi-supervised link

prediction was competitive with others, especially, method [12]

yielded the highest performance among these methods. On the

other hand, regularized least – squares classifier, semi-supervised

link prediction classifier and the nearest – neighbor classifier

belong to supervised learning, semi-supervised learning and

memory-based algorithm, respectively, therefore, these three

classifiers were representative of different classes of algorithms

among existing methods. We briefly discuss these algorithms

below.

RLS. The Regularized Least-Squares classifier (denoted RLS)

[12,28] is a basic supervised learning algorithm. If an appropriate

kernel has been chosen for RLS, the accuracy of RLS will be

similar to support vector machine (SVM), whereas the computa-

tion complexity of RLS is much less than SVM. The RLS

algorithm can be divided into three separate sub algorithms for

defining the kernel matrix: RLS-KP, RLS-KS and RLS-avg.

Here, KP and KS are short for Kronecker Product [25,29] and

Kronecker Sum [29], respectively.

SLP. Semi-supervised Link Prediction classifier (denoted SLP)

is a semi-supervised learning algorithm [9,30], and the basic

assumption of SLP is ‘‘Two node pairs that are similar to each

other are likely to have the same link strength’’ [30]. Based on this

assumption, the objective function is defined as:

Figure 2. Degree distributions of drugs and ADRs. The left panel depicts the histograms of the degrees of drugs. The right panel depicts the
histograms of the degrees of ADRs.
doi:10.1371/journal.pone.0105889.g002

Table 1. Statistics for the drug-ADE networks.

Statistics Train drug-ADE network Test drug-ADE network

Number of drugs 404 404

Number of ADEs 461 461

Number of drug-ADE associations 9180 19182

Average degree of drugs 22.7 47.5

Average degree of ADEs 19.9 41.6

doi:10.1371/journal.pone.0105889.t001
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where s is a regularization parameter and L is a Laplacian matrix.

SLP also can be divided into three independent sub algorithms for

defining L: SLP-KP, SLP-KS and SLP-avg.

NN. The Nearest-Neighbor classifier (denoted NN) is a simple

memory-based algorithm (more detailed descriptions regarding

algorithms are provided in File S1).

Results and Discussion

Evaluation
Ten-fold cross validation and prospective evaluation were used

to evaluate the performance of each model. For ten-fold cross

validation, interacting drug-ADR pairs and non-interacting drug-

ADR pairs were each randomly divided into ten folds of roughly

equal size; in each run of the method, one fold of interacting drug-

ADR pairs and one fold of non-interacting drug-ADR pairs were

left out by setting their entries in adjacency matrix Y to 0. We then

attempted to recover their true labels using the remaining data.

Note that the Y matrix corresponds to the training network. For

prospective evaluation, the training data consisted of the training

network and the validation data consisted of all the testing network

drug-ADR pairs that were non-edges in the training network. We

attempted to recover the true labels of the validation using the

training network.

We assessed the model performance with the following two

common quantitative indexes: AUC [31] and AUPR [32]. The

value of AUC is determined from the area below a curve relating

the proportion of true positives versus the proportion of false

positives, whereas the value of AUPR is determined from the area

below a curve relating precision versus recall.

Feature analysis
In this paper, two types of features (topological features and

intrinsic features) were employed in the modeling experiment. To

comprehensively analyze these features, associations between

features were first investigated, and then the performances of

models constructed using only intrinsic features or topological

features were tested, and lastly, the performances of models

constructed with integrated features were evaluated.

Associations between features
Here, Pearson correlation coefficients among drug or ADR

features were calculated separately. The detailed results are listed

in Table S1 and Table S2. The Pearson coefficients among drug

Table 3. AUPR scores of the models built with different topological features.

