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A comprehensive review of
BBV152 vaccine development,
effectiveness, safety, challenges,
and prospects

Farokh Dotiwala* and Arun K. Upadhyay*

Ocugen Inc., Malvern, PA, United States
The world has responded to the COVID-19 pandemic with unprecedented

speed and vigor in the mass vaccination campaigns, targeted to reduce

COVID-19 severity and mortality, reduce the pressure on the healthcare

system, re-open society, and reduction in disease mortality and morbidity.

Here we review the preclinical and clinical development of BBV152, a whole

virus inactivated vaccine and an important tool in the fight to control this

pandemic. BBV152, formulated with a TLR7/8 agonist adjuvant generates a

Th1-biased immune response that induces high neutralization efficacy against

different SARS-CoV-2 variants of concern and robust long-term memory B-

and T-cell responses. With seroconversion rates as high as 98.3% in vaccinated

individuals, BBV152 shows 77.8% and 93.4% protection from symptomatic

COVID-19 disease and severe symptomatic COVID-19 disease respectively.

Studies in pediatric populations show superior immunogenicity (geometric

mean titer ratio of 1.76 compared to an adult) with a seroconversion rate

of >95%. The reactogenicity and safety profiles were comparable across all

pediatric age groups between 2-18 yrs. as in adults. Like most approved

vaccines, the BBV152 booster given 6 months after full vaccination, reverses

a waning immunity, restores the neutralization efficacy, and shows synergy in a

heterologous prime-boost study with about 3-fold or 300% increase in

neutralization titers against multiple SARS-CoV-2 variants of concern. Based

on the interim Phase III data, BBV152 received full authorization for adults and

emergency use authorization for children from ages 6 to 18 years in India. It is

also licensed for emergency use in 14 countries globally. Over 313 million

vaccine doses have already been administered in India alone by April 18th, 2022.

KEYWORDS
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has created a global emergency due to the rapid

worldwide spread of coronavirus disease 2019 (COVID-19)

(1). As of July 26, 2022, SARS-CoV-2 and its variants have

caused more than 571 million infections and 6.38 million deaths,

with the US alone accounting for 89.6 million cases and

1,018,073 deaths (covid19.who.int). In earlier SARS-CoV-2

variants about 15% of infected patients developed pneumonia

and around 5% of patients developed more critical symptoms

such as acute respiratory distress syndrome and multiple organ

failure (2, 3). The Omicron variant (B.1.1.529) while being much

more (2-5-fold) infective than the Delta (B.1.617.2) variant

shows 2-5-fold less fatality (4), and caused significantly less

morbidity, hospital admissions and requirement for oxygen

supplementation in adults (5). However, the hospitalization

rates for children were higher during the Omicron peak than

the Delta peak and might be explained by a shift in the COVID-

19 symptoms due to Omicron. Severe forms of COVID-19 are

associated with lymphocyte dysfunction, monocyte and

granulocyte abnormalities leading to cytokine storm with

increased levels of IL-1b, IL-6, IL-2, IL-8, IL-17, IP10, MCP1,

MIP1a, G-CSF, GM-CSF, and TNF-a. High levels of C-reactive

protein (CRP), D-dimer, immunoglobulin G (IgG), and total

antibodies are also observed in severe COVID-19 (6–9).

However, reports investigating the correlation between high

viral loads and COVID-19 severity vary from high to no

statistical correlation (10–19).

More than 6.5 million globally surveilled SARS-CoV-2

sequences shared by the Global Initiative on Sharing All

Influenza Data (GISAID), allow real-time tracking of SARS-

CoV-2 mutations and new variants (20). While many of the

SARS-CoV-2 mutations are expected to be either neutral or

deleterious for the virus, a small proportion of these mutations

alter the virulence, transmissibility, and viral interactions with

host immunity, which confer a survival advantage to the virus.

Most of these beneficial mutations have occurred in key areas of

the SARS- CoV-2 immunodominant spike (S) protein leading to

the emergence of five main variants of concern (VOC): Alpha

(B.1.1.7) in the United Kingdom, Beta (B.1.351) in South Africa,

Gamma (B1.1.28-P.1) in Brazil, Delta (B.1.617.2) in India, and

Omicron (B.1.1.529) in Botswana and South Africa (21–26).

This has resulted in a catastrophic impact on global efforts

against the SARS-CoV-2 pandemic, including vaccinations.
Vaccine lessons learned from
natural SARS-CoV-2 infection

Dysregulation of macrophages, neutrophils, Th17 cells,

monocytes, basophils, eosinophils, megakaryocytes, and
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erythroid progenitor cells plays a role in severe COVID-19

disease (27–32). On the other hand, properly functioning CD4+,

CD8+ cells, NK cells, and dendritic cells reduce the disease

severity (33–37). For instance, in the lungs, tissue-resident

memory CD8+ T cells are important for protection against

repeated infection with respiratory viruses (33) and severe

COVID-19 cases are also associated with CD8+ lymphopenia

and Th17 polarization of T cells (34). Long-lasting B and T

memory cells can persist in recovered individuals long after

neutralizing antibody titers have waned and a good T follicular

helper cell activation indicates a matured humoral immune

response with specific memory B cells to rapidly respond to

possible reinfection (38, 39). While the currently approved

vaccines are based on a single spike protein epitope, the

immunological memory after natural infection captures a

diverse repertoire of SARS-CoV-2 epitopes for both B and T

cell responses (40–42). Therefore, it is imperative to understand

immune response to natural infection to better identify ‘correlates

of protection’ against COVID-19. For instance, the nucleocapsid

(N) protein is more conserved than S-protein in the coronavirus

genus and one of the most abundant structural proteins in

infected cells (43). N-protein levels were reported to regulate the

severity of immune response to SARS-CoV-2 (44). Most of the

recovered COVID-19 patients presented a stronger specific

immune response against the SARS-CoV-2 N-protein and its

fragments than the Receptor Binding Domain (RBD) of the S-

protein (45). Patient sera during both the acute and the

convalescent phase of COVID-19, showed IgM and IgG specific

reactivity to N- and C-termini of the membrane (M) protein of

SARS-CoV-2 (46). Antibodies against the M-protein show similar

levels of reactivity as antibodies against the immunodominant

epitopes of S or N proteins, but none of the vaccines approved in

the US target the M-protein. Since emerging Variants of Concern

(VOCs) show several mutations in the S- proteins, an in-depth

study of M-protein as a vaccine target is required to move the

evolutionary pressure away from S-protein. Using both S and N

protein as vaccines have shown better virus neutralization at distal

tissues sites (away from the primary respiratory site of infection)

(47). With the emergence of the Omicron variant, the efficacy of

single target (S-protein) mRNA vaccines has been wanning (48).

