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Abstract

Background: With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with ‘‘classical’’ adjuvants do
not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-
associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early
protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the
immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal
murine immunization model.

Methods/Findings: The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the
novel IC31H adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1) CD4+ T cell
responses, (2) vaccine targeting/activation of dendritic cells (DC) and (3) protection in a surrogate mycobacterial challenge
model. Conversely to Alum, IC31H induced in both age groups strong Th1 and Th17 responses, characterized by
multifunctional T cells expressing IL-2 and TNF-a with or without IFN-c. In the draining lymph nodes, a similarly small
number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40,
CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/
activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial
growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant.

Conclusion: Neonatal immunization with the IC31H- adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like
multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC
activation.
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Introduction

Tuberculosis (TB) continues to be a global disease burden

despite the widespread use of Bacillus Calmette Guerin (BCG)

immunization (www.who.int/mediacentre/factsheets/fs104/en).

Considerable efforts are aiming at the development of novel, safer

and more efficacious vaccines against tuberculosis [1,2]. A major

limitation towards the achievement of this goal is a lack of reliable

biomarkers of protective immunity against M. tuberculosis (Mtb).

Both CD4+ and CD8+ T cells may contribute to protection, a

central role for CD4+ T cells being suggested by the disease

patterns in HIV-1 infected patients [3]. A critical function for anti-

mycobacterial effectors is to produce type 1 cytokines, as

highlighted by the severity of mycobacterial infections in children

with genetic mutations in the IL-12/IFN-c axis [4,5] or by the

high rate of Mtb reactivation and disease progression in patients

treated with TNF-a inhibitors [6]. Multifunctional T cells

concomitantly expressing several cytokines are thought to play a

crucial role in protection against various infections [7,8], and this

may also apply to tuberculosis.

Exposure to Mtb may occur very early in life and infections with

Mtb are frequently severe in infants and young children whose

immature immune system fails to limit bacterial spread [9].

Therefore immunization strategies against TB should include the

neonatal induction of potent anti-mycobacterial responses and to

prove safety of such neonatal strategies. Currently, BCG

vaccination is quite effective (approximately 80%) in human

infants [10]. It may induce adult-like IFN-c responses [11,12],
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probably as a result of potent DC activation as BCG enhanced

responses to a simultaneously administered hepatitis B vaccine

[13]. However, although it was recently demonstrated that BCG

elicits infant T cells with complex cytokine and phenotypic profiles

[14,15], no specific pattern distinguishing BCG-protected from

non-protected children has yet emerged. Major BCG-related

issues are (1) a limited persistence of the protective efficacy and

failure to protect against pulmonary disease, (2) negative

interference by previous exposure to environmental mycobacteria,

(3) safety concerns in HIV-1 infected children. This emphasizes

the need for safer and more efficacious infant TB vaccines.

Novel TB vaccines have been recently developed and a few have

already entered into clinical trials which will define their safety and

immunogenicity in naı̈ve or previously exposed adults [1]. At this

stage, predicting which of the novel candidates might also prove

immunogenic in human infants will be largely empirical and lead to

difficult ‘‘go-no go’’ decisions. The general objective of our studies is

to generate preclinical evidence supporting the decision process for

further vaccine development in children and infants. There is ample

evidence that mice may not be reliably used to predict human

vaccine efficacy. However, the main stages of immune maturation

are sufficiently well conserved between humans and mice for

specific neonatal animal models to accurately predict whether infant

B and T cell response patterns will compare to those elicited in

immunologically mature hosts [16–19]. It is of interest that both

human and murine neonates exhibit limited IFN-c expression

capacity and limited Th1 responses that likely reflect differences in

neonatal and adult DC activation profiles [20]. Aluminium salts, the

only adjuvants currently licensed for use in infants, exacerbate the

Th2-like profile of responses [21–23]. Remarkably, these neonatal

limitations can be overcome by some specific vaccines and/or

through appropriate DC activation signals [11,24,25]. It appears of

importance a priori that new TB vaccines that would be considered

for use in early life should be capable of inducing in vivo a similar

pattern of T cell and DC responses in both immunologically mature

and immature hosts.

