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Abstract: Heat is among the deadliest weather-related phenomena in the United States, 

and the number of heat-related deaths may increase under a changing climate, particularly 

in urban areas. Regional adaptation planning is unfortunately often limited by the lack of 

quantitative information on potential future health responses. This study presents an 

assessment of the future impacts of climate change on heat-related mortality in 12 cities 

using 16 global climate models, driven by two scenarios of greenhouse gas emissions. 

Although the magnitude of the projected heat effects was found to differ across time, cities, 

climate models and greenhouse pollution emissions scenarios, climate change was 

projected to result in increases in heat-related fatalities over time throughout the 21st 

century in all of the 12 cities included in this study. The increase was more substantial 
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under the high emission pathway, highlighting the potential benefits to public health of 

reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to 

occur in the 12 cities by the end of the century due to climate warming, over 22,000 of 

which could be avoided if we follow a low GHG emission pathway. The presented 

estimates can be of value to local decision makers and stakeholders interested in 

developing strategies to reduce these impacts and building climate change resilience. 

Keywords: Heat-related mortality; climate change; heat impacts; United States;  

extreme temperatures 

 

1. Introduction 

Heat is among the deadliest weather-related phenomena in the United States, killing more 

Americans in a typical year than floods, lightning and storms combined [1]. Global average 

temperatures have already increased by about 1.5 degrees F over the past 100 years [2] and could rise 

by an additional 2 degrees F by mid-century due to climate change [2,3]. As a result, the number of 

heat-related deaths may increase, particularly in urban areas where the mortality risk is exacerbated 

due to the high concentration of susceptible populations, as well as the enhancement of temperatures 

due to the urban heat island effect. Preparing for and preventing heat-related health problems is an 

increasing priority for public officials in cities across the country.  

A growing number of studies have projected future heat-related mortality due to climate change in 

recent years [4–15], most of them predicting substantial increases. Projections of heat-related mortality 

may be of value to local stakeholders and decision makers as they start to consider the health impacts 

of climate change in long-term planning and policy. Regional adaptation planning is unfortunately 

often limited by the lack of quantitative information on potential future health responses. 

The goal of the present analysis was to assess and report on future heat-related health risks in 

multiple US cities, potentially leading to improved understanding of weather and climate vulnerability 

in the health sector, and more informed risk management and adaptation decisions. Twelve northern 

US cities with populations over 250,000 were selected for evaluation because of their potential for 

vulnerability to future heat-related fatality risks under a changing climate. Downscaled temperature 

projections from 16 global climate models driven by two scenarios of greenhouse gas emissions were 

used to calculate heat-related premature fatalities in the 2020s, 2050s and 2080s. The presented 

estimates may be of value in developing strategies for reducing the future impacts of heat and building 

climate change resilience. 

2. Data and Methods  

Daily non-accidental mortality counts were obtained from an extended version of the National 

Morbidity, Mortality, and Air Pollution Study data set for 1987–2005 [16] for the 12 cities (mapped in 

Figure 1): Washington, DC, Chicago, IL, Detroit, MI, Minneapolis/St. Paul, MN, Cincinnati, OH, 

Cleveland, OH, Columbus, OH, Toledo, OH, Portland, OR, Philadelphia, PA, Pittsburgh, PA. Weather 
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data were obtained from the National Climatic Data Center, Global Historical Climatology Network 

(NOAA NCDC GHCND) [17].  

Figure 1. Cities analyzed in the present study. 

  

First, non-linear exposure-response functions relating daily risk of mortality to mean temperatures 

were fit for each city. The functions were generated using the dlnm package in R [18]. The exposure 

variable was the average of temperatures on lag days 0 and 1: 

log(µt) = α + f(T) + δD + f(H) + f(L) 

where: 

µt Daily count of mortality in the community for all non-accidental causes 

α Model intercept  

f(T) The basis used to model lag 0, 1 temperature using a natural cubic spline, 3 degrees of 

freedom (df) 

δ Vector of coefficients for day of week  

D Day of week for day t  

f(H) Function of mean dew point temperature on day t (adjusted for daily mean 

temperature), modeled as a natural cubic spline, 3 degrees of freedom (df)  

f(L) Function of time, modeled as a natural cubic spline with 7 df/year (used to model long-

term and seasonal trends)  

Next, temperature projections for each of the 12 cities noted above were obtained from 16 climate 

models and 2 Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios 

(A2 and B1). The IPCC Special Report on Emissions Scenarios (SRES) represent a range of possible 
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future pathways of carbon dioxide and other greenhouse pollutant emissions [19]. The A2 emissions 

scenario features high greenhouse gas concentrations by the end of the 21st century, with emissions 

growing throughout the entire century [20]. In contrast, the B1 emissions scenario includes societal 

changes that first reduces greenhouse gas emissions growth and before mid-century lead to emissions 

reductions, resulting in stabilization of greenhouse gas concentrations. Here the high (A2) and a low 

(B1) emission scenarios estimate an upper and lower bound for future heat-related mortality in the 

twelve cities. The global climate models are summarized in Table 1 below. 

