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Abstract

AMPA receptors (AMPAR) are ligand gated ion channels critical for synaptic transmission

and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological dis-

eases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting

to potentiate or depress AMPAR activity is an inherently difficult balancing act between

effective treatments and debilitating side effects. A newly explored strategy to target subsets

of AMPARs in the central nervous system is to identify compounds that affect specific

AMPAR-auxiliary subunit complexes. This exploits diverse spatio-temporal expression

patterns of known AMPAR auxiliary subunits, providing means for designing brain region-

selective compounds. Here we report a high-throughput screening-based pipeline that can

identify compounds that are selective for GluA2-CNIH3 and GluA2-stargazin complexes.

These compounds will help us build upon the growing library of AMPAR-auxiliary subunit

specific inhibitors, which have thus far all been targeted to TARP γ-8. We used a cell-based

assay combined with a voltage-sensitive dye (VSD) to identify changes in glutamate-gated

cation flow across the membranes of HEK cells co-expressing GluA2 and an auxiliary sub-

unit. We then used a calcium flux assay to further validate hits picked from the VSD assay.

VU0612951 and VU0627849 are candidate compounds from the initial screen that were

identified as negative and positive allosteric modulators (NAM and PAM), respectively. They

both have lower IC50/EC50s on complexes containing stargazin and CNIH3 than GSG1L or

the AMPAR alone. We have also identified a candidate compound, VU0539491, that has

NAM activity in GluA2(R)-CNIH3 and GluA2(Q) complexes and PAM activity in GluA2(Q)-

GSG1L complexes.
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Introduction

AMPA-type ionotropic glutamate receptors (AMPARs) are critical for excitatory synaptic

transmission and their impairment negatively impacts cognition, mood, and behavior. Being

able to alter their function, or dysfunction, is thus integral to understanding the physiology of

neurons and our ability to treat various neurological diseases [1–3]. Negative and positive allo-

steric modulators (NAMs and PAMs) targeting the channel forming subunits of AMPARs

have been developed as potential therapeutics. For example, NAMs, such as perampanel [4],

have been used to attenuate seizures in epileptic patients while PAMs, such as CX-516 [5],

have been shown to have anti-depressant effects. Although these compounds are effective, they

can have severe side effects including dizziness and motor impairment [6, 7].

Each AMPAR subunit is composed of an N-terminal domain (NTD), ligand binding

domain (LBD), transmembrane (TM) helices, and C-terminal domain (CTD). The core unit

of function for AMPARs is the pore forming tetramer that acts as a ligand gated ion channel,

allowing for depolarization of the postsynaptic neuron upon the binding of neurotransmitter

glutamate [8]. Mature homo or heterotetramers, assembled from GluA1-GluA4 subunits, have

diverse functions due to various factors, such as subunit composition [9], alternative splicing

[10], RNA editing [11], posttranslational modifications [12], and association with certain aux-

iliary subunits [13–20].

The in vivo importance of AMPAR auxiliary subunits has become clear from extensive

electrophysiological, proteomic, and mutational studies [21, 22]. The highly divergent struc-

tures of auxiliary subunits parallel their broad spectrum of functional modulation of AMPARs.

It is, therefore, conceivable that specifically targeting AMPAR-auxiliary subunit complexes

would enable a variety of functional consequences, some of which may be useful for therapeu-

tics. Selectively targeting specific AMPAR-auxiliary subunit complexes with drugs would be

highly beneficial in the clinic and may enable us to determine which type of AMPAR-auxiliary

subunit complex is responsible for specific disease phenotypes. NAMs have been identified to

target TARP γ-8 containing AMPARs [23, 24]. Here, we report a high-throughput screening

(HTS) pipeline that allowed us to obtain new candidate NAMs and PAMs that act preferen-

tially on defined AMPAR-auxiliary subunit complexes.