The mRNA vaccine specifically targeting the omicron S-protein

(mRNA-Omicron) did not perform better than the mRNA-1273

vaccine targeting the ancestral SARS-CoV-2 S-protein (49–53).

These data suggest that targeting multiple SARS-CoV-2 proteins

(S, N, M) would better replicate the natural COVID-19 infection

and might trigger better protection against current and future

SARS-CoV-2 variants.
BBV152

Multiple vaccines for SARS-CoV-2 are highly effective in

reducing the COVID-19 pandemic burden. However, to meet
frontiersin.org
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the global need for billions of COVID-19 vaccine doses, a

collective effort to identify, evaluate, validate, and manufacture

effective vaccines is paramount. BBV152 is a whole-virion

inactivated SARS-CoV-2 vaccine generated using the

Asp614Gly (B.1.1.7) variant. BBV152 is the first vaccine

formulated with a toll-like receptor 7/8 (TLR7/8) agonist

molecule, imidazoquinoline gallamide (IMDG), adsorbed to

alum and approved for use in a large population (54)

(Figure 1). This vaccine is administered as two intramuscular

6µg doses, 4 weeks apart. In Phase I/II clinical trial, 98.3% of the

candidates administered BBV152 developed antibodies against

SARS-CoV-2 (seroconverted) (55). In a corresponding Phase III

trial, BBV152 protected up to 77.8% of vaccinated candidates

against symptomatic infection, 93.4% from severe disease, and

63.6% from asymptomatic disease (56).
Preclinical development

Inactivated vaccines against viral diseases have well-

established safety profiles and have been licensed and used for

decades (57). The Vero cell vaccine manufacturing platform is

well-characterized with proven safety in other licensed, live, and

inactivated vaccines such as Ervebo (Ebola), Vepacel (Influenza),

IMOVAX (Polio), VERORAB (Rabies), RotaTeq (Rotavirus)

and ACAM2000 (Smallpox) (58–62). The BBV152 vaccine was
Frontiers in Immunology 03
developed from the SARS-CoV-2 strain (NIV-2020-770 -

GISAID sequence EPI_ISL_420545 – G-clade) using the Vero

CCL-81 system for sample propagation and virus isolation

(Figure 1) (63–65). Inactivation of the b-propiolactone treated

live virus was assessed by viral cytopathic activity and

amplification while intact coronaviral morphology was verified

by transmission electron microscopy, and the presence of intact

S (S1, S2, and receptor binding (RBD) domains) and N-protein

antigens was verified by Western blots and by immunoelectron

microscopy (66).

Vaccine-induced disease enhancement due to Th2-like

immunity is a concern for patients vaccinated against SARS-

CoV-2 (Figure 2) (67). Several studies show that patients with

higher antibody titers against SARS-CoV-2 were associated with

higher antigen levels (viral loads) and more prolonged exposure

leading to more severe disease symptoms (14, 19, 68). Patients

with mild and asymptomatic COVID-19 infections show high

levels of anti-SARS-CoV-2 T-cell (Th1) responses (69, 70).

These data suggest that strong Th1 responses correlate with

mild clinical presentations, whereas strong Th2 responses

correlate with severe COVID-19. BBV152 circumvents this

Th2 bias using a new IMDG (TLR7/8 agonist) class adjuvant

that induces strong type I interferon responses from antigen-

presenting cells such as dendritic cells and monocytes-

macrophages leading to the development of a Th1 cell-based

immunity instead of a pathogenic Th2 humoral immunity
FIGURE 1

COVID-19 vaccines in development, clinical trials, or approved use, fall into four main categories: 1) Nucleic acid vaccines that use RNA or DNA
to provide host cells with the instructions to make the viral antigens. 2) Viral vector vaccines use replicating or non-replicating, non-pathogenic
viruses to deliver the genetic instructions to the host cells to produce antigens. 3) Protein subunit vaccines use fragments of antigens as
proteins or assembled virus-like nanoparticles delivered directly into the host. 4) Whole virus vaccines use the complete virus that is either
attenuated or completely inactivated. BBV152 is a whole virus inactivated vaccine produced from the NIV-2020-770 strain of SARS-CoV-2 strain
by destroying the viral genetic material while leaving the antigens intact. The inactivated virus is formulated with the Algel-IMDG adjuvant
(TLR7/8 agonist) and used for preclinical animal studies for safety and immunogenicity followed subsequently by Phase I, II, and III clinical trials
to evaluate its safety and efficacy in human participants. Figure created with BioRender.com.
frontiersin.org
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(Figure 2) (71). Like the mRNA COVID-19 vaccines, BBV152

also induces a strong CD8 T cell response in vaccinated

individuals (72, 73). Preclinical BBV152 immunogenicity and

safety studies done on multiple animal models are summarized

in Table 1. The maximum tolerated dose of TLR7/8 agonist

(IMDG) in Algel-IMDG formulation was 30 ug/animal in mice

and rats (76). The BBV152-Algel-IMDG formulations were

evaluated as safe in mouse, rat, and rabbit models (Figure 1)

by repeated-dose toxicity, mutagenicity, histopathology, and by

clinical pathology investigations such as hematology, clinical

biochemistry, coagulation parameters, and urinalysis

monitoring. Necropsy with organ histopathology revealed no

significant difference between animals treated with antigen

alone, adjuvants alone, or adjuvanted vaccine. Animals

administered adjuvanted formulations showed local
Frontiers in Immunology 04
inflammatory changes characterized by mild infiltration of

mononuclear cells and the presence of macrophages at the

injection site (76). BBV152 immunogenicity was tested in

BALB/c mice, Wistar rats, and in New Zealand white rabbits

on days 0, 7, and 14. The respective sera were evaluated for

antibody binding by ELISA and efficacy of live SARS-CoV-2

neutralization by plaque reduction assays. Animals administered

BBV152 (adjuvanted vaccine) showed higher antibody binding

(to S1, RBD, and N proteins) and higher neutralizing antibody

(NAb) titers than those administered the antigen alone (76).

