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Changes in cerebral blood flow are one of the main features of migraine attack and have inspired the vascular theory of migraine.
This traditional view has been reshaped with recent experimental data, which gave rise to the neural theory of migraine. In this
review, we speculate that there might be an important link between the two theories, that is, the dysfunction of neurovascular

coupling.

1. Introduction

Migraine has been traditionally viewed as a vascular disorder
[1], but more recent discoveries have led to neural theory
of headache origin [2]. The latter postulates that migraine
headache is caused by an inappropriate activation of trigemi-
novascular system, that is, pain sensitive innervation of dural,
arachnoid, and pial vessels as well as large intracranial vessels
by nociceptive fibers originating in trigeminal ganglion (TG)
and travelling mainly through ophthalmic and to a much
lesser extent through maxillary and mandibular divisions
of trigeminal nerve [3]. Efferent fibers of trigeminal gan-
glion pseudounipolar neurons converge with upper cervical
(Cl and C2) dorsal root nerve fibers in trigeminocervi-
cal complex (TCC) [3]. Peripheral nerve endings of TG
neurons contain potent vasodilatory neuropeptides such as
substance P, calcitonin gene-related peptide, neurokinin A,
and pituitary adenylate-cyclase activating peptide, which can
be released through an axon reflex and provide efferent
potential in pathophysiologic setting such as subarachnoid
hemorrhage [4]. On the other hand, stimulation of TG
induces an ipsilateral decrease of peripheral resistance in
the territory of carotid artery and an increase in facial
temperature through trigemino-parasympathetic reflex due
to efferent projections of second order neurons of TCC to

superior salivatory nucleus [3]. Additionally, TCC makes
direct ascending connections with areas of the brainstem,
including the ventrolateral periaqueductal grey (PAG), raphe
nuclei (RN), and locus coeruleus (LC), which also modulate
its nociceptive traffic [5, 6]. Somatosensory and visceral
nociceptive information from the head is relayed through
TCC to hypothalamus and thalamic nuclei via the trigemino-
hypothalamic and trigeminothalamic tracts, respectively [6].
The thalamus represents the gateway to central processing
of nociceptive information in the so-called “pain matrix,’
which includes primary and secondary somatosensory areas,
anterior cingulate cortex, and prefrontal cortex [6].

It is believed that activation of the trigeminovascular
system follows aberrant cortical activity, such as cortical
spreading depression (CSD), epileptic discharge, or following
an external electromagnetic stimulation, which stimulate
trigeminal nociceptive meningeal nerve endings [3]. Brains of
patients with migraine are prone to aberrant cortical activity,
as they appear to be hyperresponsive, and have deranged
interictal metabolic homeostasis and consequently lower
threshold for generating CSD [4]. CSD is thought to activate
perivascular trigeminal nerves by way of released potassium,
hydrogen protons, nitric oxide (NO), arachidonic acid (AA),
and adenosine 5'—triphosphate (ATP) [7]. It induces opening
of neuronal Pannexinl (Panxl) mega-channels and the release
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of proinflammatory mediators such as high-mobility group
box 1 (HMGBI) from neurons, which initiates a parenchy-
mal inflammatory response, leading to sustained release of
inflammatory mediators from glia limitans and, hence, pro-
longed trigeminal stimulation [8]. Pial trigeminal afferents
are affected primarily, since they are the nearest to glia
limitans, where concentrations of inflammatory substances
are highest and less influenced by continuous cerebrospinal
fluid flow, whereas dural afferents are either directly activated
or stimulated through an axon reflex-like mechanism of
trigeminal axon collateral branches [9].