AUPR

JC GK WRCN NP CN WLCN JCPN

RLS-KP 63.5(0.2) 60.4(0.2) 38.5(0.3) 53.1(0.1) 5.9(0.1) 4.7(,0.1) 5.3(0.3)

RLS-KS 63.6(0.1) 58.7(0.1) 45.6(0.2) 52.8(0.1) 10.5(0.1) 6(0.1) 5.8(0.2)

RLS-avg 63.4(0.1) 58.4(0.1) 59(0.2) 53.2(,0.1) 14.2(0.1) 7.3(0.1) 7.2(0.9)

SLP-KP 4.9(0.5) 4.1(0.5) 20.5(5.3) 3.6(2.2) 6.3(0.2) 5.5(0.2) 4.9(0.4)

SLP-KS 51.7(0.1) 3.9(0.7) 10(0.4) 2.6(,0.1) 10.1(1.5) 7.3(0.6) 26.9(5.4)

SLP-avg 57.7(0.1) 30.1(,0.1) 57.4(0.1) 53.5(,0.1) 56.1(0.1) 55.9(0.1) 58.1(0.1)

NN 52.1(0.2) 4.1(,0.1) 41.7(0.1) 36.4(0.1) 39.5(0.1) 39.1(0.2) 51.9(0.2)

GWPM 60.0(0.1) 30.9(,0.1) 59.5(0.1) 53.2(0.1) 58.1(0.1) 57.4(0.1) 65.4(0.2)

Determined from ten-fold cross validation experiments. The AUPR scores are normalized to 100.
doi:10.1371/journal.pone.0105889.t003

Table 2. AUC scores of the models built with different topological features.

AUC

JC GK WRCN NP CN WLCN JCPN

RLS-KP 91.1(0.1) 92.7(0.1) 80.9(0.1) 90.2(0.1) 50.8(0.3) 48.8(0.5) 50.5(0.7)

RLS-KS 92.1(0.1) 93.3(0.1) 89(0.1) 91.2(0.1) 68.4(0.2) 54.4(0.2) 50.4(1.0)

RLS-avg 93.1(0.2) 92.7(0.1) 91.9(0.2) 91.1(,0.1) 72.6(0.2) 63.5(0.4) 52.2(3.0)

SLP-KP 43.2(2.4) 48.6(1.4) 48.3(5.6) 9.8(0.1) 49.5(1.1) 49.7(0.8) 49.5(0.4)

SLP-KS 91.1(,0.1) 34.4(0.1) 30.9(4.5) 8.7(0.1) 49(3.7) 49.7(2.1) 85.9(3.0)

SLP-avg 93.1(,0.1) 90.7(,0.1) 93.2(,0.1) 91.9(,0.1) 92.7(,0.1) 92.6(,0.1) 93.1(0.1)

NN 92.1(0.1) 36.2(0.1) 90.9(0.1) 89.4(0.1) 89.9(,0.1) 89.7(,0.1) 91.3(0.8)

GWPM 93.0(0.1) 90.7(,0.1) 93.0(,0.1) 91.0(0.1) 92.9(0.1) 92.8(0.1) 93.6(,0.1)

Determined from ten-fold cross validation experiments. The AUC scores are normalized to 100.
doi:10.1371/journal.pone.0105889.t002
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and ADR features were consistent. The intrinsic features of drugs

or ADRs were not significantly correlated with topological features

of drugs or ADRs, indicating that the information of topological

features and intrinsic features may be complementarily used in a

prediction model.

Modeling with intrinsic features
Within the intrinsic features, the chemical similarity of drugs,

ATC similarity of drugs and MedDRA similarity of ADRs were

denoted by SSTRU , SATC and SMedDRA, respectively. The Pearson

coefficient between SSTRU and SATC was 0.0905, indicating no

significant association between SSTRU and SATC . Here, Sd is

defined by integrating SSTRU with SATC as follows:

Sd~aSATCz(1{a)SSTRU , where 0ƒaƒ1; and Sa~SMedDRA.

In the modeling experiments, ten-fold cross validation and the

Grid Search Method [33] were used to obtain the optimal value of

a. The detailed results are listed in Table S3 and Table S4: when

a~0:5, the model achieved slight better overall performance than

other models.

Modeling with topological features
The process of modeling with topological features was similar to

as with intrinsic features. Here, seven topological features were

respectively used to construct models. The detailed results are

listed in Table 2 and Table 3. Almost all models built with the

topological feature JC yielded good performance (except SLP-

KP). Hence, compared with the other six topological features, JC

has the most important and general effect on predicting drug-

ADR associations.