High IgG2a/IgG1 in day 21 serum samples, higher levels of

interferon-g (IFNg), IL-2, 4, 6, 17A, TNFa, and higher

populations of CD4 Tfh-cells (follicular helper) suggest that

Algel-IMDG (TLR7/8 agonist) adjuvant induces Th1 biased,

T-cell mediated, protective immunity (66, 76).
FIGURE 2

Vaccines deliver the SARS-CoV-2 antigen into dendritic cells (DC) using lipid nanoparticles (mRNA vaccines), adenoviral vectors, or in the case
of BBV152 by using the inactivated SARS-CoV-2 virus. Adjuvant activity of the vaccines triggers innate sensors like the mRNA sensor Toll-like
receptor 7 (TLR7) or double-strand DNA sensor TLR9 for mRNA and Viral Vector vaccines, respectively. The Algel-IMDG adjuvant in BBV152
activates TLR7/8 (IMDG) and the NLRP3 inflammasome (Algel). The resulting production of IL-12 drives naïve T-cells towards the
pro-inflammatory Th1-biased response that generates strongly neutralizing antibodies (IgG1, IgG3 subtypes) and virus-specific CD8 effector
T-cells to clear the infection. Generation of viral antigen-specific memory B- and CD8 T-cells affords long-term protection. Production of IL-4
however drives a Th2-biased response with high titers of IgG4 and IgE, along with recruitment and activation of mast cells and eosinophils,
which causes vaccine-induced disease enhancement or antibody-dependent enhancement. Figure created with BioRender.com.
frontiersin.org
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TABLE 1 BBV152 preclinical immunogenicity and safety studies.

Study type Model Vaccination Vaccination Infection dose Readouts Publication

Histopathology Safety

- - Ganneru et al.,
2020 (66)

Mild WBC infiltration
at the injection site with
no skin reactions. All
organs show normal
morphology.

Body temperature,
leucocyte counts, clinical
biochemistry parameters
and urine analysis reports
within normal range.

- - Mohandas
et al., 2021
(74)

- -

Vaccinated animal
lungs and trachea
protected from
pneumonia

Vaccinated animals show
higher IFNg, IL-12 and
lower IL-4 and IL-6 levels
PI.

- - Yadav et al.,
2021 (75)

- -

(Continued)
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Virus levels NAb titers Binding

levels

Immunogenicity BALB/c
mice

day 0 & 7 - 0.15
to 0.3µg antigen
+ Algel-IMDG

Intraperitoneal - - High efficacy - MNT50

- day 7 PV
High S1, RBD, &
N specific Ab
titers- day 7 PV

Intramuscular

Long term
Immunogenicity

Intramuscular MNT50 - day 98 PV S1-specific Ab
titers- day 98 PV

Repeated dose
toxicity

BALB/c
mice

day 0, 7 & 14 -
0.15 to 0.3 µg
antigen + 6 µg
Algel-IMDG

Intraperitoneal - - - -

Wistar
rats

day 0, 7 & 14 -
3 to 6 µg
antigen + 30 µg
Algel-IMDG

Intramuscular

New
Zealand
Rabbits

Maximum
tolerated dose

Swiss
Albino
mice

day 0, 7 & 14 -
9 µg antigen +
30 µg Algel-
IMDGWistar

rats

Viral challenge Syrian
Hamsters

day 0, 14 & 35 -
3 to 6 µg
antigen + 6 µg
Algel-IMDG

Intramuscular Intranasal 0.1 ml -
10^5.5 TCID50

SARS-CoV-2 on day
50 PV

low viral titers and
RNA from throat
swabs and nasal
washes on days 3, 7
& 15 PI

- -

Immunogenicity - Improved NAb
PRNT50) against NIV-
2020-770 strain days
12, 21, 48 PV

Elevated anti-
spike IgG & IgG2
levels on days 3, 7
and 14 PI

Protection
Study

- - -

Viral challenge Rhesus
Macaques

day 0 & 14 - 3
to 6 µg antigen
+ 6 µg Algel-
IMDG

Intramuscular 1ml Intratracheal
and 0.25 ml in each
nostril - 10^6.5
TCID50 SARS-CoV-2
on day 28 PV

low viral titers and
RNA from throat
swabs and nasal
washes on days 1,
3, 5 & 7 PI

- -

Immunogenicity -
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BBV152 immunogenicity and
protection in Syrian hamsters
and rhesus macaques

Among various small laboratory animal models, Syrian

hamsters were found to be a suitable model for SARS-CoV-2

research, as the virus has been shown to replicate both in the

upper and lower respiratory tract (77) (Table 1). Syrian hamsters

(n=9/group) immunized with phosphate-buffered saline (PBS-

control), BBV152-Algel or BBV152-Algel-IMDG (3 µg or 6 µg)

on days 0, 14, and 35 and inoculated on day 50 with intranasal

SARS-CoV-2 (NIV-2020-770) median tissue culture infectious

dose (TCID50) of 105.5 (74). By 21 days post-immunization,

hamsters receiving BBV152 with Algel-IMDG adjuvant

produced significantly higher NAbs than the Algel alone group.

BBV152 vaccinated hamsters showed rapid clearance of

SARS-CoV-2 from lungs, trachea, nasal turbinates, and extra-

pulmonary tissues while also showing lower inflammation

mediated alveolar damage, hemorrhages, inflammatory cell

infiltration, hyaline membrane formation, and eosinophilic

edematous exudate than the PBS-treated control group

(Figure 1) (74). A similar assessment of immunogenicity of the

three BBV152 formulations in rhesus macaques (75) (Table 1)

showed protective efficacy against SARS-CoV-2 pneumonia and

preserved the normal histology of the lungs. BBV152-treated

macaques showed normal post-infection oxygen saturation

(SpO2), lower levels of pro-inflammatory cytokine IL-6, and

protection against post-infection CD8 T-cell lymphopenia. The

lung histopathology of BBV152-treated animals showed no signs

of eosinophilic infiltration, indicating no vaccine-enhanced

disease (Figure 1) (75).
BBV152 safety phase I trial

BBV152 safety and immunogenicity in humans were first

evaluated in a double-blind, multicenter, randomized, controlled

Phase I trial (ClinicalTrials.gov: NCT04471519) (Table 2).