Brains of migraineurs most likely possess an additional
precipitating factor for migraine pain, that is, the dysfunc-
tional modulation of TCC’s nociceptive traffic by dien-
cephalic and brainstem areas like hypothalamus, thalamus,
PAG, nucleus raphe magnus, and LC [6]. It has been
suggested that dysfunctional brainstem modulation of sec-
ond order neuronal activity in TCC may lead to nocicep-
tion without a peripheral cause, therefore representing the
“migraine generator” [5]. Brainstem dysfunction in patients
with migraine has been associated with a more extensive
central nervous system imbalance, also referred to as the
“migraine state,” responsible for diverse clinical (pre-, peri-,
and postictal) features and patterns of widespread brain activ-
ity seen in functional neuroimaging studies [10]. Abnormal
brain metabolism is a feature of the “migraine state,” as well as
abnormal coupling of microvascular blood flow to metabolic
needs of brain tissue, that is, the neurovascular coupling
(NVC) [11]. Various mechanisms have been proposed, like
altered function of astrocytes [10] and impaired subcortical
modulation of NVC in migraine [12], since dysfunctional
brainstem structures like LC and RN are also implicated in
regulation of cortical microvascular tone [13]. Additionally,
blood-brain barrier (BBB) permeability is increased after
CSD, due to activation and upregulation of matrix met-
alloproteases [14]. In principle, disruption of BBB renders
microvascular wall more susceptible to changes in cortical
extracellular milieu, which might have an influence on NVC
that could outlast a migraine attack since upregulation of
metalloproteases can last for up to 48 hours after CSD [14].

NVC is a mechanism that serves to couple microvascular
blood flow to the metabolic needs of surrounding brain tissue,
that is, neurons and glia [15]. It is a mechanism distinct from
cerebral autoregulation, which prevents noxious variations
in cerebral blood volume with oscillations of systemic blood
pressure, and will not be discussed further in this paper. Stud-
ies have shown that NVC is dependent on the intact function
of several cell types, collectively called the neurovascular unit
(NVU) [16]. NVU describes the close spatial and functional
relationship between neurons, astrocytes, and microvessel
wall cells (pericytes, smooth muscle, and endothelial cells)
[17]. It has been determined that brain blood flow is most
closely coupled to synaptic transmission generating local
field potentials and less so to emerging action potentials
generating neuronal spiking activity [18]. NVC is a feed-
forward mechanism involving binding of released synaptic
factors such as glutamate and ATP to receptors on local
neurons and astrocytes and unfolding cascades of reactions
leading to increased concentrations of potassium and AA
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metabolites at vascular smooth muscle cells [19]. The emerg-
ing response of vessels (dilation or constriction) is dependent
on local factors such as oxygen and lactate concentration
[20] and is apparently modulated by activity of subcortical
noradrenergic, cholinergic, and serotoninergic projections
[13]. Vascular endothelium is important in regulating the
response and is also a key structure in propagating the
dilation upstream to larger vessels [21].

The study of NVC in humans usually employs indirect
techniques due to invasiveness of direct approaches [18]. In
order to obtain an index of NVC a measure of both regional
neural activity and regional cerebral blood flow (CBF) should
be assessed [22]. However, far from ideal, majority of human
studies in migraine employ only parameters of CBE.

2. Neurovascular Coupling between
Migraine Attacks

Several studies using single-photon emission computed
tomography (SPECT) or Xenon-133 blood flow technique
interictally have described abnormalities of CBF in patients
with migraine for the most part as hypoperfusion of various
cortical areas or asymmetry of cortical blood flow [23-33],
although in some of the patients, areas of hyperperfusion
were also found [25, 27]. It is interesting that in some of
these studies areas of interictal hypoperfusion were more
often detected in patients experiencing aura during an attack
[27, 32, 34] or in patients suffering from chronic and/or
severe migraine [23, 28]. On the other hand, earlier studies
with Xenon-133 technique have not detected abnormalities of
interictal CBF; however, the method had poorer resolution
and was insensitive to regional CBF changes within the thin
cortical layer [35, 36]. Nevertheless, the detection of interictal
CBF disturbances in migraine both with and without aura led
some authors to conclude that both entities might share the
same pathophysiological mechanism with cerebrovascular
dysregulation [25, 30, 34]. A caveat of such conclusion is that
due to method’s poor temporal and spatial resolution and lack
of correlation of abnormal CBF patterns with neurological,
neurophysiological, or neuropsychological deficits in patients
with migraine interictally, such finding might be a cause as
well as a consequence of migraine [26, 28].