Here, we assessed the T cell and DC in vivo activation patterns

elicited by a fusion protein of two major tuberculosis antigens

(Ag85B and ESAT-6) formulated in a novel adjuvant, IC31H
(registered CTM and US trademark and is covered inter alia by

international patent applications PCT/EP01/12041 and PCT/

EP01/06433, both are pending or granted in several countries).

The IC31H adjuvant contains a KLK peptide and a TLR-9-

triggering non-CpG oligonucleotide (ODN1a) [26,27] and confers

protective efficacy in challenge models of murine tuberculosis

[28,29]. IC31H-adjuvanted Ag85B-ESAT-6 was recently shown to

induce potent responses in a clinical trial [30]. We show here that

this vaccine candidate elicits the exact same pattern of multifunc-

tional CD4+ T cells and of focused in vivo DC activation in

neonates as in adults.

Results

Induction of adult-like multifunctional neonatal CD4+ T
cells

C57Bl/6 mice were primed at 1 week of age (i.e. at the stage of

immune maturation that most closely reflect that of human

neonates [16] with Ag85B-ESAT-6 (5 mg) formulated in IC31H or

aluminum hydroxide (Alum, control) via the subcutaneous (s.c.)

route. Mice were boosted 3 weeks later, unless indicated

otherwise. Neonatal weight gain, a sensitive method of monitoring

neonatal reactogenicity, was normal in each group and the

incidence of local reactions (inflammatory nodules) was similar to

that of adult mice (data not shown).

Immunization with Ag85B-ESAT-6 in Alum elicited signifi-

cantly weaker IFN-c and stronger IL-5 responses in mice primed

as neonates than as adults, a Th2-preferential pattern character-

istic of neonatal vaccine responses (Figure 1). In contrast, Ag85B-

ESAT-6 in IC31H elicited a mirror pattern with similarly high

IFN-c responses and modest IL-5 responses in both age groups.

This induction of adult-like neonatal responses was confirmed by

assessing the cytokine frequency and production of IFN-c IL-2,

TNF-a and IL-17 (Table 1). Most Ag-specific CD4+ T cells

produced TNF-a and/or IL-2 in both age groups. IFN-c
producing cells were fewer, but present at similar proportions in

neonates and adults (Table 1). As previously observed in adult

mice [29], only CD4+ T cell responses to Ag85B-ESAT-6 were

elicited: Ag-specific CD8+ T cells were not detected by flow

cytometry nor was there a decrease in IFN-c production when

CD8+ T cells were blocked during in vitro culture (data not shown).

Remarkably, adult-like Th1 responses were already elicited after a

single neonatal immunization in IC31H (Table 1). Adding a 3rd

Figure 1. Unlike alum, the IC31H adjuvant induces adult-like
Th1 cell responses in neonates. Three weeks after the second
immunization, splenocytes from neonatal and adult immunized mice
were restimulated with antigen for 3 days. The production of IFN-c (A)
and IL-5 (B) is represented by the mean and SD of groups of at least 6
individual mice, and is representative of 3 independent experiments. *,
p,0.05 signifies differences between neonates and adult mice.
doi:10.1371/journal.pone.0003683.g001

Neonatal TB Vaccine Response
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immunization 3 weeks after the 2nd dose did not further increase

Ag85B-ESAT-6 specific CD4+ T cell responses (not shown).

To further delineate the functionality of Ag85B-ESAT-6 specific

CD4+ T cells, the co-production of IFN-c, TNF-a and IL-2 was

assessed by FACS intracellular staining (ICS). Six weeks after

boosting, IFN-c, TNF-a and IL-2 were produced by CD44hi

activated/memory CD4+ T cells (Figure 2A). Combination gating

was used to determine the cytokine production of single T cells in

individual mice (Figure 2B). Although the distribution of multi-

cytokine production varied as expected among individual mice,

the same pattern was observed whether mice were immunized as

adults or neonates (Figure 2C). Most cytokine+ T cells produced

TNF-a/IL-2, often with IFN-c. Remarkably, the same cytokine

production pattern was observed in mice primed as neonates.