Individuals with positive SARS-CoV-2 nucleic acid and/or

serology tests were excluded. Among the 375 healthy adults

aged 18 to 55 years at 11 hospitals across India, three groups of

100 were randomly assigned to receive either one of three

BBV152 formulations (3 or 6 µg with Algel-IMDG or 6 µg

with Algel), and 75 were assigned to an Algel only control

vaccine group. Intramuscular vaccine/control doses were

administered on the day of randomization and again on day

14. As the primary outcome, solicited local and systemic adverse

reactions were reported by 17 (17%; 95% CI, 10.5–26.1)

participants in the 3 µg BBV152-Algel-IMDG group, 21 (21%;

13.8–30.5) in the 6 µg BBV152- Algel-IMDG group, 14 (14%;

95% CI, 8.1–22.7) in the 6 µg BBV152-Algel group, and 10 (10%;

95% CI, 6.9–23.6) in the Algel-only group. The most common
T
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TABLE 2 BBV152 Phase I, II and III immunogenicity.

Clinical Trials Participants Immune Readout

-med ed response
GMT 5% CI)

ELISPOT
(IFNg)

Post vaccination ELISA
Titer GMT (95% CI)

D3 D4 % CD8 Day 28
Median
(IQR)

S1-protein
- day28

RBD-
protein -
day28

N-protein -
day28

.3 -
)

(0.2
.0)

0.04
(0.01 -
0.2)

105 (8.5 -
166.0)

4955.7
(4192.9 -
5857.3)

2622.4
(2307.7 -
2980.1)

3148.2
(2692.5 -
3681.1)

.4 -
)

(0.3
.0)

0.05
(0.01 -
1.3)

55.0 (22.0 -
173.8)

5771.1
(4793.6 -
6948.0)

3138.3
(2747.8 -
3584.4)

4112.5
(3410.6 -
4958.8)

.1 -
)

(0.1
.3)

0.02
(0.01 -
0.05)

31.5 (16.0 -
121.0)

6286.1
(5339.4 -
7400.8)

3681.9
(3174.6 -
4270.2)

2981.6
(2546.2 -
3490.1)

7
4 -
)

08
2 -
3)

0.01
(0.01 -
0.04)

3.0 (1.0 -
23.0)

2000.0
(1654.6 -
2417.5)

1621.5
(1364.4 -
1927.1)

1651.4
(1375.5 -
1982.6)

ll-med d
onse G on
42 (95 I)

Post vaccination ELISA Titer GMT (95% CI)

(pg/
l)

-5
ml)

S1-protein - day28 RBD-protein - day28 N-protein -
day28

13
0 -
2)

.4
.2 -
.5)

2574·2 (2228·9–2973·1) 1962·7 (1726·2–2231·6) 2734·1
(2375·1–
3147·5)

.1
9 -
3)

.9
.2 -
.6)

2240·5 (1942·4–2584·5) 2031·6 (1777·3–2322·3) 2490·4
(2161·7–
2869·2)

g
ml)

13
ml)

S1-protein - day42 RBD-protein - day42 N-protein -
day42

7.2
.9 -
8)

.1
.6 -
.6)

11528·8 (10 002·7–
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TABLE 2 Continued

Phase II - NCT04471519 (Ella et al.,
2021 PMCID: PMC7825810)

N = 380 Post Vaccination Seroconversion % (95%
CI)

Post Vaccination NAb GMT (95%
CI)

Cell-mediated
response GMT on

% CI)

Post vaccination ELISA Titer GMT (95% CI)

IFNg +
a / IL-5
3)
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Phase III - NCT04641481 (Ella et al.,
2021 PMCID: PMC8584828)

N=25798 BBV152 Vaccine Efficacy Post Vaccination (D
NAb MNT50 GMT (9

Symptomatic
COVID

Severe
COVID

Asymptomatic
COVID

Symptomatic
< 60 yrs

Symptomatic
≥ 60 yrs

Age ≥18–<60
years

≥ 60
years

Total cases n/N
(%)

130/16
973

(0·8%)

16/16 973
(0·1%)

46/6289
(0·7%)

109/15 115
(0·7%)

21/1858
(1·1%)

BBV152
(N=386)

129.9
(114.3 -
147.6)

BBV152 n/N (%) 24/8471
(0·3%)

1/8471
(<0·1%)

13/3248
(0·4%)

19/7578
(0·3%)

5/893
(0·6%)

Placebo
(N=119)

12.9
(10.1 -
16.5)

Placebo n/N (%) 106/
8502
(1·2%)

15/8502 (0·2%) 33/3041
(1·1%)

90/7537
(1·2%)

16/965
(1·7%)

Gender Male

Vaccine efficacy,
% (95% CI)

77·8%
(65·2–
86·4)

93·4% (57·1–
99·8)

63·6% (29·0–
82·4)

79·4% (66·0–
88·2)

67·8%
(8·0–
90·0)

BBV152
(N=386)

118.2
(101.0 -
138.3)

BBV152 Vaccine Efficacy against SARS-CoV-2 variants Placebo
(N=119)

14.1
(10.4 -
19.2)

All
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Delta
(B.1.617.2)
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(B.1.617.1)

Alpha
(B1.1.7)

Other Baseline
SARS-
CoV-2

Positive

Total cases n/N
(%)

79
(0·5%)

50 (0·3%) 11 (0·1%) 4 (<0·1%) 14
(0·1%)

BBV152
(N=386)

194.3
(134.4 -
280.9)

BBV152 n/N (%) 18
(0·2%)

13 (0·2%) 1 (<0·1%) 1 (<0·1%) 3
(<0·1%)

Placebo
(N=119)

27.4
(14.0 -
53.5)

Placebo n/N (%) 61
(0·7%)

37 (0·4%) 10 (0·1%) 3 (<0·1%) 11
(0·1%)

Vaccine efficacy,
% (95% CI)

70·8%
(50·0 to
83·8)

65·2% (33·1 to
83·0)
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to 99·8)

