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Abstract: The micellar liquid chromatography technique and quantitative retention (structure)–
activity relationships method were used to predict properties of carbamic and phenoxyacetic acids
derivatives, newly synthesized in our laboratory and considered as potential pesticides. Important
properties of the test substances characterizing their potential significance as pesticides as well as
threats to humans were considered: the volume of distribution, the unbonded fractions, the blood–
brain distribution, the rate of skin and cell permeation, the dermal absorption, the binding to human
serum albumin, partitioning between water and plants’ cuticles, and the lethal dose. Pharmacokinetic
and toxicity parameters were predicted as functions of the solutes’ lipophilicities and the number
of hydrogen bond donors, the number of hydrogen bond acceptors, and the number of rotatable
bonds. The equations that were derived were evaluated statistically and cross-validated. Important
features of the molecular structure influencing the properties of the tested substances were indicated.
The QSAR models that were developed had high predictive ability and high reliability in modeling
the properties of the molecules that were tested. The investigations highlighted the applicability
of combined chromatographic technique and QS(R)ARs in modeling the important properties of
potential pesticides and reducing unethical animal testing.
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1. Introduction

Pesticides are very important substances in the modern world. They help to increase
the efficiency of agricultural production and food processing by protecting crops against
bacteria, fungi and molds, insects, rodents, and weeds. Since pesticides are used in the
countryside, in forests, and in cities, people are constantly exposed to contact with these
substances in their diets [1–3]. Although scientists do not have a full understanding of the
health effects of pesticide residues, there is no doubt that the use of these substances must
be limited and controlled. As new pesticide-active compounds are developed, it is vitally
important to be able to predict their properties, their pharmacokinetics, and toxicities at
the earliest stage of the research. Although modern science makes it possible to predict in
silico the properties of substances only on the basis of their molecular structure, the results
of these calculations rarely are highly reliable, and they generally require experimental
verification. To avoid highly unethical and costly animal testing, alternative techniques in
combination with in silico modeling can be used to predict the properties of drug-like or
pesticide-like compounds in screening [4,5].

Reversed-phase liquid chromatography (RPLC), both planar and column, is a technique
commonly used to assess the lipophilic properties of bioactive organic substances [6–8].
Chromatography with stationary phases that imitate biological partitioning systems, such
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as an artificial membrane, phases with immobilized lipids, albumin, cholesterol, ceramides,
or liposomes, allows the prediction of the lipophilic properties [6–10] as well as the behav-
iors of solutes in real biological systems, such as bound to serum albumin, skin permeation,
blood–brain barrier permeability, intestinal absorption, the concentration of unbound form
in the blood, and others [11–16]. Similar possibilities are offered by micellar liquid chro-
matography (MLC) using surfactants as components of the mobile phase. MLC is a mode
of conventional RPLC using a surfactant solution above the critical micellization concen-
tration (cmc) in the mobile phase. Under these conditions, the micelles form the so-called
micellar pseudophase in the bulk phase. The surrounding bulk water or aqueous-organic
mixture contains surfactant monomers in a concentration approximately equal to the cmc.
Surfactant monomers modify the surface phase as a result of the hydrophobic interactions
between the tail of the surfactant and the alkyl chain. Molecular interactions present in this
system, i.e., solute association with the polar head of the surfactant, solute penetration into
the micelle core, and solute interactions with adsorbed surfactant and alkyl chains, affect
retention by three different equilibria, which are (1) the solute distribution between the
micelle (micellar pseudophase) and the bulk phase, (2) the solute partition between the
stationary phase modified by the surfactant and the bulk phase, and (3) the direct transfer
of solute molecules between the surfactant-modified surface and the micelle [17–21].