Thus, neonatal immunization with IC31H-adjuvanted Ag85B-

ESAT-6 was well tolerated and elicited adult-like multifunctional

CD4+ T cell responses that markedly differ from the Th2-biased

neonatal pattern induced with the Alum adjuvant.

In vivo activation of neonatal and adult vaccine-targeted
dendritic cells

The 2nd stage of our vaccine candidate evaluation includes a

detailed assessment of in vivo DC activation patterns. Using

fluorochrome-labeled formulations to track antigen (Ag)+ and/or

adjuvant (Adj)+ DC in draining lymph nodes (LN), we previously

reported that IC31H induces in adult mice an exquisite DC

activation that may be detected in the draining LN 24 h after

priming [31]. Despite their very small size, the draining LN of 1-

week-old mice were harvested 24 h after a single injection of

IC31H-adjuvanted Ag85B-ESAT-6. Most Adj+ LN cells (,85%)

were DCs in adult LN (Figure 3A). This proportion was slightly

lower in 1-week-old mice, indicating some uptake by non-DC

populations. Among neonatal Adj+ DCs, only a minority (,25%)

were also Ag+ DC, as observed in adults (Figure 3B). Remarkably,

the number of Adj+ and of Ag+Adj+ DC was similar in neonates

and in adults (Figure 3C), despite the difference of LN cellularity

(not shown). Assessing the surface expression of the CD40, CD80

and CD86 co-stimulation molecules indicated that IC31H only

activated Adj+ DCs (Figure 4A) in both age groups. Remarkably,

DC activation was phenotypically similar in neonates and adults.

This was confirmed by the quantification of IL-12p40 expression,

only visualized in Adj+ DC and observed at the same level in

neonates as in adults (Figure 4B). Thus, a similar exquisite in vivo

DC activation pattern was elicited by IC31H-adjuvanted Ag85B-

ESAT-6 both in adults and neonates.

As Ag85B-ESAT-6 in Alum did not elicit the same pattern of T

cell responses in neonates and in adults (Figure 1), potential

differences in the pattern of in vivo DC activation elicited by

immunization in Alum were investigated. As aluminium salts

could not be fluorescently labeled, LN cells harvested 24 h after

immunization were gated on Ag+ DC. Remarkably, the number of

Ag+ DC was similar in adults and neonates (Figure 5A), and

similar (,500 cells) to that elicited by IC31H (Figure 3). In adults,

a slightly higher expression of CD86, but not of CD40, was

observed on Ag+ DC (Figure 5B). This partial activation of adult

Ag+ DCs did not translate into any increase of IL-12 p40

expression and was not observed in neonates (Figure 5B and data

not shown) despite the efficient targeting of neonatal DC.

Protective efficacy of novel vaccines against
mycobacterial infection

The 3rd stage of our TB vaccine evaluation includes a

mycobacterial challenge model. Six weeks after the second

immunization with IC31H-adjuvanted Ag85B-ESAT-6, mice were

challenged i.v. with Mycobacterium bovis BCG. In accordance with

CD4+ T cell responses, Ag85B-ESAT-6 did not confer any protective

efficacy when formulated in Alum, as the number of CFU in spleen

and lungs was as high as in control mice regardless of age at

immunization (Figure 6A,B). In contrast, significantly lower bacterial

counts were recovered from mice immunized with IC31H-adjuvanted

Ag85B-ESAT-6 either as adults or as neonates (Figure 6A, B).

Discussion

Conventional vaccine formulations elicit Th2-biased CD4+ T

cell responses when used in early life and specific requirements

have to be met for vaccine formulations and/or adjuvants to

successfully elicit adult-like Th1 neonatal responses [32,33]. We

show here that a novel subunit vaccine currently in clinical

development against TB meets all the predefined preclinical

criteria predicting adult patterns of human immune responses after

administration in early life.