– 73·0%
(−2·2 to
95·2)
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solicited adverse events were injection site pain (17 [5%] of 375

participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine

[2%]), and nausea or vomiting (seven [2%]) (Table 3). All

solicited adverse events were mild (43 [69%] of 62) or

moderate (19 [31%]) and were more frequent after the first

dose. BBV152 immunogenicity was measured as the study’s

secondary outcome using both IgG levels (Anti-S1, Anti-RBD,

and Anti-N IgG1) and appearance of NAbs from baseline to

days 14, 28, 42, 104, and 194. Seroconversion rates were 87.9,

91.9, and 82.8% in the 3 µg with Algel-IMDG, 6 µg with Algel-

IMDG, and 6 µg with Algel groups, respectively. Analysis

performed on randomly selected blood samples at one study

site, showed enhanced CD3, CD4, and CD8 T-cell (Th1)

activation measured by IFN-g ELISpot responses against

SARS-CoV-2 in both Algel-IMDG vaccinated groups on day

28 (54) (Table 2).
BBV152 immunogenicity
phase II trial

Following the tolerable safety outcomes and enhanced

immune responses for BBV152 reported in the Phase I trial,

both Algel-IMDG formulations were selected for a double-blind,

randomized, multicenter Phase II trial in healthy adults and

adolescents (aged 12 to 65 years) at 9 hospitals in India. After

excluding participants already positive for SARS-CoV-2 (by

serology or RT-PCR), 380 candidates were randomly assigned

(1:1) to receive either 3 µg or 6 µg BBV152 with Algel-IMDG. As

the primary study outcome, the group receiving 6 µg BBV152

with Algel-IMDG showed significantly higher titers of anti-

SARS-CoV-2 NAbs and 98.3% [95% CI, 95.1–99.6]

seroconversion rates (defined as a post-vaccination titer that

was at least four-fold higher than the baseline) (55). IgG

antibodies to all epitopes (S1 glycoprotein, RBD, and N

protein) were detected (Table 2). Secondary outcomes revealed

a Th1-biased response induced in both groups, measured by

cytokine response (high Th1 cytokines - IFNg, IL-2, and TNFa
and low Th2 cytokines - IL-5, IL-10, and IL-13) at 2 weeks after

the second vaccine dose (day 42). Additionally, BBV152 induced

CD4+ CD45RO+ memory T-cell responses with elevated co-

stimulatory marker CD27 indicating the activation of the

antigen recall memory T-cell response against SARS-CoV-2

(55). Candidates with an existing co-infection were excluded

to avoid confounding the vaccine generated immune responses

with Th2/Th17 immune responses to other pathogens. No

serious adverse events were reported in the study. Most

adverse events were mild and resolved within 24 hours of

onset. No association between the dose of vaccine (3 µg or 6

µg BBV152) and the number of adverse events was observed.

The most common solicited adverse event was injection site

pain (Table 3).
Frontiers in Immunology 09
BBV152 efficacy phase III trial

In the Phase II trial, BBV152 showed better immunogenicity,

safety, and enhanced Th1 biased anti-SARS-CoV-2 immune

responses compared to the Phase I trial. Therefore the 6 µg

BBV152 with Algel-IMDG formulation was selected for the

double-blind, randomized, controlled Phase III efficacy trial

(Clinicaltrials.gov: NCT04641481). This study recruited 25798

participants between November 16, 2020, and January 7, 2021,

of which 24419 were randomized to receive two doses of

BBV152 (n = 12,221) or placebo (n = 12,198). The primary

outcome was to assess the efficacy of BBV152 in preventing

symptomatic COVID-19 (confirmed by RT-PCR) in a case-

driven manner, along with sub-group analyses of asymptomatic

and symptomatic efficacy. In a follow-up, at least two weeks after

the second vaccination, 130 (0.77%) cases of symptomatic

COVID-19 were reported among 16,973 participants; 24 in the

BBV152 group and 106 in the placebo group, bringing the

overall vaccine efficacy to 77.8% (95% CI: 65.2–86.4) (Table 2).

One candidate from the vaccine group and 15 from the placebo

group developed severe COVID-19 symptoms, giving BBV152 a

protective efficacy of 93.4% against severe disease, while the

efficacy against asymptomatic COVID-19 was 63.6% (95% CI,

29.0–82.4) (56). BBV152 protection in elderly (>60 yrs.)

candidates was 67.8% (95% CI, 8.0–90.0) and in participants

younger than 60 years was 79.4% (95% CI, 66.0–88.2). BBV152

was well tolerated with no differences in the distributions of

solicited, unsolicited, or serious adverse events between vaccine

and placebo groups. No cases of anaphylaxis or vaccine-related

deaths were reported (Table 3).
BBV152 against variants of concern

The rapid surge of SARS-CoV-2 cases due to the five variants

of concern has resulted in a catastrophic impact on global efforts

against the SARS-CoV-2 pandemic including vaccinations.

Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28-P.1), Delta

(B.1.617.2), and Omicron (B.1.1.529) variants pose serious

public health concerns due to higher transmissibility, immune

escape, and disease severity (Figure 3). The root of such concerns

is due to the structure of these variants compared with the other

known SARS-CoV-2 lineages. The Alpha (B.1.1.7) variant

carries 8 mutations in spike-RBD, specifically N501Y, which

enhances viral attachment to angiotensin-converting enzyme 2

(ACE2) on human cells (78). The Beta (B.1.351) variant has

additional E484K and K417N mutations on the RBD, the

Gamma (B.1.1.28) variant has a new L452R spike mutation

plus two new mutations A119S and M234I in the N-protein,

while the D614G, T478K, and P681R mutations were of concern

in the Delta (B.1.617.2) variant (21, 23, 79, 80). The heavily

mutated Omicron (B.1.1.529) variant spike shows 30 amino acid
frontiersin.org
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changes, three deletions, one insertion in the spike-RBD protein,

and 3 mutations at the furin cleavage site that increase its

infectivity (Figure 3) (81–84). Recent studies suggest that since

most of the vaccine candidates are either recombinant or

specifically target a single epitope of the original spike

sequence, their immune response might not be as efficient

against the new variants (85–89). An open-label, clinical

intervention trial study done on the 4th dose of mRNA

vaccines (Pfizer - BNT162b2 or Moderna - mRNA1273)

reported the vaccine efficacy against Omicron infection at 30%

(95%CI, -9% to 55%) and 11% (95%CI, -43% to +43%) for

BNT162b2 and mRNA1273, respectively while local and

systemic adverse reactions were reported in 80% and 40%

recipients, respectively (48).