Several theories have been developed that describe the retention in MLC, i.e., the
effect of the concentration of the surfactant in the effluent on the retention of the solute.
Foley’s equation [22] is best known in lipophilicity studies, and according to Foley, the
following relationship exists between the retention parameter, k, and the concentration of
the surfactant in the effluent:

1
k
=

1
km

+
KAM

km
[M] (1)

where [M] is the total concentration of surfactant in the mobile phase minus cmc, KAM
is the constant that describes solute–micelle binding, and km is the solute retention pa-
rameter at zero micellar concentration, i.e., at surfactant monomer concentration equal
to cmc. The KAM and km parameters can be evaluated from the slope and intercept of
experimental 1/k vs. [M] relationships. Equation (1) describes a linear dependence with
decreasing retention as the micelle concentration increases. This equation is valid for aque-
ous solutions of a surfactant or mobile phases with the same concentrations of the organic
modifier. The micellar retention parameter, log km, is considered analogous to the log kw
value evaluated in RPLC. Thus, this parameter is considered a lipophilicity descriptor, and
Equation (1) is a simple way to achieve the indirect determination of the lipophilic proper-
ties of compounds. It is postulated that retention in micellar chromatography depends on
the hydrophobic (lipophilic), electronic, and steric features of the compounds in a similar
way as many pharmacokinetic phenomena. An additional similarity is indicated by the
fact that the phospholipids, cholesterol, fatty acids, and triglycerides that are present in the
extracellular and intracellular fluids also form micelles with proteins.

In the studies, 15 carbamic and phenoxyacetic acids derivatives (Table 1), newly
synthesized in our laboratory, and considered potential pesticides, were investigated using
the column micellar liquid chromatography technique. As solutes lipophilicity descriptors
there were applied km and KAM values, calculated form Equation (1) [23]. Pharmacokinetic
and toxicity parameters were predicted as functions of the solutes’ lipophilicities (QRARs
model) or lipophilicity and the number of hydrogen bond donors (HBD), the number of
hydrogen bond acceptors (HBA), and the number of rotatable bonds (NRB) (QSARs model).
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Table 1. Structures and chromatographic parameters [23] of tested compounds.

No Group Structure log km log KAM
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2. Results

The retention parameters km and KAM values are presented in Table 1. The relationship
between the values was checked, and the following rectilinear relationship was obtained:

log km = 0.585(0.102) + 0.932(0.044) log KAM (2)

n = 15; s = 0.1612; R = 0.9861; Radj. = 0.9849; F = 456; p = 0.000000.
The above confirms that both micellar parameters, i.e., log km and log KAM, could be

used as alternative descriptors of the lipophilicities of compounds.
The physicochemical, pharmacokinetic, and toxicity parameters of the compounds

(Table 2) are as follows: the logarithm of the partition coefficient (log P) in the n-octanol/
water system, the number of hydrogen bond donors (HBD), acceptors (HBA), and rotat-
able bonds (NRB), molar weight (MW), topological polar surface area (TPSA) [24], the
volume of distribution in the body (Vd) [25], the fraction unbonded in a brain (f u, brain),
in plasma (f u, plasma) [26], and pharmacokinetic parameters describing blood–brain dis-
tribution (log BB) [26–29], the rate of permeation from aqueous solutions through skin
(log Kp) [30,31], skin–water partition coefficient (log Ksc) describing dermal absorption
from aqueous solutions [32,33], the rate of permeation through cell (log Kw/cell) [34],
partitioning between water and serum albumin (log Pw/HSA), and binding to human
serum albumin (log KHSA) [10,35–37], partitioning between water and plant’ cuticles (log
Pw/pc) [38], and the dose causing the death of 50% of the group of mice tested after oral
administration (LD50) [39,40]. These parameters describe important properties of the
test substances and provide information about their potential applications as pesticides
as well as potential threats to humans [41,42].
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Table 2. Physicochemical, pharmacokinetic, and toxicity parameters of tested compounds.