Table 1. Global-scale climate models for which downscaled data were used in the present study. 

Climate Model 

Acronym 
Institution 

GCM Resolution 

(Degrees Latitude × 

Longitude) 

BCCR Bjerknes Center for Climate Research  1.9 × 1.9 

CCCMA Canadian Center for Climate Modeling and Analysis, Canada 2.8 × 2.8 

CNRM National Weather Research Center, METEO-FRANCE, France 2.8 × 2.8 

CSIRO CSIRO Atmospheric Research, Australia 1.9 × 1.9 

GFDL1 (CM2.0) Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5 

GFDL2 (CM2.1) Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5 

GISS NASA Goddard Institute for Space Studies 4.0 × 5.0 

INMCM Institute for Numerical Mathematics, Russia 4.0 × 5.0 

IPSL Pierre Simon Laplace Institute, France 2.5 × 3.75 

MIROC Frontier Research Center for Global Change, Japan 2.8 × 2.8 

MIUB Meteorological Institute of the University of Bonn, Germany 3.75 × 3.75 

MPI Max Planck Institute for Meteorology, Germany 1.9 × 1.9 

MRI Meteorological Research Institute, Japan 2.8 × 2.8 

NCAR CCSM National Center for Atmospheric Research, USA 1.4 × 1.4 

NCAR PCM National Center for Atmospheric Research, USA 2.8 × 2.8 

UKMO Hadley Center for Climate Prediction, Met Office, UK 2.5 × 3.75 

 

Model projections were obtained for three future time slices, the 2020s, 2050s, and 2080s, as well 

as the baseline period of the 1980s as described in detail previously [21]. The modeled/future 

temperature data were derived from the Bias Corrected Spatial Disaggregated (BCSD) data set at 1/8 

degree spatial resolution of Maurer et al. [22] and the observed National Oceanic and Atmospheric 

Administration, National Climatic Data Center, Global Historical Climatology Network (NOAA 

NCDC GHCND) historical data [17] was used for the base period (1970–1999). Each time slice 

represents a 30-year average of model outputs (e.g., the 2050s is actually 2040 to 2069), in order to 

minimize the influence of unpredictable interannual and decadal variability.  

To calculate climate change-related increases in future temperatures in each city, the average of 

each calendar month’s 30 monthly values (using the BCSD dataset) for the future time periods were 

compared to the model results for the 1980s (1970–1999) baseline period. Mean temperature change 

projections are calculated as the difference between each model’s future simulation and the same 

model’s baseline simulation. Monthly changes through time from each of the 16 GCMs and two 

emissions scenarios were then applied to the observed daily station data from the 1980s to generate 32 

time series of projected future “daily data”. This is a somewhat simplified approach to projections of 
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extreme events, since it does not allow for possible changes in the patterns of climate variability through 

time. However, because changes in variability for most climate hazards are considered highly uncertain, 

the approach provides an initial evaluation of how extreme events may change in the future [21,23]. 

After deriving city-specific exposure-response functions and temperature projections, we calculated 

the daily relative risks for the 2020s, 2050s and 2080s by applying the city-specific exposure-response 

functions to modeled temperatures (from the 16 models and two scenarios) for those decades. 

Mortality was computed only on days when mean temperature was 60 °F (15.6 °C) or above, 

consistent with the modeling approach used previously [16].  