We chose to screen for compounds that act on three auxiliary subunits that modulate

AMPAR function differently. The auxiliary subunits studied in this screen are TARP γ-2 (star-

gazin), cornichon homolog 3 (CNIH3), and germline specific gene 1 like protein (GSG1L).

They are expressed in different but partially overlapping neuronal populations in the CNS and

provide an opportunity to identify chemical compounds that could serve as brain region-selec-

tive AMPAR modulators. Stargazin is concentrated in the cerebellar granule cells, CNIH3 is

enriched in the hippocampus and cortex, and GSG1L is expressed in the striatum and cortex.

Stargazin and CNIH3 are both positive regulators of AMPAR gating kinetics [14, 18] and

GSG1L suppresses AMPAR activity [25, 26].

To identify compounds that target the AMPAR-stargazin and AMPAR-CNIH3, specifically,

we developed a high-throughput cellular assay using a voltage-sensitive dye (VSD) that shows

an increase in fluorescence proportional to membrane depolarization. Identified hits were

then filtered by a series of counter-screens to eliminate false positives and to determine speci-

ficity. Finally, a calcium flux assay using the calcium permeable isoform of GluA2, which is not

RNA edited at the critical pore-lining amino acid [27], was performed to further characterize

the hit compounds. These assays identified a NAM with higher potency on AMPAR complexes

containing stargazin and CNIH3, a PAM that reproduces our VSD assay finding of auxiliary

subunit dependent activity in electrophysiology, and a compound with PAM or NAM activity

depending on which auxiliary subunits are present. These experiments have proven to be an
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effective way to identify candidate compounds as AMPAR auxiliary subunit specific PAMs

and NAMs and could easily be applied to KAR-Neto1/2 and NMDAR-Neto1 complexes as

well as non-iGluR-auxiliary subunit complexes worth investigating as therapeutic targets.

Methods

Chemicals and media

DMEM (Corning), FBS (Atlanta Biologicals), PenStrep (Gibco), NBQX (Vanderbilt Chemical

Synthesis Core), sodium butyrate (Sigma), doxycycline (Clontech), HBSS (Gibco), HEPES

(Sigma), FLIPR Membrane Potential Assay Kit (Molecular Devices), glutamate (Fisher), pro-

benecid (Fisher), NaCl (Sigma), KCl (Sigma), MgCl2 (Sigma), CaCl2 (Sigma), glucose (Sigma),

cyclothiazide (Tocris), CX-546 (Tocris), and fluorowillardiine (Tocris).

Cell lines

Cell lines used in the VSD assays were TetON HEK293 cells. This was the parental cell line for

all stable cell lines created. We used GluA2flip(R) TetON HEK cell clone #4 that doxycycline

(DOX) dependently expresses GluA2flip(R) (A2R). The A2R cells were used as the base cell

line to derive cell lines that co-express auxiliary subunits. Specifically, we generated A2R cells

that constitutively express pBOSS-stg-IRES-mCherry clone #7 (A2R-stg) and A2R cells that

constitutively express CNIH3 clone #3–3 (A2R-C3). Cell lines used in the calcium flux assay

were GluA2flip(Q)-FLAG + GSG1L-1D4 pTREt-Va dual expression in TetON HEK cell clone

#20 (A2Q-GSG), GluA2flip(Q)-FLAG + CNIH3-1D4 pTREt-Va dual expression in TetON

HEK cell clone #8 (A2Q-C3), GluA2flip(Q)-FLAG pTREt-Va in TetON HEK cell clone #5

(A2Q), and tethered GluA2flip(Q)-FLAG-stargazin [28] in pTREt-Va dual expression in

TetON HEK cell clone #13 (A2Q-stg) (Summarized in Table 1).

Vanderbilt Discovery Library (VDL)

The Vanderbilt Discovery Collection is a library of 100,000 compounds that have been curated

by the Vanderbilt Institute of Chemical Biology’s High Throughput Screening facility for

screening in biological systems to maximize lead potential and diversity (http://www.vanderbilt.

edu/hts/services.html).

Table 1. Summary of cell lines used for screening.