Nr log P HBD HBA NRB MW
[g/mol]

TPSA
[A2]

Vd
[L/kg] f u, plasma f u, brain log BB log Kp log Ksc

log
Kw/cell

log
Pw/HSA

log
KHSA

log
Pw/pc

LD50
[mg/kg]

1 2.285 1 2 2 238.50 29.10 2.1 0.0750 0.06 −0.218 −5.095 1.713 −4.988 0.280 4.58 2.513 2600
2 2.937 1 2 2 252.52 29.10 2.3 0.0830 0.04 −0.026 −4.747 1.996 −4.833 0.554 4.60 3.106 2000
3 2.309 1 2 2 256.49 29.10 2.1 0.1000 0.06 −0.275 −5.075 1.717 −5.164 0.253 4.86 2.504 1800
4 2.971 1 2 2 272.94 29.10 2.4 0.0370 0.02 −0.098 −4.710 2.100 −5.071 0.694 4.70 3.254 1900
5 2.810 1 2 2 272.94 29.10 2.1 0.0510 0.03 −0.110 −4.836 1.989 −4.951 0.576 5.11 3.077 2000
6 3.755 1 2 2 307.39 29.10 2.8 0.0140 0.01 0.056 −4.244 2.529 −4.944 1.132 4.97 4.092 1800
7 3.488 1 2 2 307.39 29.10 2.4 0.0320 0.01 −0.011 −4.434 2.390 −5.020 0.993 5.53 3.847 2300
8 2.980 1 2 2 317.39 29.10 2.4 0.0540 0.02 −0.094 −4.818 2.134 −5.197 0.804 4.93 3.331 1400
9 1.345 0 3 3 232.49 29.54 1.5 0.3100 0.30 −0.225 −5.538 1.097 −3.947 −0.492 4.17 1.522 1600
10 2.917 0 3 4 235.06 35.53 1.9 0.0920 0.07 0.263 −4.431 1.923 −3.279 0.313 4.36 3.132 550
11 4.067 0 3 4 283.53 35.53 2.1 0.0610 0.02 0.513 −3.731 2.541 −3.081 0.904 4.94 4.400 580
12 4.936 1 3 5 398.59 38.33 3.8 0.0030 0.01 0.227 −3.741 3.107 −5.275 1.642 5.35 5.420 780
13 5.386 1 3 5 412.62 38.33 4.0 0.0029 0.01 0.345 −3.504 3.308 −5.213 1.823 5.39 5.858 720
14 2.600 1 5 5 347.24 50.80 1.6 0.2400 0.12 −0.229 −5.761 1.608 −5.822 0.200 3.98 2.765 840
15 3.807 0 4 3 292.76 44.12 2.1 0.0690 0.02 0.448 −4.540 2.386 −3.999 1.017 4.17 4.240 750
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3. Discussion

Based on the anticipated in silico parameters (Table 2), it is important to note that
the substances that were tested met the basic requirements formulated by Lipinski as the
“rule of five” [43,44]: lipophilicities expressed as log P values are not greater than 5 (with
the exception of substance no. 13); molecular weights are not greater than 500 g/mole;
numbers of hydrogen bonds acceptors are not greater than 10, and the numbers of hydrogen
bond donors are not greater than 5. In addition, the topological polar surface areas are
below 90 Å2, and the number of rotatable bonds is in the range of 2–5. The compounds
have moderate in silico predicted Vd values (Vd < 7 L/kg), indicating that they do not
accumulate to a significant extent in fat tissue. The highest values of Vd were observed
for compounds no. 12 and no. 13, the most lipophilic among all of the compounds that
were tested. The values of log KHSA, which describe binding to human serum albumins,
were in the range of 3.98–5.53, whereas the log Pw/HSA parameters that characterized the
solute partitioning between water and serum albumin were in the range of 0.200–1.823.
Xenobiotics bound to plasma proteins are not active because they are not able to cross
membranes and permeate the site of action nor bind to receptors. The binding to serum
albumins affects the concentration of the unbonded forms of the substance in serum, and
small values of free fractions are preferable in order to prevent possible side effects.