Sera from selected BBV152 vaccinated candidates of Phase I/

II clinical trials (ClinicalTrials.gov: NCT04471519) were tested

against the five VOC and the vaccine strain D614G, using plaque

reduction neutralization test (PRNT50) assays, with the

seroconversion rates of neutralizing antibodies being 98.6%

(90). The sera from BBV152-vaccinated individuals could

neutralize Alpha (B.1.1.7) (PRNT50-GMT: D614G = 700,

Alpha = 670) (91) and Gamma (B.1.1.28.2) variants (PRNT50-

GMT: D614G = 337.5, Gamma= 175.7) (92) with similar efficacy

as D614G. For Beta (B.1.351) neutralization efficacy dropped 3-

fold compared to D614 (PRNT50-GMT: D614G = 187.5, Beta=

61.57) (93). Delta (B.1.617.2) and Omicron (B.1.1.529) variants

were neutralized at 1.5and 9.4-fold lower efficacy than D614G

(PRNT50-GMT: D614G=706, Delta=480, Omicron=75) (94). All
Frontiers in Immunology 11
BBV152 boosted candidates showed neutralizing activity against

the Delta variant, while over 90% showed neutralizing activity

against the Omicron variant (94). Similar studies using higher

drop in neutralization efficacy was observed with mRNA

vaccines like BNT162b2 (Pfizer) (6.5-fold) and mRNA-1273

(Moderna) (8.6-fold) while the viral vector vaccine ChAdOx1

nCoV-19 (Astra Zeneca) showed an 86-fold reduction in efficacy

against Beta (B.1.351) variant (21, 95, 96). Similarly, reduced

Delta (B.1.617.2) variant neutralization was observed with the

sera of BNT162b2 mRNA and single-dose ChAdOx1 nCoV-19

vaccinated individuals (79).
Protection with BBV152
homologous/heterologous
prime-boost vaccination

BBV152 Phase I/II clinical trials reported an acceptable

safety profile and enhanced Th1 (IFNg producing CD4+ T-

cells) and humoral responses (54, 55, 90). Based on the interim

Phase III data, BBV152 was approved for use in India with over

313 million vaccine doses already administered by April 18th,

2022 (https://dashboard.cowin.gov.in/). Long-term immune

responses can be enhanced by inducing trained immunity and

down-regulating innate immune tolerance (97–99). To dissect

the systemic immune responses induced by BBV152, the plasma

levels of a panel of cytokines and chemokines were measured in
FIGURE 3

Each of the five SARS – CoV-2 variants of concern accumulated mutations in their Spike protein leading to changes in their transmissibility, and
severity of infections leading to hospitalization or death. The current globally dominant variant, Omicron (B.1.1.529) has more than 50 mutations
including 32 on the Spike protein and 15 on the RBD alone. These mutations have significantly increased the transmissibility of Omicron over
the Delta variant. The severity (hospitalization and death) due to the Omicron variant is lower than Delta, however, the vaccine efficacy against
Omicron drops significantly. Figure created with BioRender.com.
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44 prime-boost vaccine recipients (100). While the first dose of

the vaccine does not induce any significant changes in plasma

cytokine levels, the second BBV152 dose enhanced plasma levels

of Th1 (IFNg, IL-2, TNFa), and Th2 (IL-4, IL-5, IL-10, and IL-

13) cytokines as well as IL-17A and other pro-inflammatory

cytokines (Figure 2). This was accompanied by elevated

chemokines CCL4, CXCL1, CXCL2, and CX3CL1. A strong

Th1 response correlates with milder COVID-19 symptoms (14,

19, 68). Although this study does not measure vaccine or ligand-

specific immune responses, the induction of systemic cytokines

indicates a robust systemic immune response following the

BBV152 booster dose.

A retrospective cohort study at the All-India Institute of

Medical Sciences measured the rate of reinfection (tested by RT-

PCR or rapid antigen) in BBV152-vaccinated health care

workers during the Delta variant surge in India (101). The

1917 health care workers were divided into 3 groups:

unvaccinated (n = 472), partially vaccinated (n = 356), and

fully vaccinated (n = 1089). Among the unvaccinated group,

SARS-CoV-2 reinfection was observed in 60 of 472 (12.7%)

with an incidence density (ID) of 18.05 per 100 person-years

(95% CI, 14.02-23.25). Reinfection among partially vaccinated

individuals was 39 of 356 (11.0%) with an ID of 15.62 per 100

person-years (95% CI, 11.42-21.38), and among fully vaccinated

individuals was 17 of 1089 (1.6%) with an ID of 2.18 per 100

person-years (95% CI, 1.35-3.51). The estimated effectiveness of

BBV152 against reinfection was 86% (95% CI, 77%-92%) in fully

vaccinated individuals, with their IDs of 0.08 (95% CI, 0.01-0.55)

and hospitalization rates of 0.13 (95% CI, 0.01-1.28) (101). A

similar study was conducted in New York state to assess the

effectiveness of the BNT162b2 (Pfizer), mRNA-1273 (Moderna),

and Ad26.COV2.S (Johnson & Johnson) vaccines (102). During

the week of August 28, 2021, when the Delta variant accounted

for 99.6% of all COVID-19 infections in New York state, the

median vaccine effectiveness against reinfections was 77.8%

(95% CI, 70.1 - 86.8) for mRNA-1273 followed by 72.3% (95%

CI, 63.7 - 77.5) for BNT162b2 and 69.4% (95% CI, 63.4 - 77.3)

for Ad26.COV2.S. The combined median effectiveness against

infection in fully vaccinated people during this Delta surge was

74.2% (95% CI, 63.4 - 86.8) and the effectiveness against

hospitalizations was more than 90% (102). Therefore BBV152

showed equivalent protection levels as BNT162b2, mRNA-1273,

and Ad26.COV2.S vaccines against breakthrough infections and

hospitalizations in fully vaccinated individuals.