When mice were immunized with Ag85B-ESAT-6/IC31H, an

extensive evaluation of CD4+ T cell responses failed to identify any

Table 1. Ag85B-ESAT-6-specific T cell response following immunization with antigen- IC31H formulation.

In vitro stimulation a Ex vivo intracellular cytokine staining b (% of CD44+ CD4+ T cells)

Neonates Adult p value c Neonates Adult p value

2 doses

IFN-c 2926153 213694 ISC/106 splenocytes NS 3.863.2 2.960.3 NS

IL-2 4.961.3 1.260.5 U/ml NS 6.865.6 5.160.6 NS

TNF-a 1.060.2 0.760.2 ng/ml NS 7.365.7 5.760.7 NS

IL-17 7.562.4 9.565.7 ng/ml NS ND d ND

1 dose

IFN-c 17.861.3 6.560.6 ng/ml NS ND ND

IL-5 0.660.2 0.561.0 ng/ml NS ND ND

aIFN-c secreting cells (ISC)/106 splenocytes were determined after 48 hr and IL-2 (bioassay), TNF-a, IL-17, IFN-c and IL-5 (ELISA) after 72 hr of culture.
bFollowing 6 hr culture with antigen and co-stimulation (CD28/CD49d), percent of cytokine-producing cells determined by flow cytometry.
cNS: p.0.05.
dND: not done.
doi:10.1371/journal.pone.0003683.t001
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difference between antigen-specific responses elicited in neonates

and adults. This was demonstrated for a large panel of Th1

cytokines including TNF-a, IFN-c, IL-2 and IL-17, which were

assessed in the supernatant of in vitro restimulated T cells and/or

through the number of cytokine-producing cells. An adult-like

pattern of responses was also observed following the quantification

of multifunctional CD4+ T cells secreting 2–3 distinct Th1

cytokines. Whether multifunctional T cells do play a direct role in

Figure 2. Ag85B-ESAT-6/IC31H stimulates production of multifunctional T cells in neonates and adults. The expression of IFN-c, IL-2 and
TNF-a was determined by FACS ICS on splenocytes from neonatal and adult immunized mice (A) CD4+ T cells, from neonates immunize with Ag/
IC31H or control, were stimulated with antigen or media. Cytokine production was only detected in cells from Ag/IC31H-immunized mice stimulated
with antigen. The same expression pattern was observed with splenocytes from adult immunized mice (not shown) (B) Gating combination to
determine concomitant cytokine expression. Representative gating of CD4+ CD44+ T cells from Ag/IC31H-immunized mice stimulated with antigen:
IFN-c+ and IFN-c2 populations were plotted as IL-2 versus TNF-a. (C) The concurrent expression of IFN-c, IL-2 and TNF-a is represented as pie graphs
of cytokine expression by CD4+ CD44+ T cells of individual mice, and is representative of 2 independent experiments.
doi:10.1371/journal.pone.0003683.g002

Neonatal TB Vaccine Response
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the control of Mtb is yet unknown. However, that such complex

patterns are conserved even when immunization takes place in

immature neonatal hosts strongly suggests that Ag85B-ESAT-6/

IC31H mediated signals fully overcome the limitations of innate

and adaptive neonatal immunity. This achievement may not be

accounted for by ongoing immune maturation, as an adult pattern

of CD4+ T cell responses was already observed after a single

immunization of 1-week-old mice. It may also not be ascribed to

immunogenic properties of Ag85B-ESAT-6, as its use with Alum

generated markedly biased Th2 neonatal responses. Thus, the

induction of multifunctional CD4+ Th1 cells both in immature

and mature hosts reflects the potent Th1-driving capacity of

IC31H. Yet, this was not associated with excess inflammatory

reactions – meeting another important criterion for considering

the use of vaccine candidates in neonates. In contrast to the

neonatal use of a number of other immunomodulators or novel

adjuvants [18,21,32,34] (and not shown), we observed neither

systemic nor local reactogenicity following s.c. injection of Ag85B-

ESAT-6/IC31H in neonates.