Parameters that have negative values of log BB or values close to zero (in the range of
−0.275 to −0.513) suggest that the compounds that were tested will not be able to penetrate
into the brain, and neurotoxicity will be diminished. Of course, low levels of penetration
into the brain are desirable. Compounds no. 12 and 13 had positive values of log BB, and
they had the lowest unbonded fractions in the brain (f u, brain). Compounds no. 12 and 13,
which had the highest log KHSA and log Pw/HSA values, also had the lowest unbonded
fractions in plasma (f u, plasma). According to the parameters calculated in silico, these
substances are characterized by the highest rate of permeation through the skin (log Kp),
dermal absorption (log Ksc), and partition between water and plant cuticle (log Kw/cell), as
well as the lowest rate of permeation through cells (log Pw/pc). Substance no. 14 is the most
toxic, poorly bound with albumins, and its concentration in the unbound form in the brain
and serum was the highest among the substances that were tested, even though the value
of log BB was negative.

When considering different parameters (e.g., chromatographic retention) as lipophilic-
ity descriptors, they should be compared with the log P values that describe solute parti-
tioning between n-octanol and water. In our studies, the relationships between the chro-
matographic and partition coefficient log P are presented in Figure 1. In both cases, i.e., for
log km and log KAM, the separate relationships for group I (carbamic acid derivatives) and
group II (phenoxyacetic acid derivatives) were obtained with very good linearity (R >> 0.8).
They confirm both micellar parameters as lipophilicity descriptors of the compounds that
were tested.
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Figure 1. The log P vs. log km (A) and log P vs. log KAM (B) relationships obtained for tes-
ted compounds.

3.1. QRARs

In QRARs, it is desirable to have the methodology relationships between solute
retention and the biological activity of the compounds. In our investigations, we obtained
the linear relationships between the micellar parameters (log km and log KAM) and the other
parameters, i.e., log Ksc and log Pw, HSA (Figure 2) and Vd, log Pw/pc, f u, brain, and f u, plasma
(Figure 3) with very good quality (R >> 0.8). The straight lines in Figure 2A,B show a clear
increase in dermal absorption and partitioning in the water–human serum albumin system
of tested compounds with an increase in their lipophilicity. It should be noted that the
lipophilic properties of the tested substances, based on the in silico log P parameters, are
in the range of 5.386–1.345. The increase in lipophilicity in the parabolic function affects
the volume of distribution (Vd) and absorption by the plant cuticle (log Pw/pc) as well as
the unbonded fraction in the brain (f u, brain) and plasma (f u, plasma) (Figure 3). Although Vd
and log Pw/pc increase with lipophilicity, the other parameters, i.e., f u, plasma and f u, brain,
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decrease. The graphs suggest the existence of the optimal range of lipophilicity of the
substance, for which the volume of distribution and the absorption through the epidermis
are the highest, and the unbonded fractions in plasma and in the brain are the lowest.
Figures 2 and 3 also indicate that lipophilicity is the dominant factor that influences (1) the
absorption of the test substances through the skin and epidermis, (2) the distribution of
water–albumin, (3) the size of the unbound fraction in the plasma and the brain, and (4) the
volume of the distribution.
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Figure 3. The parabolic relationships between pharmacokinetic parameters and log km (A) and
log KAM (B) values.