Cell Lines Abbrev. Description

TetON HEK cell TetON parental cell line

TetONGluA2flip(R) clone #4 A2R DOX dependent A2R

TetONGluA2flip(R) clone #4 pBOSS-CNIH3 clone #3–3 A2R-C3 DOX dependent A2R, constitutive

C3

TetONGluA2flip(R) clone #4 pBOSS-stg-IRES-mCherry

clone #7

A2R-stg DOX dependent A2R, constitutive

C3

GluA2flip(Q)-FLAG + GSG1L-1D4 pTREt-Va TetON

clone #20

A2Q-GSG DOX dependent A2Q and GSG

GluA2flip(Q)-FLAG + CNIH3-1D4 pTREt-Va TetON clone

#8

A2Q-C3 DOX dependent A2Q and C3

GluA2flip(Q)-FLAG pTREt-Va TetON clone #5 A2Q DOX dependent A2Q

GluA2flip(Q)-FLAG-stargazin pTREt-Va TetON clone #13 A2Q-stg DOX dependent A2Q and stg,

tethered

The stable HEK cell lines that were used for all screening in this paper, together with each assigned

abbreviation and doxycycline (DOX) dependency of protein expression.

https://doi.org/10.1371/journal.pone.0174742.t001
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Voltage-Sensitive Dye (VSD) screening assay

Initial screening was performed on 39,202 compounds. Compound solutions were prepared

as fresh aliquots by transferring 150 nl of selected compounds from VDL plates into Greiner

384-pp round-bottom plates using an Echo 555 (Labcyte) and diluted in 30 μl 1X FLIPR Blue

VSD dye (Molecular Devices, cat #R8034) to 50 μM using a Combi liquid dispenser (Thermo).

Greiner 384-pp round-bottom plates containing glutamate for the second add were dispensed by

hand using a multi-channel pipet at 5X final concentration. A2R-stg cells were plated in 384-well

BD PureCoat amine-coated plates (Corning Life Sciences) at 16k cells/well in DMEM medium

supplemented with 10% heat-inactivated FBS and 100U/mL PenStrep antibiotic. NBQX, sodium

butyrate, and DOX were added to the cells at 30 μM, 1 mM, and 8 μg/ml, respectively. Cells were

incubated overnight (O/N) and washed 4 times in HBSS containing 20 mM HEPES, pH 7.4, on

an ELX405CW liquid aspirator and dispenser (BioTek). Buffer was left in the wells and an equal

amount of 2X FLIPR dye solution was added and incubated on the cells at room temperature for

45 min. Fluorescence signal was collected at 1 Hz using Ex. 480±20 nm/Em. 540±40 nm on a

Hamamatsu Functional Drug Screening System 6000 (FDSS). Baseline signal was collected for

10 seconds followed by addition of 10 μl of 5X compound for a final concentration of 10 μM.

After 290 seconds, 12 μl of a 5X glutamate solution was added resulting in a concentration

approximately 50% of the maximally effective glutamate concentration (EC50).

Hits were selected from this initial screen using 4 different criteria, which we termed

CMPDslope, CMPDmaxmin, GLUslope, and GLUmaxmin. CMPDslope was measured in a

10 sec window following the initial compound addition and CMPDmaxmin is the difference in

the maximal and minimal fluorescence values found in the 100 sec window following compound

addition. GLUslope is the fitted slope of the increase in fluorescence within 10 sec after adding

glutamate. GLUmaxmin is the difference in the minimum and maximum value in fluorescence

signal reached in the 100 sec window after adding glutamate. Compounds were classified as

hits if they differed by 3 standard deviations of the mean for each criterion. Tier 1 hits were clas-

sified as those that hit in the GLUslope, GLUmaxmin, and CMPDmaxmin windows. Tier 2 hits

were classified as compounds that hit in the GLUslope window and either the GLUmaxmin or

CMPDmaxmin window. Tier 3 hits were classified as those that hit in only the GLUslope or the

GLUmaxmin window. Tier 4 hits were classified as compounds that hit only in the CMPD win-

dow, CMPDslope or CMPDmaxmin. Hit selection was further narrowed using the criterion that

their signal must return to near baseline values before entering the glutamate add window.