Studies with positron emission tomography (PET) have
assessed glucose metabolism as well as regional CBF in
patients with migraine interictally [37-41]. The two studies
by Denuelle et al. have found relative bilateral hypoperfusion
in occipital cortex during an attack compared to the interictal
state in migraine with aura and increased luminously stimu-
lated occipital blood flow in patients with migraine during
headache and after pain relief with sumatriptan [38, 39].
However, these studies lacked the comparison to healthy
controls, whereas another study by the same group using the
same methodology found increased luminously stimulated
occipital blood flow in migraine patients interictally with and
without concomitant painful stimulus compared to healthy
controls [37]. This observation could be due to cortical
hyperexcitability in patients with migraine as the authors
of the study have postulated [37]. However, the lack of
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concomitant electrophysiological measure of neural activity
allows for an alternative interpretation of results in favor of
concomitant dysfunction of NVC in patients with migraine,
which could be most pronounced under painful conditions
when the difference between the two groups of subjects in
the study was least obvious [37]. Additionally, Kassab et al.
have shown a significant increase in resting glucose uptake
in posterior supratentorial and infratentorial white matter in
patients with migraine during interictal period, suggesting a
metabolically hyperactive, dysfunctional subcortical tissue in
its unprovoked state [40].

Functional magnetic resonance imaging using blood oxy-
genation level dependent signal (BOLD fMRI) has become
firmly established as the method of choice in neuroscience
to assess areas of altered neural activation and/or functional
connectivity between brain regions. However, although it is
widely accepted that BOLD signal is indirectly driven by
neural activity, the method directly images the proportion of
deoxygenated hemoglobin dependent on the combination of
regional CBF, blood volume, and tissue oxygen consumption
rate, which can in certain conditions and specific brain areas
be dissociated from electrical activity of neurons [42]. Using
different visual stimuli, studies have mainly shown increased
BOLD signal or decreased threshold of activation in visual
cortex in patients with migraine interictally compared to
healthy subjects [43-45]. On the other hand, a concomitant
electrophysiological and fMRI study by Bramanti et al.
has demonstrated increased interictal cortical excitability
with decreased occipital BOLD signal activation compared
to healthy subjects implicating dysfunctional NVC [46].
However, as authors have pointed out, a possibility exists
that visual stimulation protocol in that study initiated CSD
and consequent period of cortical hypoactivation in patients
with aura [46]. Again, similarly to PET, BOLD fMRI studies
implicate an increased responsiveness of visual cortex in
migraine but do not clarify the nature of the phenomenon,
namely, is it of neural and/or vascular origin [42]. For this
reason, fMRI studies on pain processing in migrainous brain
could have an inherent drawback of nonlinear regional BOLD
signal increases/decreases with change in neural activity,
since pain is known to activate brainstem structures [47],
implicated also in modulation of NVC [13], that could be
dysfunctional in migraine [6].

Transcranial doppler (TCD) ultrasound offers great tem-
poral resolution and has been used extensively in studies on
CBF in patients with migraine interictally [48-59]. A major
limitation of the technique’s use in studies on NVC is that it
is a blind method (no data on vessel diameter) that measures
changes in blood flow velocity in large arteries at the base of
the scull, that is, anatomically distant from microvasculature,
with no information on neural activity [60]. Alternatively, it
can be combined with electroencephalography to estimate
an index of NVC [22] or with BOLD fMRI to covisualize
the extent and intensity of activated cortical tissue [61].
The majority of TCD studies on visually evoked blood flow
velocity response in the posterior cerebral artery (VEFR)
have found increased response in patients with migraine
compared to healthy subjects interictally [48, 49, 53, 56, 58].