3.2. QSARs

In the QSARs methodology, we used the experimentally-derived lipophilicities (micel-
lar parameters log km and log KAM), and the numbers of hydrogen bond donors (HBD),
acceptors (HBA), and rotatable bonds (NRB) as independent variables. These values
were used to predict the dependent variables, i.e., log Kp, log Kw/cell, log KHSA, log BB,
and LD50. Table 3 shows the quantitative structure–activity relationships (expressed as
Equations (3)–(12)) that were established. The equations were cross-validated (LOO), and
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all of the calculated statistics are summarized in Table 3 and presented graphically in
Figures 4–8 as PLS-standardized coefficients (A), the response plots (B), and standardized
residuals vs. leverages (C). The statistical parameters allowed us to positively evaluate
the derived QSAR equations. There were no significant cross-correlations between the
independent variables, and the values of the variance inflation factor (VIF) were signif-
icantly lower than 5. The diagrams presented in Figures 4A, 5A, 6A, 7A and 8A show
the standard coefficients of Equations (3)–(12), and they explain the direction and the
strength of the impact of a given descriptor on the calculated parameters. The correla-
tions shown in Figures 4B, 5B, 6B, 7B and 8B illustrate the relationships between the actual
response (values obtained from ACD/Percepta software) and those predicted by the es-
tablished QSAR models (calculated response). The applicability domains (AD) of the
developed regression models were also evaluated and are visualized as the Williams plots
(Figures 4C, 5C, 6C, 7C and 8C). AD is a theoretical region in physicochemical space (the
response and chemical structure space) for which a model should make predictions with
a given reliability [45]. The warning leverage limits (h* = 1.0) were calculated using the
following equation:
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Table 3. The established quantitative structure–activity relationships: n—number of observations, R—coefficient of determination, Radj.—adjusted coefficient of
determination, sd—standard deviation, F-value, p—probability value, VIF—variance inflation factor, PRESS—predicted residual sum of squares, MSE—mean square
error, cv—cross-validated.

No. Equation

(3) log Kp = −5.329(0.156) + 0.597(0.041)log km − 0.669(0.075)HBD − 0.345(0.061)HBA + 0.197(0.044)NRB
n = 15; R = 0.9893; Radj. = 0.9850; sd = 0.110; PRESS = 0.276; MSE = 0.012; F = 116; p < 0.0001; VIF < 3.6; PRESScv = 0.276; MSEcv = 0.012

(4) log Kp = −4.900(0.218) + 0.552(0.060)log KAM − 0.714(0.118)HBD − 0.378(0.092)HBA + 0.213(0.067)NRB
n = 15; R = 0.9747; Radj. = 0.9644; sd = 0.169; PRESS = 0.610; MSE = 0.0286; F = 48; p < 0.0001; VIF < 3.5; PRESScv = 0.610; MSEcv = 0.0286

(5) log Kw/cell = −2.773(0.295) + 0.062(0.078)log km − 1.846(0.143)HBD − 0.368(0.115)HBA + 0.076(0.083)NRB
n = 15; R = 0.9740; Radj = 0.9634; sd = 0.209; PRESS =4.064; MSE =0.0435; F = 47; p < 0.0001; VIF < 3.6; PRESScv = 4.064; MSEcv = 0.0435

(6) log Kw/cell = −2.762(0.262) + 0.079(0.073)log KAM − 1.867(0.142)HBD − 0.356(0.111)HBA + 0.064(0.081)NRB
n = 15; R = 0.9753; Radj = 0.9652; sd = 0.203; PRESS = 4.889; MSE =0.0414; F = 49; p < 0.0001; VIF < 3.5; PRESScv = 4.889; MSEcv = 0.0400

(7) log KHSA = 4.619(0.350) + 0.251(0.093)log km + 0.106(0.170)HBD − 0.381(0.136)HBA + 0.150(0.100)NRB
n = 15; R = 0.8953; Radj = 0.8498; sd = 0.248; PRESS = 1.078; MSE =0.0615; F = 11; p < 0.0001; VIF < 3.6; PRESScv = 1.078; MSEcv = 0.0615

(8) log KHSA = 4.843(0.351) + 0.204(0.097)log KAM +0.109(0.190)HBD − 0.415(0.148)HBA + 0.175(0.108)NRB
n = 15; R = 0.8722; Radj = 0.8155; sd = 0.272; PRESS = 1.326; MSE =0.0741; F = 8; p < 0.0001; VIF < 3.5; PRESScv = 1.326; MSEcv = 0.0741