We calculated heat-related daily deaths for both the baseline and the three future periods in each 

city, using a formula adapted from Annenberg and colleagues [24]:  

POP
RR

RR
YMortality ×−×=Δ )

1
(0  

where: 

MortalityΔ   Daily heat-related additional premature deaths  

Y0   Daily mortality rate (per 100,000 population) 

POP   City population (divided by 100,000) 

RR   City-specific exposure-response function  

To focus on and isolate the climate effect, we kept other key inputs to the calculation constant in 

future decades. For example, we assumed constant population and mortality rates for the baseline and 

future periods. Population data for the thirteen cities was obtained from the 2010 U.S. Census  

(USDOC) [25]. The constant population assumption is a conservative one since many cities are projected 

to grow in the future, and have greater numbers of elderly, vulnerable people. Since city-specific 

mortality rates are not easily available for all cities, we used county-level mortality rates for the 

calculation. Future mortality rates could change due to changing patterns of obesity, heart disease or 

other factors. Counts of the numbers of deaths from all causes, and among all age groups, for 2010 for 

residents of each of the twelve counties in which the cities are located was obtained from the Centers 

for Disease Control and Prevention’s WONDER database (USCDC) [26].  

Finally, for each city, we calculated the total number of heat-related deaths for the 30 year period 

centered on the 1980s using observed temperatures, and for the 2020s, 2050s, 2080s based on each of 

the sixteen climate models and the A2 and B1 greenhouse gas emissions scenarios. We also computed 

the relative percent change in deaths from baseline to each of the future time periods, attributable to 

the increase in daily heat under a changing climate. 

3. Results  

City populations and county-specific mortality rates are presented in Table 2. 
  



Int. J. Environ. Res. Public Health 2014, 11 11376 

 

 

Table 2. City populations and county-specific mortality rates. 

City State County 

City 

Population 

(2010) 

County 

Population 

(2010) 

County-Specific Crude 

Mortality Rate per 

100,000 (2010) 

Chicago IL Cook County 2,707,120 5,194,675 747.0 

Cincinnati  OH Hamilton County 296,943 802,374 939.3 

Cleveland  OH Cuyahoga County 396,815 1,280,122 1046.0 

Columbus  OH Franklin County 787,033 1,163,414 733.0 

Detroit  MI Wayne County 713,777 1,820,584 986.3 

Minneapolis MN Hennepin County 387,753 1,152,425 673.6 

Philadelphia  PA Philadelphia County 1,526,006 1,526,006 920.6 

Pittsburgh  PA Allegheny County 305,704 1,223,348 1101.8 

Portland OR Multnomah County 593,820 735,334 712.3 

St. Paul MN Ramsey County 288,448 508,640 752.8 

Toledo  OH Lucas County 287,208 441,815 947.5 

Washington  DC District of Columbia 601,723 601,723 776.4 

 

Projected warming is similar across the cities (the one exception is Portland, Oregon, which due in 

large part to the climatic influence of the Pacific Ocean, is projected to experience approximately 1 °C 

less warming than the other cities by the 2080s), especially in the 2020s and 2050s. The median 

projected warming (relative to the baseline) is about 1 °C by the 2020s, 2 °C by the 2050s, and 3.5 °C 

by the 2080s. However, by the 2080s there is broad spread across the models, ranging from a best case 

scenario of around 2 °C of warming to a worst case scenario of around 4.5 °C. 

Summaries of annual heat-related deaths under a changing climate are presented for each city in  

Table 3. The first column lists the annual number of deaths during the baseline period, the 1980s. For 

the baseline period, city-specific exposure-response functions were used along with the historical 

weather data to calculate heat-related deaths. For each future decade, the 2020s, 2050s, and 2080s, 

respectively, the number of median heat-related deaths is calculated across the 16 global climate 

models (GCMs) and reported separately for the low emissions (B1) and high emissions (A2) scenarios. 

In addition, the annual number of excess heat-related deaths above the 1980s baseline is presented for 

each scenario during the three future time periods. For instance, there were 113 heat-related deaths in 

Washington, DC annually during the 1980s baseline period. During the 2020s, according to the B1 

scenario, there would be around 136 heat-related deaths, or 23 deaths in excess of the 1980s baseline, 

while according to the A2 scenario, there would be 138 heat-related deaths or 25 deaths in excess of 

the 1980s baseline. By the 2080s, according to the B1 scenario, there would be around 163 heat-related 

deaths, or 49 deaths in excess of the 1980s baseline, while according to the A2 scenario, there would 

be 207 heat-related deaths, or 93 deaths in excess of the 1980s baseline. The central estimate of 

expected heat-related deaths in each city was rounded to the nearest whole number.  
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Table 3. Median number of expected heat-related annual deaths in the 2020s, 2050s and 2080s, and excess heat-related premature deaths 

compared to the 1980s. Median number of expected heat-related annual deaths is calculated across the 16 global climate models (GCMs) and 

shown separately for the low emissions (B1) and high emissions (A2) scenarios.  