However, two more recent studies found no difference [61,
62]. The study by Griebe et al. is interesting not only for
the methodological aspect, but also for yielding conflicting
results since increases in cortical BOLD signal response to
optokinetic stimulus were not accompanied by increases in
VEEFR, although a slower restitution of evoked hemodynamic
response was observed in patients with migraine [61]. Addi-
tionally, significant asymmetry of VEFR was found by Wolf et
al. in migraine with aura, which did not, however, statistically
correlate with lateralization of neurological symptoms during
an attack, although VEFR was higher on the headache side
in majority of patients [63]. Nevertheless, appropriate side
selection of region of interest is important in studies on
NVC in migraine as pathophysiological mechanism might
be asymmetrical and therefore more or less lateralized [64].
Our study has shown that cold pressor test has no effect
on VEFR in patients with migraine, whereas in healthy
subjects it causes an increase, suggesting dysfunctional NVC
in migraine under tonic pain condition [65]. We have
speculated this to be due to dysfunction of subcortical modu-
latory projections involved in the regulation of microvascular
tone.

TCD studies using various vasoactive agents like altered
CO, partial pressure, l-arginine, and acetazolamide have
demonstrated altered vasomotor reserve in migraine interic-
tally [51, 52, 54, 57, 66-77]. The most consistent finding in
these studies was increased vascular reactivity to hypocapnia
and decreased reactivity to a vasodilatory agent (i.e., acetazo-
lamide or l-arginine) in patients with migraine, implicating
decreased tone of cerebral vessels in migraine and/or dys-
function of cerebrovascular endothelium [54, 67, 68, 73, 75].
On the other hand, hypercapnia induced heterogeneous cere-
brovascular responses with either hyperreactivity, hyporeac-
tivity or no difference in reactivity [51, 52, 57, 69-72, 74, 77].
Studies on patients with migraine with aura show more
abnormalities than in patients without aura [67, 68,71, 73, 76].
In addition, posterior circulation might be particularly prone
to cerebrovascular abnormalities in migraine [52, 54, 71].
Altered cerebrovascular vasomotor reserve suggests dysfunc-
tion of vascular elements of NVU, although this assumption
should be viewed with caution since animal studies have
demonstrated the action of CO, to be most pronounced on
pial arterioles, which are upstream from NVU [78].

In general, using different investigative techniques in
patients with migraine studies have demonstrated high inci-
dence of alterations in CBF interictally, which are proba-
bly related to ongoing pathophysiological process between
attacks [25, 30, 37, 39, 41, 51]. However, the isolated finding
of altered CBF in the absence of concomitant data on neural
activity hampers a valid conclusion on possible dysfunction
of NVC in patients with migraine. On the other hand,
electrophysiological studies have provided conflicting results
that do not elucidate whether there is increased or decreased
cortical activity interictally [79]. Furthermore, studies that
have evaluated changes in CBF together with changes in
cortical activity are pointing to an altered rate of NVC in
migraine interictally [46, 58, 61].



3. Neurovascular Coupling during
Migraine Attack

During migraine with aura there is a characteristic reduction
in CBF of posterior cerebral regions which coincides with
the symptoms of aura as was first shown by intracarotid
Xenon-133 method studies [80, 81]. In these studies, oligemia
was sometimes preceded by focal hyperemia and had the
tendency to slowly propagate anteriorly with the rate of
2 mm per minute [81, 82]. Oligemia could reach critical, even
lower than ischemic values of cerebral perfusion, albeit rarely
[82]. Headache ensued during oligemia and continued during
hyperemia, which usually outlasted headache [80].

Subsequent PET studies have found decreased cerebral
perfusion in migraine up to 24 hours after the onset of
headache [83-85]. In a PET study of nine subjects with
spontaneous migraine without aura, global CBF and volume
were found to be lower by 9.9% and 5.2%, respectively [84].
In this study, trend toward increased oxygen metabolism and
extraction in the headache phase was found in five of nine
patients despite reduced flow suggestive of uncoupling of flow
and metabolism; however, no significant change in oxygen
metabolism could be found in other patients, making the
observation statistically insignificant [84]. A PET study of
alcohol-triggered migraine attacks (with and without aura)
showed a parallel decrease in flow and metabolism (23.1%
and 22.5%, resp.) with unchanged oxygen consumption rate
in the primary visual cortex [83]. A report by Woods et
al. described bilateral profound (up to 40%) decrease in
blood flow starting in visual associative regions and spread-
ing continuously across the cortical surface at a relatively
constant rate, spanning different vascular territories in a
female patient with migraine without aura who developed
an attack being scanned in PET device for other reasons
[85]. This observation again raises the possibility of a similar
pathophysiological mechanism in migraine with and without
aura. Other PET studies failed to demonstrate perfusion
abnormalities in patients with migraine without aura during
an attack; however the focus of their investigation was the
brainstem [64, 86].