(9) log BB = −0.375(0.078) + 0.254(0.021)log km − 0.454(0.038)HBD + 0.041(0.030)HBA − 0.006(0.023)NRB
n = 15; R = 0.9836; Radj = 0.9770; sd = 0.055; PRESS = 0.090; MSE = 0.0031; F = 75; p < 0.0001; VIF < 3.6; PRESScv = 0.090; MSEcv = 0.0031

(10) log BB = −0.205(0.073) + 0.242(0.020) log KAM − 0.479(0.039) HBD + 0.032(0.031) HBA − 0.003(0.022) NRB
n = 15; R = 0.9831; Radj = 0.9762; sd = 0.056; PRESS = 0.069; MSE = 0,0032; F = 72; p < 0.0001; VIF < 3,5; PRESScv = 0,069; MSEcv = 0.0032

(11) LD50 = 2870(411) − 253(109) log km + 650(199) HBD − 194(160) HBA − 245(116) NRB
n = 15; R = 0.9330; Radj = 0.9048; sd = 291; PRESS = 2078292; MSE = 84613; F = 17; p < 0.0001; VIF < 3.6; PRESScv = 2078292; MSEcv = 76083

(12) LD50 = 2714(367) − 251(102) log KAM +682(192) HBD − 192(155) HBA − 242(113) NRB
n = 15; R = 0.9358; Radj = 0.9088; sd = 285; PRESS = 2017628; MSE = 81170; F = 18; p < 0.0001; VIF < 3.5; PRESScv = 2017628; MSEcv = 74652
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h∗ =
3(k + 1)

n
(13)

where k is the number of descriptors used in the MLR model, and n is the number of
compounds in the data set. The Williams plot can be used for graphical detection of outliers
(h > h*).

The results proved that the models obtained are valid within the domain in which
they were developed. The results obtained in our studies indicate the positive ef-
fect of solute lipophilicity on the skin (log Kp) (Figures 4 and 5) and cell permeation
(log Kw/cell) (Figures 6 and 7) from water, binding affinity to human serum albumin
(log KHSA) (Figures 8 and 9), concentration in the brain (log BB) (Figures 10 and 11), and
toxicity in mice (the decrease in LD50) (Figures 12 and 13). Lipophilicity is a dominant
factor for log Kp, log KHSA, log BB, and LD50. The rates of cell permeation are strongly
retarded by solute hydrogen bond acidity and rather less so by hydrogen bond basic-
ity (Figures 6 and 7). The same effects of the compounds’ acidity and basicity on skin
permeation were observed (Figures 4 and 5). The number of hydrogen bond donors
(HBD) also strongly reduces the substance permeation through the blood–brain barrier
(Figures 10 and 11) and increases the value of the lethal dose (Figures 12 and 13). The
values of LD50 decrease and the toxicity of the solutes increase with the number of hydro-
gen bond acceptors. Binding to human serum albumin is strongly related to (decreased)
hydrogen bond basicity (HBA) and much less dependent (increased) on its acidity (HBD)
(Figures 8 and 9).

Solute flexibility, as described by the NRB values, strongly increases the rate of dermal
absorption (Figures 4 and 5) and binding to human serum albumin (Figures 8 and 9). It
also reduces the LD50 value, i.e., increases the toxicity of the substance (Figures 12 and 13).
NRB has a slightly positive effect on cell permeation (Figures 6 and 7). Hydrogen bond
basicity and solute flexibility practically do not affect the penetration of substances through
the blood–brain barrier (Figures 10 and 11).

When analyzing the results, substances no. 10–15 (phenoxyacetic acid derivatives)
should be indicated as the most toxic for mice, i.e., having the lowest lethal dose after oral
administration. These substances are more lipophilic among those tested (log P values are
in the range of 2.6–5.386, with smaller HBD (HBD ≤ 1), and greater HBA (HBA ≥ 3) values,
and they have the greatest number of rotatable bonds (NRB > 3). They also have a higher
concentration in the brain; with the exception of compound no. 14, all of the log BB values
were greater than 0.