Modeling with integrated features
Here, the features that integrate topological features with

intrinsic features were further investigated. The intrinsic similarity

matrices of drugs and ADRs were defined as SIntrD and SIntrA,

respectively (SIntrD~0:51SATCz0:51SSTRU ; SIntrA~SMedDRA).

The integrated features were as follows:

Sd~(1{a)SIntrDzaSToplD; Sa~(1{b)SIntrAzbSToplA; where

0ƒaƒ1, 0ƒbƒ1, and the topological features of drugs and

ADRs were denoted as SToplD and SToplA, respectively. In the

modeling experiments, ten-fold cross validation and the Grid

Search Method were used to obtain the optimal values of a and b
for each integrated feature. The detailed results are delineated in

Table S5, Table S6, Table S7 and Table S8. Compared with

models constructed with intrinsic or topological features separate-

ly, models constructed with integrated features yielded better

Figure 3. Distribution of prediction scores for different types of drug-ADR pairs. The histograms of distributions of prediction scores of
models built by four algorithms are shown. In each sub panel, the blue, green, yellow and red histograms represent the distributions of prediction
scores for low degree drug- low degree ADRs, high degree drug- low degree ADRs, low degree drug- high degree ADRs and high degree drug- high
degree ADRs, respectively.
doi:10.1371/journal.pone.0105889.g003

Table 4. The performances of the optimal models validated by prospective evaluation.

Weight coefficient Model performance

Algorithm feature a b AUC AUPR

RLS-avg JC 0.9 1 79.2 25.5

SLP-avg JC 0.9 0.7 85.1 26.4

NN JC 0.7 1 83.1 26.1

GWPM JCPN 0.8 0.8 82.7 26.9

Here, a indicates the weight coefficient of drug topological features, b indicates the weight coefficient of ADR topological features; The AUC and AUPR scores are
normalized to 100.
doi:10.1371/journal.pone.0105889.t004
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performance; that is, the information of intrinsic features and

topological features was complementary.

Algorithm analysis
According to the above results, the best performance of models

was obtained from RLS-avg with an optimal integrated feature

that integrated JC with intrinsic features of drugs and ADRs

([AUC,AUPR] = [0.933,0.635]). While, models constructed using

SLP-avg with either intrinsic features or topological features of

drugs and ADRs all yielded excellent performance. Therefore,

among these seven sub algorithms, models constructed using SLP-

avg yielded the best overall performance, demonstrating that SLP-

avg is a more general algorithm for predicting drug-ADR

associations.

By comparative analysis of the structure of each algorithms,

final formulas of these algorithms could be unified as:

vec(bYY )~S:vec(Y ) or bYY~S:Y ; here, S~f (Sd ,Sa), where S is a

function of the similarity matrices Sd and Sa, and S is a symmetric

matrix. More detailed descriptions of the unified formulas are

provided in the File S2. For unify formulas, S was considered as a

similarity matrix of drug-ADR pairs, therefore, all models in this

paper can be converted to simple linear models, and the major

difference between these models occurs in methods regarding the

construction of S. Based on the above analysis, we attempted a

simple general linear method to construct S and then designed a

simple algorithm called general weighted profile method (denoted

GWPM, a more detail description of GWPM is provided in File
S1) And the performance of this algorithm of prediction ADRs by

ten-fold cross validation was shown in Table 2, Table 3, Tables
S5, Tables S6, Tables S7 and Tables S8. Although the

computation complexity of GWPM is relatively lower than other

algorithms (except NN), the overall performances of models

constructed using GWPM was even better than SLP-avg,

especially, the model constructed using GWPM with the optimal

integrated feature integrating JCPN with intrinsic features yielded

the best performance ([AUC, AUPR] = [0.942, 0.657]) among all

test models in this paper. Hence, finding a good method for

constructing S (which is equivalent to finding a proper mapping

function from drug and ADR space to drug-ADR pair space) is the

key to predicting of drug-ADR associations.

Statistical analysis of model predictions
According to the above results regarding model performance

based on ten-fold cross validation, models were rebuilt by each

algorithm with the optimal feature and then validated by

prospective evaluation. For RLS and SLP, we selected one sub

algorithm among the three sub algorithms (RLS-avg and SLP-avg,

respectively), and the detailed results are presented in Table 4.