VSD counter-screens

Hits were first counter-screened against A2R cells. The same protocol as the initial screen was

used for the counter-screen and compounds that were found to be stargazin specific were fur-

ther counter-screened against parental TetON HEK293 cells in the same way to see if their

observed activity was due to receptors endogenous to HEK cells. Compounds that did not hit

on either A2R or TetON cells were screened against A2R-C3 cells to determine whether they

were stargazin or auxiliary subunit specific.

VSD concentration response curves (CRCs): After the above counter-screens, compounds

that remained positive were moved forward to collect complete CRCs for A2R-stg and A2R-

C3 cell lines. This assay was carried out in the same way as the VSD screening assay except a

10-point concentration curve, from 40 μM to 10 nM, was plated in triplicate for each com-

pound on a single 384-well plate. Data were summarized by plotting them as %max GLUslope

against log [compound] that was fit to a four-parameter logistical model. %max GLUslope is

defined as a normalized GLUslope expressed as a percentage of the mean maximum GLUs-

lope, defined as 100, where background mean vehicle control (VHLslope) were subtracted

AMPAR auxiliary subunit specific modulators
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from both values on a per plate basis. Thus, %max GLU slope = (GLUslope-mean VHLslope/

mean maxGLUslope-mean VHLslope). Compounds with measureable potency under 10 μM

that fit well to a CRC curve for either cell line were reordered as dry samples and another com-

pound CRC in our VSD assay was run to verify that the EC50 results could be repeated.

Calcium flux assays

Compounds that were selected as hits using the VSD assay were subsequently screened against

the calcium permeable A2Q-stg and A2Q-C3 cell lines in a glutamate potency fold-shift assay

using the calcium sensing dye Fluo-8 (AAT Bioquest cat #21080). This assay is used to measure

how pretreatment with compounds shifts the EC50 of glutamate on A2Q-stg and A2Q-C3

cells. 30 μM of each compound was pre-incubated with the cells for 120 secs and then an

11-point glutamate CRC from 4 mM to 10 pM was applied to the cells for 180 sec. 250 nl of

selected compounds were plated from the reordered compound plates into Greiner 384-PP

round-bottom plates using an Echo 555 (Labcyte) and diluted in 40 μl low calcium buffer (10

mM HEPES, pH 7.4, 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 0.5 mM CaCl2, and 10 mM glu-

cose) to 2X final concentration using a Combi (Thermo). Greiner 384-pp round-bottom plates

containing glutamate solutions were dispensed by hand using a multi-channel pipet at 5X final

concentration. Cells were plated in 384-well BD PureCoat amine-coated plates (Greiner) at

10k cells/well in DMEM medium supplemented with 10% heat-inactivated FBS, 100U/mL

PenStrep antibiotic, and 30 μM NBQX 40 hours before screening. Sodium butyrate and DOX

were added to the cells at 1 mM and 5 μg/mL, respectively, 24 hours before screening. A2Q-stg

cells were induced with 10 μg/mL DOX. Cells were incubated O/N and washed 4 times in low

calcium buffer on an ELX405CW liquid aspirator and dispenser (BioTek). Buffer was left in

the wells and an equal amount of 4.6 μM (2X) Fluo-8 (AAT Bioquest cat #21080) solution with

2.5 mM probenecid was added and incubated on the cells at room temperature for 40 minutes.

Probenecid was added to block dye efflux from the cells [29]. Dye was washed off with low cal-

cium buffer using the ELX405CW (BioTek) and plates were immediately inserted into the

FDSS (Hamamatsu). Fluorescence signal was collected at 1 Hz using Ex. 480±20 nm/Em. 540

±40 nm. Baseline signal was collected for 10 seconds followed by addition of 20 μl of 2X com-

pound for a final concentration of 30 μM. After 290 seconds, 10 μl of a 5X glutamate solution

in high calcium buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 9

mM CaCl2, and 10 mM glucose) was added for 180 seconds.