City 1980s 

2010-2039 (2020s) 2040-2069 (2050s) 2070-2099 (2080s) 

Low emissions Scenario 

(B1) 

High emissions Scenario 

(A2) 

Low emissions Scenario 

(B1) 

High emissions Scenario 

(A2) 

Low emissions Scenario 

(B1) 

High emissions Scenario 

(A2) 

Number 

of deaths 

Deaths in 

excess of the 

1980s baseline 

Number 

of deaths 

Deaths in 

excess of the 

1980s baseline 

Number 

of deaths 

Deaths in 

excess of the 

1980s baseline 

Number of 

deaths 

Deaths in 

excess of the 

1980s baseline 

Number 

of deaths 

Deaths in 

excess of the 

1980s baseline 

Number 

of deaths 

Deaths in 

excess of the 

1980s baseline 

Chicago 257 321 64 335 77 369 112 423 166 419 161 566 308 

Cincinnati 14 17 3 17 3 19 4 21 6 20 6 25 11 

Cleveland 41 53 11 55 13 60 19 69 28 68 27 93 51 

Columbus 61 76 15 78 17 86 25 99 38 99 38 130 69 

Detroit 116 148 32 152 36 168 52 185 69 187 71 250 134 

Minneapolis 23 29 6 30 7 34 11 38 15 37 14 49 26 

Philadelphia 278 334 56 345 67 375 97 416 138 415 137 526 248 

Pittsburgh 26 33 7 34 8 37 12 43 17 43 17 56 30 

Portland 62 80 18 81 19 92 30 103 41 104 42 142 80 

St. Paul 19 24 5 25 6 28 9 32 13 31 11 41 22 

Toledo 26 34 8 35 9 39 12 44 18 43 17 60 34 

Washington 113 136 23 138 25 152 38 166 52 163 49 207 93 
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Percent change in heat-related deaths for a typical year during the 2020s, 2050s and 2080s 

compared to the 1980s baseline for each of the twelve cities are presented graphically in Figure 2. 

Again, the percentage change is based on the number of median heat-related deaths calculated across 

the 16 global climate models (GCMs) and B1 and A2 scenarios. For instance, in Washington, DC, the 

average percentage increase in the number of deaths during the 2020s would be 19.5% according to the 

B1 scenario and 19.6% according to the A2 scenario. By the 2080s, an increase of 43.7% and 76.9% 

was projected for the same location according to the B1 and A2 scenarios, respectively.  

Figure 2. Percentage increase in heat-related deaths during 2020s, 2050s and 2080s 

compared to the 1980s baseline period for the twelve cities. Calculated across the 16 global 

climate models (GCMs) used in this study and displayed separately for the low emissions 

(B1) and high emissions (A2) scenarios. 

 

All cities were projected to have substantial increases in heat-related fatalities in future decades, 

with increasing impacts over time, and for the A2 vs. B1 emissions scenario. Already by the 2020s, 

most cities showed increases in the 20% to 30% range. By the 2050s, deaths could increase by as much 

as 50% to 70% for some cities. Even higher impacts could be seen by the 2080s. 

Cumulative heat-related deaths, computed by adding up the number of annual heat-related deaths 

which could result from each of the two emissions pathways, are presented in Table 4. Cumulative 

deaths may be a useful measure for decision makers for several reasons. First, calculating cumulative 

deaths over time provides a long term quantitative assessment of the impacts of heat. In Table 4, this 

has been done for 3 periods for each city, from the beginning of the baseline period to the end of each 

time slice, 1970–2039, 1970–2069 and 1970–2099, respectively. In Washington, DC, for example, 

8757 cumulative heat-related deaths were calculated to occur until 2039 under the B1 and 8861 under 

the A2 scenario. By 2099, the number of cumulative heat-related deaths expected in Washington, DC, 

according to the B1 and A2 scenarios, was 18,184 and 20,050, respectively. The second useful 

application of cumulative deaths is in estimating the extra burden of mortality due to the higher 

emission scenario, A2 vs. the lower emissions scenario, B1. This estimate is provided in the last 
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column of Table 4. For Washington, DC alone, the A2 emissions pathway was estimated to result in 

1866 extra deaths by the end of the century.  

Table 4. Cumulative median heat-related premature deaths by the end of each future 

decade, 1970–2039, 1970–2069 and 1970–2099. Calculated as a sum of annual median 

heat-related deaths since the beginning of the baseline period. Annual heat-related deaths 

between 2000 and 2009 were interpolated. 