A perfusion-weighted fMRI study has demonstrated that
migraine with visual aura causes moderate decreases in
occipital perfusion, which corresponded neuroanatomically
with visual aura symptoms and side of headache [87].
The maximal reduction of perfusion was above ischemic
threshold and resolution of visual symptoms was followed by
improvement of perfusion (not vice versa), contradicting a
hypothesis that visual aura is ischemic in nature [87]. Further
study confirmed these findings but failed to demonstrate the
same changes in migraine without aura or in other brain
regions outside occipital lobes during visual aura [88]. In
addition, the same study found perfusion deficit in one
patient experiencing migraine both with and without aura
only during the aura, which indicates that decremental
blood flow changes are more specific for migraine with aura
[88]. A study on BOLD response during migraine visual
aura revealed marked suppression to light modulation in
visual cortex that has spread with a rate corresponding to
progression of hemifield scintillations described by a subject

BioMed Research International

[89]. In this study, time-dependent BOLD activity changes
in the region of interest implicated a sequence of cortical
gray matter blood flow changes beginning with hyperemia,
followed by hypoperfusion with attenuated response to visual
activation and subsequent return of resting blood flow to
baseline with recovery of stimulus driven activation [89].
Similarly, albeit somewhat less time- and space-defined
changes were described in an earlier BOLD fMRI study [90].
Spatial and temporal distributions of these changes were
similar to features of CSD observed in animals, corroborating
the hypothesis that CSD is the pathophysiological substrate of
migraine aura [91-93].

Several TCD studies have shown decreased blood flow
velocities in middle cerebral artery during migraine attack
[34, 94-96]. This probably reflects decreased CBF as the
diameter of large cerebral arteries remains constant during
moderate perturbations of arterial blood pressure and CO,
levels [97]. Speculation on NVC based on these data is
difficult, as correlation with data on cortical activity during
migraine attack is needed. Previous studies have shown
attenuated somatosensory evoked potentials during sensory
aura, which returned to normal during the headache phase
[98]. Conversely, during migraine with persistent visual aura,
sustained visual cortex hyperexcitability was demonstrated
with visual evoked magnetic field measurements [99]. During
ictal and peri-ictal periods a vast body of evidence points
to normalization of cortical excitability in migraine both
with and without aura [100]. Therefore, changes in CBF
during those periods can be viewed as a consequence of
dysfunctional NVC.