Immune responses elicited by Ag85B-ESAT-6/IC31H conferred

significant protection against a non-lethal mycobacterial challenge:

following BCG infection, mycobacterial counts were significantly

reduced in the lungs and spleens of mice immunized with Ag85B-

ESAT-6/IC31H, as compared to the use of Alum. This reduction

was similar regardless of age at immunization, indicating again no

influence of the stage of immune maturation on vaccine-induced

protection. Acknowledging the fact that a non-lethal BCG

challenge is only a proxy of Mtb infection, neonates were primed

with Ag85B-ESAT-6/IC31H, boosted and submitted to an aerosol

Mtb challenge as described [29]. Logistic limitations only allowed

us to run a single experiment, which concluded to a significant

reduction of bacterial counts in immunized compared to naı̈ve

Figure 3. Exquisite targeting of Ag85B-ESAT-6 in neonatal and adult DC of the draining LN. Twenty-four hours after immunization, (A)
the percent of IC31H-Cy5 + CD11c+ cells compared to all cells-bearing the adjuvant in the draining LN was determined. In a representative dot plot,
the percent of cells in quadrants is shown (B) The percent of Ag85-ESAT-6+ IC31H+ DC amongst all IC31H+ DC was determined. In a representative
histogram, presence of Ag85-ESAT-6-FITC in IC31H+ DC (thick line) was calculated using total DC as the control histogram (dotted line). (C) The
number of IC31H+ and Ag85-ESAT-6+ IC31H+ DC in the draining LN was calculated. The data are expressed as mean and SD of groups of at least 5
individual mice, and is representative of 3 independent experiments. *, p,0.05 signifies differences between neonates and adult mice.
doi:10.1371/journal.pone.0003683.g003
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mice (not shown). Although this preliminary observation will needs

to be confirmed in the future, it adds further evidence to our

conclusion that the use of IC31H as an adjuvant in early life

vaccines does overcome neonatal immune limitations.

The main stage of our preclinical neonatal vaccine evaluation

platform relies on the assessment of in vivo DC activation. Indeed,

the unavailability of validated surrogates of protective responses

frequently limits the predictive capacity of preclinical models:

immunological studies would not include yet unidentified

cytokines/patterns of responses, whereas protective mechanisms

may differ across species. Being at the intersection of innate and

adaptive immunity, DC targeting and activation is a most sensitive

marker of differences in responses to pathogen-associated

molecular patterns (PAMPS)-mediated signaling [35,36]. In this

report, Ag85B-ESAT-6 was used with Alum and IC31H, two

adjuvants whose biochemical/signaling properties markedly differ.

Remarkably, only a small but similar number of Ag+ LN DC were

identified in the draining LN 24 h after the injection of IC31H- or

Alum-adjuvanted Ag85B-ESAT-6. Factors that control DC

antigen uptake/migration were thus not modulated by the use of

two adjuvants markedly differing in their Th1 (IC31H) or Th2

(Alum) properties.

Both innate and adaptive immunity markedly differ in early

life [18,33]. Consequently, both human and murine neonatal

DC differ from their adult counterparts in their response

capacity to different PAMPS [20,37–39]. The direct assessment

of vaccine-targeted neonatal DC in the minute draining LN of

8-day-old mice was technically challenging. However, this was

required to define the influence of immune maturation on the

type of vaccine-targeted cells, their numbers and their state of

activation following immunization. The observation of a similar

number of Ag+ LN DC in neonates and in adults indicates that

DC antigen uptake/migration capacities are already fully

functional at 7 days of age, even when adjuvants as weak as

Alum are used. These similarities are quite remarkable given the

differences in the numbers of DC present in neonatal and adult

mice [37,38]. They do not result from a more mature LN

microenvironment [18] as a similar distribution of vaccine-

targeted cells was observed in the spleen following i.p.

immunization (not shown). Thus, neither the excess Th2

responses of neonates injected with Alum or the strong Th1

responses following the injection of IC31H result from differences

in the numbers of Ag+ DC.