Heterologous prime-boost using different vaccine products

allows for flexibility in cases of unpredictability or lack of supply

of the same vaccine and may enhance vaccine effectiveness by

reducing reactogenicity and enhancing the net vaccine

effectiveness (103). A retrospective cohort study compared the

virus neutralization (NAb) profiles of BBV152 and ChAdOx1-

nCov-19 homologous prime-boosted individuals to those that

were heterologous prime-boosted (first ChAdOx1-nCov-19 dose

followed by second BBV152 dose) by PRNT50 assays (104). The
Frontiers in Immunology 12
geometric mean titer of NAbs against the B.1, Alpha, Beta and

Delta variants for BBV152 were 162 (95% CI, 76.74-342), 122.7

(95% CI, 59.36-253.7), 48.43 (95% CI, 19.71-119) and 51.99

(95% CI 19.65-137.6) in the ChAdOx1-nCov-19 group and

156.6 (95% CI, 105.2-233.1), 112.4 (95% CI, 76.56-164.9),

52.09 (95% CI, 34.9-77.73) and 54.37 (95% CI, 27.26-108.4) in

the BBV152 group. However, the sera of the heterologous group

had roughly 3-fold higher NAb titers of 539.4 (95% CI, 263.9-

1103), 396.1 (95% CI, 199.1-788), 151 (95% CI, 80.21-284.3),

and 241.2 (95% CI, 74.99-775.9) respectively against B.1, Alpha,

Beta and Delta variants (104). They also concluded that the

heterologous group had reduced or similar reactogenicity and

adverse events. A similar study by Atmar et al. concluded that

the vaccination efficacies for Ad26.COV2.S followed by

BNT162b2 or mRNA-1273 were 10 to 20-fold higher than

Ad26.COV2.S homologous prime-boost vaccination with at

par reactogenicity (105). It would be interesting to study if a

dissimilar vaccine like BBV152 (the whole virus inactivated)

would synergize the efficacies of mRNA vaccines like BNT162b2

or mRNA-1273 in the future heterologous prime-boost studies.
Impact of a third BBV152 booster
dose on the persistence of
anti-SARS-CoV-2 immunity

Multiple studies report the decline in anti-SARS-CoV-2 NAb

titers within 2-6 months post-infection or immunization (106).

The emergence of VOCs as the dominant infectious strains raises

further concerns about the durability of vaccine responses since the

level of NAb titers protective against the original strain might not

be protective against VOCs (Figure 3) (107–110). With an increase

in breakthrough infections by the highly transmissible Omicron

(B.1.1.529) variant, it is vital to understand the role of NAb

persistence in long-term vaccine efficacy (102, 111). The impact

of a third BBV152 dose was tested on 184 randomly selected

candidates of an ongoing BBV152 Phase II trial (ClinicalTrials.gov:

NCT04471519). Candidates were divided into placebo (n= 93) or 6

µg BBV152-Algel-IMDG (n=91) groups and the dose was

administered on day 215 (approximately 6 months) after the

primary dose. Geometric mean NAb titers (PRNT50) induced 4

weeks after the second BBV152 dose were 197.0 (95% CI, 155.6–

249.4) and reduced to 23.9 (95% CI, 14.0–40.6) by six months.

Four weeks after the third (booster) BBV152 dose, the NAb titers

increased to 746.6 (95% CI, 514.9–1081) compared with 100.7

(95% CI, 43.6–232.6) in the placebo group with seroconversion

rates being 98.7% (95% CI, 92.8–99.9) and 79.8% (95% CI, 69.6–

87.8), respectively. The third BBV152 dose led to increased NAb

titers against VOCs such as Alpha (32.6-fold), Beta (161-fold), and

Delta (264.7-fold). The BBV152 third dose also induced memory

B-cells, central and effector memory CD4 T-cells, and cytotoxic

effector memory CD8 TTEMRA cells (112). A more recent study
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compared the effect of the BBV152 booster (third) dose given 215

days after the second BBV152 dose in fully vaccinated individuals.

The booster dose recipients had 19.11 (P < 0.0001), 14.70

(P = 0.0002), 16.51(P < 0.0001) and 18.53 (P = 0.0002) fold

higher NAb titers against B.1, Beta, Delta and Omicron,

respectively (113). Thus, the booster dose of Covaxin robustly

triggered NAb responses and efficiently neutralized the multiple

VOCs of SARS-CoV-2
BBV152 pediatric study

In 2020 at the onset of the pandemic, in adults, COVID-19

infections in children were not associated with severe symptoms

requiring hospitalization or ventilation support, and pediatric

deaths due to COVID-19 were limited to children with

underlying chronic medical conditions (114, 115). Although

asymptomatic during active COVID-19 infections, children have

shown similar viral loads as adults and could be the source of

ongoing infections (116–119). The new VOC have almost entirely

replaced the original SARS-CoV-2 strain leading to higher rates of

symptomatic and more severe COVID-19 in children (120). The

failure to decrease infection rates in the ongoing pandemic has

been associated with an increasing burden of infections in

children (121). Therefore, several countries have now

considered including children in their COVID-19 vaccination

programs (122–124), making it a priority to develop new vaccines

or establish the safety of current vaccines in children. A Phase II/

III open-label, multi-center age de-escalation study was performed

across six hospitals in India, in three pediatric age cohorts

(n=526): ≤18->12years (group 1: n=176), ≤12->6 years (group

2: n=175) and ≤6->2 years (group 3: n=175) (125). No severe

adverse events were reported with mild to moderate fever being

the most frequent systemic events reported after the primary dose

(group1- 5%, group2 – 10% & group3 – 13%), decreasing to 4% or

less after the booster dose in all groups. Seroconversion rates in all

3 groups were equivalent to those seen in the adult population:

group1 = 94.9% (95% CI, 90.5-97.5), group2 = 98.2% (95% CI,

94.9-99.6), and group 3 = 98.3% (95% CI, 95.0-99.6). All three

pediatric groups showed 2-fold higher titers of NAbs (by PRNT50)

than adults and IgG1:IgG4 ratios > 1 indicative of a Th1-biased

robust anti-SARS-CoV-2 immune response (125). Both vaccine

and placebo reactogenicity were similar and no severe adverse

events were reported. Based on these findings BBV152 received

emergency use listing in India, for children 11-18 years old in

December 2021 and for children 6-11 years old in April 2022.
Conclusions

BBV152 is an exciting player in the Anti-SARS-CoV-2

vaccination landscape. It is a whole-virion inactivated SARS-

CoV-2 vaccine generated against the B.1.1.7 variant and
Frontiers in Immunology 13
administered with the TLR7/8 agonist molecule – Algel-

IMDG, to induce a Th1-biased immune response. In contrast

to mRNA or viral vectored vaccines which express the Spike

protein as the only antigen target, inactivated - purified BBV152

particles show intact coronaviral morphology and induce

antibody responses against both the Spike and the

Nucleocapsid proteins. BBV152 was safe in preclinical animal

models such as BALB/c mice, Wistar rats, New Zealand rabbits,

Syrian hamsters, and rhesus macaques, and generated protective

NAbs plus CD4/CD8 T-cell responses (66, 74, 75). BBV152-

vaccinated animals not only cleared the viral challenge but were

also protected from COVID-19 pneumonia and associated

irreversible damage to other organs. The BBV152 Phase I, II,

and III trials established not only its safety in humans but also its

efficacy at engaging CD4 and CD8 T-cell responses in addition

to producing protective NAb titers. BBV152 protected up to 78%

of vaccinated candidates against symptomatic infection, 93.4%

from severe disease, and 63.6% from asymptomatic disease (56).