The associations between prediction scores of drug-ADR pairs and

degrees of drugs or ADRs were also investigated. If the degree of

drug or ADR was more than 40 in the training network, then the

drug or ADR was considered as a high degree drug or ADR;

otherwise, was considered as a low degree drug or ADR. Hence,

all drug-ADR pairs were divided into four types: low degree drug-

low degree ADR pair, high degree drug- low degree ADR pair,

low degree drug- high degree ADR and high degree drug- high

degree ADR. The prediction score distribution of these four type

drug-ADR pairs is shown in Figure 3. Drug-ADR pairs that had

known interactions in the training network were not recorded in

the prediction score distribution. According to Figure 3, the

prediction scores of drug-ADR pairs and degrees of drugs or

ADRs displayed positive correlations, indicating that the interac-

tion between drug-ADR pairs containing high degree drugs or

ADRs were more likely to be predicted correctly by models. Each

model has limited ability to predict low degree drug- low degree

ADR associations. On one hand, this result demonstrated the

limitation of topological features; on the other hand, although

integrated features have integrated topological and intrinsic

features, the limitation of topological features was not compensat-

ed sufficiently well by intrinsic features. Therefore, more effective

intrinsic features of drugs and ADRs still require further

investigation to improve the model prediction performance.

Comparative with other existing ADR prediction

literature. We are aware of only a few other studies that

attempts to predict unknown likely ADRs through combining

intrinsic and topological features methods [4,5]. The study [5] and

the current study are similar in that they both integrate various

types of information to predict unknown likely ADRs, and

conclusions about various features are consistent. The data and

methods used by the two studies differ in several ways. In current

study, drug-ADR associations were extracted from following

databases: FAERS and SIDER, and to reduce false positives in

drug-ADR associations, a drug-ADR pair was taken only when it

was recorded in both databases. While, in study [5], drug-ADR

associations were mainly extracted from a proprietary commercial

database widely used in hospitals today, provided by Lexicomp

(http://www.lexi.com). Perhaps the most important distinction

between these two studies lies in computational methods for

predicting ADRs. Seven different methods were used in current

paper (six methods had been used for predicting drug targets

before, and one methods proposed by ourselves) and a systematic

comparative analysis is conducted in terms of performance of these

methods, finally, some general conclusion regarding algorithms

and features is obtained, such as, the feature Jaccard coefficient

had an important and general effect on the prediction of drug-

ADR associations, final formulas of algorithms selected in current

study were all converted to linear model in form. Compared with

[5], which only used a logistic regression predictive model. In

order to facilitate benchmark comparisons between methods in

two studies, we tested the performance of the method used in study

[5] on data sets used in current paper, and performance evaluated

by ten-fold cross validation and prospective evaluation are [AUC,

AUPR] = [0.927, 0.616] and [AUC, AUPR] = [0.793, 0.249],

respectively. While, in the current paper, for example, the best

performance of GWPM evaluated by ten-fold cross validation and

prospective evaluation are [AUC, AUPR] = [0.942, 0.657] and

[AUC, AUPR] = [0.827, 0.269], respectively. The results showed

performance of methods used in current study was competitive

with the study [5].

Conclusions. In this paper, three typical algorithms and a

new algorithm combining ten features were used to construct

models to predict new drug-ADR associations. Different algo-

rithms, features and prediction results were compared and

analyzed respectively. Finally, several meaningful conclusions

were drawn as follows:

Seven topological features and three intrinsic features of drugs

or ADRs were analyzed in this paper. Among these seven

topological features JC had the most important and general effect

on the prediction of drug-ADR associations. In addition, models

built using integrated features had better performance than using

only topological or intrinsic features, demonstrating that topolog-

ical and intrinsic features were complementary. However, for rare

ADRs (only a few drugs have been currently validated to have

these ADRs), models built with integrated features did not

correctly predict associations between these ADRs and drugs.

Therefore, more effective intrinsic features of drugs and ADRs still

require further investigation.
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GWPM yielded the best overall performance among all

algorithms in this paper as determined from ten-fold cross

validation. Additionally, because all algorithms have unified linear

formulas, finding an optimal method for constructing the similarity

coefficient matrix in the linear formula will be useful to improve

accuracy of predicting drug-ADR associations.
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