The neonatal use of IC31H elicited not only an adult-like

number of Ag+ cells but also their adult-like activation pattern.

This activation was restricted to Adj+ cells, whether DC were also

Ag+ or not, as previously observed in adults [31]. Both phenotypic

maturation and IL-12p40 expression were adult-like, indicating

that neonatal DCs responded to IC31H-generated signals within

24 h of immunization. As IC31H is known to signal through TLR-

9, this observation is in accordance with reports by us [40,41] and

others [37,39,42,43] that TLR-9 signals are readily recognized by

neonatal murine and human DC.

In conclusion, this is the first report that a novel subunit vaccine

against TB may elicit adult-like multifunctional and protective

CD4+ T cell responses through the induction of an adult pattern of

in vivo DC activation in neonates. We cannot ensure that this will

be sufficient to confer adult-like protective capacity to this subunit

vaccine in human neonates. But this preclinical evaluation fully

supports including this novel vaccine among the most promising

novel infant TB vaccines.

Figure 4. Targeted functional activation of DC in neonates and adults. Twenty-four hours after immunization, (A) the expression of CD40,
CD80 and CD86 and (B) IL-12p40 by total DC and adjuvant+ DC was assessed. Histograms represent the expression of co-stimulation molecules by
total DC in control mice (dotted line), total DC (thin lined histogram) and Ag85B-ESAT-6+ IC31H+ DC (thick lined histogram) in Ag85B-ESAT-6/IC31H-
immunized mice. Data is expressed as mean and SD of groups of at least 5 individual mice, and is representative of 2–3 independent experiments.
doi:10.1371/journal.pone.0003683.g004

Figure 5. Alum induces similar uptake of antigen, but a slight
activation of antigen+ DC in adult compared to neonates.
Twenty-four hours after immunization, (A) the number of antigen + DC
and (B) the expression of CD40 and CD86 by total DC and antigen+ DC
were assessed. The data are expressed as mean and SD of groups of at
least 5 individual mice, and is representative of 2 independent
experiments. *, p,0.05 signifies differences between neonates and
adult mice.
doi:10.1371/journal.pone.0003683.g005

Neonatal TB Vaccine Response
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Materials and Methods

Mice
Specific pathogen-free C57BL/6 mice (7 days of age (1-week-

old, neonates) or 8–12 weeks old (adult), Charles River) were bred

and kept under specific pathogen-free conditions in the university

zootechnology unit. Mice were immunized at the base of the neck

using the subcutaneous (s.c.) route. Mice received two (three weeks

apart) or one dose of the formulations for analysis of T cell

function and challenge studies. For analyses of in vivo DC

activation, the axial, brachial and auricular lymph nodes were

harvested 24 hours following a single immunization. Manipula-

tions were conducted according to Swiss and European guidelines

and experiments approved by the Geneva Veterinary Office.

Antigen, Adjuvants, TLR ligands and immunization
Recombinant Ag85B-ESAT-6 was prepared as described [28]

and coupled with fluorescein (Sigma, St. Louis, Mo.) or

AlexaFluor 647 (Invitrogen Basel, Switzerland). IC31H, consisting

of KLK (NH2-KLKL5KLK-COOH) and ODN1a (phosphodie-

ster backbone ODN, 59- ICI CIC ICI CIC ICI CIC ICI CIC IC-

39), including TAMRA-coupled KLK and Cy5-coupled ODN1a,

was produced as described [26]. Vaccines were formulated by

absorbing antigens (5 or 15 mg) with IC31H (100 nmol KLK/

4 nmol ODN1a) in 10 mM Tris–HCl/270 mM sorbitol buffer

(pH 7.5–8) or Al(OH)3 (Alum, gift of Chiron Vaccines). The adult

dose of Al(OH)3 (1 mg) was weight-adjusted to 0.25 mg for

immunization of 1-wk-old mice respectively, as previously

experimentally defined [22]. The buffer was used for control

immunization.