Additionally, sera from BBV152 vaccinated candidates in Phase

I/II clinical trials could neutralize all five VOCs as measured by

PRNT50 assays. However, as reported with other vaccine

candidates this neutralization efficacy was reduced with Delta

and Omicron variants (91–94).

Studies show that SARS-CoV-2 vaccinations at $35 per dose

even at 60% efficacy are considerably cost effective ($8,200 per

quality adjusted life-year (126). As the highly transmissible

Omicron (B.1.1.529) variant becomes dominant globally, the

protective NAb titers from initial vaccination are proving to be

inadequate in preventing breakthrough infections (102, 111). A

third BBV152 booster, 6 months after the prime vaccine dose,

not only reverses the decline in the NAb titers with time but also

leads to a significant increase in NAb titers which might provide

better protection against multiple VOC especially the Omicron

variant (113). The BBV152 third dose also induced memory B-

cells, central and effector memory CD4 T-cells, and cytotoxic

effector memory CD8 TTEMRA cells (112). Perhaps one of the

most interesting pieces of data to emerge from the coordinated

global vaccination efforts is the possibility to enhance the

immune response by heterologous prime-boost vaccination.

The WHO Strategic Advisory Group of Experts on

Immunization (SAGE) reviewed the evidence and issued the

following interim guidance: Although the direct evidence is

limited due to the multiplicity of different vaccine

combinations, heterologous schedules have consistently shown

enhanced immunogenicity when inactivated virus vaccines were

administered either before or after vectored or mRNA vaccines

(103, 104, 127). Certain key gaps in the evidence to be addressed

include: 1) effectiveness and duration of protection of

heterologous versus homologous vaccine schedules, especially

for heterologous schedules involving inactivated vaccines; 2)

long-term safety, immunogenicity, and effectiveness of

heterologous vaccination, and surveillance for rare adverse

events; 3) the ideal time interval between the primary series
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and booster dose; 4) correlates and duration of protection for

homologous and he te ro logous schedu le s ; and 5)

immunogenicity and efficacy of heterologous and homologous

vaccine schedules against VOC like the Omicron variant.
Challenges and the path forward

The global vaccine campaigns, a testament to human

innovation and dedication have encountered and overcome

several challenges ranging from scientific, logistical, societal,

and marketing (Figure 4). Key implementation parameters like

the manufacturing and distribution speed and the extent of

vaccine delivery in a population plays just as critical a role in

vaccination success as the efficacy of the vaccine itself. In the US,

Operation Warp Speed was critical for early vaccination efforts

by infusing investments in vaccine development, manufacturing,

and distribution, however reaching vaccine-hesitant and

underserved groups limited the success of the vaccination

program. Globally in underserved areas, efforts to design and

implement strategies on supply chain and distribution are still

desperately needed (128).

Almost all SARS-CoV-2 vaccines being developed require

prime-boost vaccination with protective efficacies declining by 6

months. The global vaccination endeavors face additional
Frontiers in Immunology 14
challenges from the emergence of VOCs that might require

higher NAb titers for protection. To fulfill the global demand

would therefore require pharma companies to supply billions of

doses annually and the governments to develop effective

prioritization strategies. Nucleic acid and viral vector vaccines

that require storage at −70°C from manufacturing to vaccination

run into ultra-cold chain issues for distribution in rural and

underdeveloped areas that limit their use. BBV152 can be stored

and distributed at 2 to 8°C using existing cold chain

infrastructure to mitigate these issues (129). There is a lack of

well-defined correlates of protection against SARS-CoV-2

infection such as the exact protective antibody type and titer

levels, T-cell responses responsible for the range of symptoms,

and the variation in these correlates concerning VOCs. Knowing

this information would provide measurable aspects of immune

responses required to prevent severe symptoms, decrease

breakthrough infections, and help develop vaccines that confer

sterilizing immunity and prevent infection rather than just

prevent disease. Additional consideration must be given to

safety and efficacy trials in children, pregnant women, and

groups with severely compromised immunity such as HIV+

and cancer patients under treatment (130–132). Currently, all

leading vaccines are administered through the intramuscular

route. However, several studies report the importance of

mucosal immunity against SARS-CoV-2 infections (133–136),
FIGURE 4

Challenges in the development and deployment of COVID-19 vaccines, and the path forward.
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and 12 intranasal vaccine candidates are currently in different

clinical phases around the world (137). The Omicron variant,

currently the most dominant global SARS-CoV-2 variant, shows

enhanced viral replication in the human bronchus and upper

respiratory tract than the lungs (138). Although Omicron shows

reduced damage to the lungs and therefore reduced disease

severity, its enhanced transmission capacity poses a major

threat to public health worldwide. The increased Omicron-

related breakthrough infections in the vaccinated population

could in part be due to poor or no mucosal immunity generated

by the intra-muscular vaccines. Therefore, the role of booster

doses with intranasal vaccines needs to be investigated further.

Real-world data on the efficacy and safety of multiple

homologous booster vaccines are just emerging. Of particular

concern is the lowered efficacy of the 4th mRNA vaccine booster

dose against the Omicron variant (BNT162b2 -30% and

mRNA1273 -11%) and the rise in vaccine-related adverse

events (48). As recent history suggests, emerging VOCs have

been more transmissible than their previous counterparts with

Omicron being about 3-fold or 300% more transmissible than

Delta. Next-gen vaccines may be needed to improve the

neutralization efficacy against future VOC and will take time

to develop. While some studies report improvements in vaccine

efficacy by heterologous prime-boost regimens (103–105), a

more robust clinical study on the immunogenicity,

reactogenicity, and safety of multiple vaccine combinations

and schedules is required. One such study underway in the US

will evaluate the immunogenicity and safety of BBV152 booster

dose in participants fully vaccinated (two doses) with mRNA

vaccines (ClinicalTrials.gov: NCT05258669).
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