4. Putative Mechanisms of Dysfunctional
Neurovascular Coupling in Migraine

It appears that migraine attacks occur in connection with
exacerbations of preexisting changes of neural activity, CBE
and metabolism during the interictal period [33, 101]. In
migraine with aura, CSD is likely a central event initiat-
ing ictal disturbance in neural activity and CBF [102]. A
study measuring multiple parameters of neural and vascular
response in mice has shown that the propagating CSD wave
initiates two large desaturations of cortical hemoglobin, the
first during the CSD wave and the second, after a brief recov-
ery, in its aftermath, which may reach levels observed during
middle cerebral artery occlusion and points to mismatch
between tissue metabolic demands and vascular response
[103]. The response of microvessels during CSD wave in
this study was vasoconstriction, as opposed to proposed
vasodilation in initial hyperemia in humans [89]. However,
vasoconstrictive response with CSD was observed also in
humans with subarachnoid hemorrhage [104]. Furthermore,
animal studies have shown tissue hypoxia even with vasodi-
lation of microvessels suggesting impaired NVC that can last
several hours after CSD [105]. Interestingly, Brennan et al.
demonstrated vasomotor changes to be conducted ahead of
the electrophysiological changes of CSD wavefront in mice
and rats, implicating CSD to be composed of distinct vascular
and neural components [106].
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After CSD, the vascular reactivity is markedly impaired in
response to CO, partial pressure, transcallosal fiber stimula-
tion, vasoactive substances, and basal forebrain stimulation
[105, 107-109]. Interestingly, blood pressure autoregulation
of CBF remains intact [108]. Nitric oxide (NO) synthase
inhibition has no effect on CBF increases or oligemia in
normal rats [110]. On the other hand, increase in NO levels
due to l-arginine administration prevents development of
prolonged oligemia after CSD and speeds the recovery of
reduced vascular reactivity but has no influence on the
marked rise of CBF during CSD [110]. The effect of increased
NO levels might be due to vasodilatory actions of increased
vascular smooth muscle cyclic guanosine monophosphate or
impeded vasoconstriction due to inhibition of AA conversion
to potent vasoconstrictor 20-hydroxyeicosatetraenoic acid
(20-HETE) [111]. This mechanism is relevant because CSD
causes a significant increase in tissue AA through gluta-
mate receptor induced increases in neuronal and astrocytic
cytosolic calcium and activation of phospholipases A and C
[112]. Consequently, there is an increase of 20-HETE levels,
which correlates with the persistent decrease in CBF after
CSD [113]. However, blocking of 20-HETE production does
not prevent impaired NVC after CSD [113]. Therefore, CBF
reduction and impaired NVC are probably accounted for not
only by increased 20-HETE production but also by other
pathophysiological mechanisms initiated by decreased NO
availability as a result of CSD [113].

Vasoconstrictive (or inverse) NVC might be an important
mechanism in CBF abnormalities that could lead to clinical
consequences in patients with migraine and as such an
important target for therapeutic interventions. A study on
transgenic mice bearing familial hemiplegic migraine type
1 mutation of neuronal voltage-gated calcium channels has
demonstrated enhanced susceptibility to anoxic and peri-
infarct depolarization as well as larger perfusion defects
during ischemic depolarization attributed to inverse NVC
[114]. Therefore, mechanistically similar mutations, for exam-
ple, mutation of glial glutamate transporter EAAT?2 associ-
ated with common migraine [115], might render susceptible
patients with migraine more prone to develop CSD after
mild ischemic vascular events, such as microembolisms, and
more sensitive to stroke with mild ischemia [114]. Indeed,
patients with migraine, especially migraine with aura, have
higher prevalence of clinically silent infarct-like lesions in
the territory of posterior circulation compared to normal
controls [116]. Additionally, migraine with aura has been
associated with a twofold increase in stroke risk [117], which
appears to rise with increasing migraine attack frequency
[118]. Migraine prophylactic therapy might be especially
important in these patients [119].

The association of migraine and stroke also implies that
cerebrovascular endothelium might be impaired in migraine
[120]. Some even suggest that migraine is a systemic vas-
culopathy [121]. Level of endothelial progenitor cells, a
biological marker of vascular dysfunction, was reduced in
patients with migraine in several studies [122, 123]. However,
endothelium dependent vasodilatation of systemic circu-
lation was unimpaired in migraine [124]. On the other
hand, endothelin-1, a potent vasoconstrictor, was capable of

inducing CSD even more readily than potassium in vivo in
rats [125], whereas in patients with migraine, its levels were
elevated during the attack free period [126]. It remains to be
determined if markers of disturbed endothelial function are
a consequence of a general systemic response in migraine or
an essential part of the disease’s pathophysiological process in
cerebral vessels.