Determination of T cell responses
Three weeks after immunization (either second of two doses or a

single dose), splenocytes were cultured with Ag85B-ESAT-6

(5 mg/ml) or medium alone. For determination of cytokine by

ELISA or bioassay, supernatants collected after 72 h for

quantification by ELISA of IFN-c and IL-5 [17], TNF-a (BD

Biosciences, San Diego, CA), IL-17 (R&D Systems, Abingdon,

UK) and by bioassay IL-2 [44]. Under these conditions, blocking

studies with antibodies against CD4 (clone GK1.5) and CD8

(clone H35-17.2) were undertaken. The antigen-specific IFN-c-

secreting T cells were quantified by ELISPOT, using Ag85B-

ESAT-6 (2 mg/ml) or media alone for 48 h [45]. For determina-

tion of cytokine expression and multi-functional T cells by

intracellular staining (ICS), splenocytes were cultured with

Ag85B-ESAT-6 (5 mg/ml) or medium alone as well as anti-

CD28 and anti-CD49d antibodies (BD Pharmingen) for 1 hour,

before the addition of Brefeldin A and monensin (Sigma).

Following an additional 6 hour incubation, cells were stained

with conjugated antibodies against CD4 (clone GK1.5), CD8a
(clone 53-6.7) and CD44 (clone IM7) and then fixed and

permeabilized with BD Cytofix/cytoperm solution. Cells were

stained with conjugated antibodies against IFN-c (clone XMG1.2),

TNF-a (clone MP6-XT22), IL-2 (clone JES6-5H4) (BD Pharmin-

gen) and IL-17 (clone eBio17B7)(eBioscience, San Diego, CA).

Each sample was acquired on the FACSAria cytometer (BD

Figure 6. Ag85B-ESAT-6/IC31H protects neonates and adults from mycobacterial infection. Immunized neonatal and adult mice were
challenged with Mycobacterium bovis BCG i.v. The CFU in spleen (A) and lung (B) (mean6SD, n = 6–8/group) were determined four weeks later, and is
representative of 2 independent experiments. *, p,0.05, differences between IC31H and Alum or control were significant.
doi:10.1371/journal.pone.0003683.g006

Neonatal TB Vaccine Response
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Biosciences) and data were analyzed using the FlowJo Software

(Tree Star, Ashland, OR) and gating combination shown in

Figure 2.

Dendritic cell preparation, cell staining and flow
cytometry

CD11c+ DC from draining LN, 24 hours after immunization,

were prepared by magnetic selection (Miltenyi Biotec, Bergisch-

Gladbach, Germany) as described [31]. Cells were pre-incubated

with rat anti-CD16/32 mAb (2.4G2 clone), then stained with

conjugated antibodies against CD11c (HL3 clone), CD80 (16-

10A1 clone), CD11b (M1/70 clone), CD8 (53-6.7 clone), isotype

controls (BD Pharmingen), CD86 (GL1 clone) (Biosource

International, Camarillo CA), CD11c (N418 clone), CD40

(FGK45 clone) (produced in house). Cells were further stained

with streptavidin-PE or streptavidin-PECy7 (BD Pharmingen).

Each sample was acquired on the FACSCalibur or FACSAria

cytometers and data were analyzed using the CellQuest Software

(BD Biosciences) or the FlowJo Software. Results were expressed

as the ratio of Mean Fluorescence intensity (MFI) compared to

controls in order to allow objective comparisons between

experiments. IL-12p40 was detected by ICS as described [31].

Mycobacterial challenge
Six weeks after the second immunization, mice were infected i.v

with 107 CFU of Mycobacterium bovis BCG Danish 1331. Four

weeks p.i., mice were sacrificed and spleens and lungs homoge-

nized for bacterial enumeration. Individual organs were plated in

serial dilutions onto Middlebrook 7H11 agar and incubated for

3 weeks at 37uC prior to counting the number of CFU.

Statistical analysis
Statistical analyses of the results obtained in various experi-

mental groups were performed with the Mann-Whitney U test

(two groups) or ANOVA with Tukey test (more than two groups).

Differences with probability values of .0.05 were considered

insignificant.
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