City 

Cumulative Deaths  
Extra Deaths 

from High 

Emissions 

Scenario 

Relative to 

Low 

Emissions 

Scenario 

(1970–2099) 

1970 to 2039 1970 to 2069 1970 to 2099 

Low 

Emissions 

Scenario 

(B1) 

High 

Emissions 

Scenario 

(A2) 

Low 

Emissions 

Scenario 

(B1) 

High 

Emissions 

Scenario 

(A2) 

Low 

Emissions 

Scenario 

(B1) 

High 

Emissions 

Scenario 

(A2) 

Chicago 20,334 20,869 31,409 33,565 43,971 50,530 6559 

Cincinnati 1098 1117 1664 1742 2277 2507 229 

Cleveland 3309 3388 5110 5457 7157 8238 1081 

Columbus 4792 4894 7384 7858 10,358 11,768 1410 

Detroit 9271 9438 14,325 14,980 19,939 22,490 2551 

Minneapolis 1826 1857 2835 2999 3937 4474 537 

Philadelphia 21,464 21,914 32,706 34,389 45,144 50,164 5021 

Pittsburgh 2063 2100 3187 3384 4466 5060 594 

Portland 4968 5018 7725 8110 10,854 12,374 1520 

St. Paul 1518 1544 2357 2493 3273 3719 446 

Toledo 2097 2144 3252 3476 4556 5274 718 

Washington 8757 8861 13,304 13,840 18,184 20,050 1866 

4. Discussion and Conclusions 

We carried out an assessment of the potential impacts of climate change on heat-related mortality in 

12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions.  

The presented estimates can be of value to local decision makers and stakeholders interested in 

developing strategies to reduce these impacts and building climate change resilience. 

Our analyses indicate that climate change may result in substantial increases in heat-related 

fatalities in all of the twelve cities included in this study. The magnitude of the projected increase 

differed across time, cities, climate models and greenhouse pollution emissions scenarios. In general, 

climate change was projected to result in increasing heat-related deaths over time throughout the 21st 

century, and more so under the high emission pathway. Our findings also highlight the potential public 

health benefits that could result from the lower greenhouse gas emissions scenario pathway at the city 

level. By the end of the century, the potential number of excess deaths due to the higher greenhouse 

gas concentration A2 scenario versus the reduced-emissions B1, calculated from the beginning of the 

baseline period, ranged from 131 in Portland, ME to 6559 in Chicago. There were a total of 22,553 
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estimated deaths across the 12 cities that could potentially be avoided by reducing greenhouse  

gas emissions. 

Projecting future heat impacts on mortality required a range of assumptions. Factors such as  

city-specific temperature-mortality response functions, as well as underlying mortality rates and 

population assumptions all impact projections. In the present analysis, we isolated the climate change 

effect by holding these factors constant across time. This approach has important limitations.  

First, assuming that population in each city will remain constant at the 2010 Census level may lead to 

underestimation of future impacts in regions where urbanization continues throughout the century. 

Since population size is the main driver of inter-city differences in projected heat-related deaths, 

differences may get even bigger, and the absolute numbers larger, as urban populations increase. 

Mortality rates are also unlikely to remain constant in the coming decades if the average  

life-expectancy and the overall resilience of the population to temperature extremes continue to 

increase. On the other hand, social inequalities may persist and the proportion of elderly, vulnerable 

people, most susceptible to heat-related deaths is likely to increase in the future. Another limitation of 

the study is that we did not model population adaptation to heat, which has been documented in a 

number of studies [27–31] and which may result in our results overestimating mortality impacts.  

Also it is important to note that we did not account for cold-related mortality, which, by decreasing in 

the future, could balance some of the heat-related effects we projected. A recent study suggests that 

this could reduce slightly the future impact of climate-related warming [14]. Nonetheless, these 

assumptions allowed the estimation of potential heat-related mortality impacts due to climate change in 

each city, which can be of value in supporting local efforts to reduce heat-related vulnerability. 

Despite the uncertainties in the change and interplay of the various population-level variables, 

future greenhouse gas emissions will have a measurable influence on future heat-related mortality.  

For instance, although the number of excess heat-related deaths projected under the low-emission (B1) 

and high-emission (A2) scenarios will likely be comparable during the 2020s, nearly twice as many 

deaths may occur annually by the 2080s under the high-emission compared to the low-emission 

scenario. Therefore, in addition to more direct health benefits associated with improved air quality, 

reducing greenhouse gas emissions can have a substantial impact on reducing future heat-related 

mortality in all of the twelve cities.  
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