Summarizing the results, substances no. 12 and no. 13 can be indicated as the most
interesting among those that were tested. They are the most toxic, but they are also highly
bound to plasma albumin, and their free fractions in plasma and the brain are the lowest.
The magnitudes of the distribution are acceptable, as they were for all of the substances that
were tested. On the basis of the results that were obtained, it can be concluded that they can
be considered promising pesticides as well as subjects for further, more detailed research.
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Figure 4. Standardized coefficients (A), the correlation between actual and predicted log Kp parameters (B), and the Williams plots (C) of Equation (3).
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Figure 5. Standardized coefficients (A), the correlation between actual and predicted log Kp parameters (B), and the Williams plots (C) of Equation (4).
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Figure 6. Standardized coefficients (A), the correlation between actual and predicted log Kw/cell parameters (B), and the Williams plots (C) of Equation (5).
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Figure 7. Standardized coefficients (A), the correlation between actual and predicted log Kw/cell parameters (B), and the Williams plots (C) of Equation (6).
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Figure 8. Standardized coefficients (A), the correlation between actual and predicted log Ka, HSA parameters (B), and the Williams plots (C) of Equation (7).
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Figure 9. Standardized coefficients (A), the correlation between actual and predicted log Ka, HSA parameters (B), and the Williams plots (C) of Equation (8).
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Figure 10. Standardized coefficients (A), the correlation between actual and predicted log BB parameters (B), and the Williams plots (C) of Equation (9).
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Figure 11. Standardized coefficients (A), the correlation between actual and predicted log BB parameters (B), and the Williams plots (C) of Equation (10).
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Figure 12. Standardized coefficients (A), the correlation between actual and predicted LD50 mouse oral parameters (B), and the Williams plots (C) of Equation (11).
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Figure 13. Standardized coefficients (A), the correlation between actual and predicted LD50 mouse oral parameters (B), and the Williams plots (C) of Equation (12).
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4. Materials and Methods
4.1. Chromatographic Measurements

Potential pesticides, i.e., carbamic (group I) and phenoxyacetic (group II) acids deriva-
tives (Table 1), synthesized in our laboratory, were investigated using the micellar liquid
chromatography technique. Previously, we reported [23] the chromatographic results that
were obtained by the HPLC technique using a Purospher RP-8e column, four mobile phases
composed of a buffer (pH = 7.4), four different sodium dodecyl sulfate (SDS) concentrations
(i.e., 0.04, 0.06, 0.08, and 0.10 mol L−1), and the same 20% (v/v) addition of acetonitrile.

4.2. In Silico Parameters

The physicochemical, structural, pharmacokinetic, and toxicity parameters of the
compounds that were tested were calculated from their molecular structures using
ACD/Percepta software, version 1994-2012 (ACD/Labs, Advanced Chemistry Develop-
ment, Inc., Toronto, ON, Canada) (Table 2).

4.3. Statistics

Linear regression (LR), multiple linear regression (MLR), partial last squares (PLS),
and leave-one-out cross-validation (LOO) were conducted using the statistical software
Minitab 16.2.4.0, version 1991-2004 (Minitab Inc., State College, PA, USA).

5. Conclusions

QRARs and QSAR methodologies were successful in modeling the pharmacokinetic
properties and toxicities of 15 newly synthesized compounds considered as potential
pesticides. The micellar liquid chromatography technique was used to determine the
lipophilicity descriptors (log km and log KAM) of the compounds. In the QSAR method,
log km and log KAM parameters, HBD, HBA, and NRB were applied as independent val-
ues. All of the equations that were derived were evaluated statistically as being very
good. The QSAR models that were developed had high predictive ability and high reli-
ability in modeling the properties of the molecules that were tested. The investigations
highlighted the significance and possibilities of combined chromatographic techniques
and QR(S)ARs in modeling the important properties of potential pesticides and reducing
unethical animal testing.
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