Several studies have implicated dorsal pontine area in the
region of LC to be activated during spontaneous and induced
migraine attacks and even in the premonitory phase of an
induced attack [86, 127, 128]. LC provides the majority of
brain’s noradrenergic neurons with widespread projections
throughout the cerebral cortex that end on pyramidal cells,
GABA interneurons, astrocytes and microvessels [129-132].
LC stimulation increases noradrenaline release in the cortex
and promotes both cortical neuronal and astrocytic activ-
ity [133-135]. On the other hand, several in vivo animal
studies have demonstrated reduced intraparenchymal vessel
diameter or decrease in global cortical blood flow with
LC stimulation [136-139], which is counterintuitive with
respect to concomitant increase in neural activity and in
disagreement with a recent study by Toussay et al. [140]. A
study by Bekar et al. has enabled better understanding of
the issue by demonstrating that the noradrenaline-mediated
global decrease in vessel diameter improves synchronization
of both temporal and spatial characteristics of the sensory
stimulation-mediated hyperemia and surround blood vol-
ume decrease locally [141]. In this regard, the absence of LC’s
ability to optimize redistribution of blood flow to areas where
vasodilatory signals overpower noradrenergically mediated
vasoconstriction [142] might contribute to abnormalities of
basal and evoked cerebral blood flow observed in patients
with migraine due to exaggerated hyperemic or oligemic
regional response, with the latter possibly subsidizing an
inverse NVC or even initiating CSD. In this respect, it is
interesting that in cats the reduction of regional CBF with
stimulation of LC was most pronounced in the occipital
cortex [137], where spreading oligemia during migraine aura
has been demonstrated [82]. However, topical administration
of noradrenergic agonists and antagonist (noradrenaline,
clonidine, and propranolol) has attenuated CSD in rats with
no effect on regional CBF [143], and clonidine infusion had
no influence on posterior CBF as assessed by PET in healthy
human volunteers [144], making the role of LC dysfunction
in initiating a migraine attack less clear.

Cortical serotonin levels are decreased between migraine
attacks, whereas during an attack brain serotonin synthesis
increases [145, 146]. Dysregulation of the brainstem serotonin
system has been proposed in patients with migraine during
a pain-free interval [147]. Pharmacological degeneration of
serotonergic neurons in dorsal raphe nucleus (DRN) signif-
icantly increases velocity of SD and extends the width of
the depolarization wave in rats [148]. Additionally, serotonin
depletion likely augments hyperemic response after CSD
in rat cerebral cortex due to increased NO production
[149]. Serotoninergic projections are important in regulating
cerebral microvascular tone [150]; however DRN stimula-
tion produces a heterogeneous response in different cortical
areas [151]. Since DRN is deeply interconnected with other



brainstem areas implicated in migraine attack (e.g., LC)
[152], the importance of DRN dysfunction as a primary
phenomenon in altered NVC in migraine needs to be further
proven.

5. Conclusion

Changes in CBF and cerebrovascular reactivity in different
phases of migraine as measured by different investigative
methods are profound and point to an important role of
cerebral vasculature in the pathophysiology of the disease.
Impairment of NVC that has been demonstrated in animal
models is most likely a key feature of migraine headache
in humans. This is in line with the theory of “migraine
state,” a complex derangement of cerebral homeostasis that
eventually leads to migraine headache [10]. In this regard, the
impairment of NVC could be viewed as common ground for
the vascular and neural theory of migraine.

6. Future Directions

It remains to be established whether changes in cerebrovascu-
lar reactivity in migraine are disease’s cause or consequence.
According to the theory of “migraine state,” episodic or
persistent change in cortical extracellular environment could
be expected in patients with migraine. It would be interesting
to measure different extracellular cortical substances impli-
cated in the pathophysiology of migraine headache in vivo
in selected cases, for instance, with the use of microdialysis
(e.g., in migraine patients undergoing brain/cranial surgery
for other reasons).

Studies on cerebrovascular reactivity on patients with
chronic migraine are needed. More profound abnormalities
are expected as chronic migraine is regarded as a clinical
worsening. Comparison should be made to patients with
episodic migraine during and outside of an attack. The study
of pathophysiological mechanisms that eventually leads to
the chronicity of the disorder is important in the development
of specific acute and prophylactic therapy.

Additionally, due to a probable nonlinear cortical NVC in
migraine [42], results of functional BOLD fMRI in migraine,
which assert that the magnitude of the BOLD response is
in linear correlation with local neural activity, should be
compared to alternative imaging methods more reliant on
either neural metabolism or local cerebral blood flow (e.g.,
18-fluoro-deoxyglucose PET or arterial spin labeling fMRI
studies).
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