For compounds that showed activity in the glutamate potency fold-shift assay, CRCs were

run against the calcium permeable A2Q-stg, A2Q-C3, A2Q-GSG1L, and A2Q cell lines using

the same FDDS addition protocol as above for a compound concentration range of 30 μM to

30 nM. These compound CRCs were applied to the cells 2 minutes before a 1mM glutamate

stimulation. Additional replicate plates of compound followed by EC50 of glutamate were eval-

uated, both controlled with CTZ curves (data not shown). Normalized FDSS traces were curve

fit to CRCs using the initial GLUslope (GLUslope1) in a 3–6 sec window after glutamate appli-

cation. CRCs were also plotted for the traces’ area under the curve (AUC) in the GLUmaxmin

window. Full CTZ and NBQX curves were used as reproducibility controls on each plate.

Compounds were plotted as %max GLUslope against log [compound] and fit to a four-param-

eter logistical model as in the VSD.

Electrophysiology

A2R-stg cells were plated on HNO3 washed coverslips coated with 1:20000 poly-d-lysine (incu-

bated for 20 min, washed with PBS 2x and media 1x) for 2 hours. They were induced with

5 μg/mL DOX for 24 hours before recording. A2R cells were plated on 1:60000 poly-d-lysine

AMPAR auxiliary subunit specific modulators
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for 2 hours and induced with 7.5 μg/mL DOX for 30 hours before recording. The cells were

lifted from the coverslip after whole cell configuration was achieved and brought in front of

the theta tubing. Ligand (1mM glutamate) was applied to the cells via theta tubing glass capil-

lary mounted on a piezo actuator (P-830.30, Physik Instrumente) controlled by an LVPZT

amplifier (E-505, Physik Instrumente), DAQ device (NI USB-6221, National Instruments),

and LabView software (National Instruments). Recording was done using a single channel of a

Multiclamp700B Amplifier (Axon Instruments) operated by pClamp10 software. Signals were

digitized using Digidata1440A (Axon Instruments) at a sampling rate of 50 kHz and low pass

filtered at 2kHz. Borosilicate glass capillaries (O.D. 1.5 mm, I.D. 0.86 mm, Sutter) were pulled

to manufacture electrodes with pipette resistances of 3.5–5 MO.

Internal solution was (in mM) 110 NaCl, 10 NaF, 5 EGTA, 0.5 CaCl2, 1 MgCl2, 10 Na2ATP,

5 HEPES, adjusted to pH 7.3 with CsOH and 295 mOsm. External solution was (in mM) 145

NaCl, 2.5 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 10 glucose, adjusted to pH 7.3 with NaOH and

301 mOsm. Standard solution without ligand was the external solution. The ligand solution

contained 1mM glutamate in external solution, supplemented with 2mM glucose and 3mM

NaCl to facilitate visualizing the interface of the two solutions and recording liquid junction

potential after breaking the patch. The 10–90% rise time of liquid junction potential was

around 300μsec. VU0627849 was dissolved in external solution containing 1 mM glutamate to

a final concentration of 40 μM. Tips of the tubing for each solution were positioned immedi-

ately before the opening of one compartment of the theta tubing. Drug-containing and drug-

free glutamate solutions were switched using a manual valve located between the solution res-

ervoir and theta glass tube. Solution speed was adjusted by the height of the reservoir using

gravity.

Results

Cell lines for voltage-sensitive dye (VSD) assay

Cell based assays in combination with HTS were used to identify compounds that specifically

target the AMPAR in complex with the TARP γ-8 auxiliary subunit [23, 24]. Taking an analo-

gous approach, we generated multiple cell lines as summarized in Table 1 and developed a

VSD based cellular assay compatible with HTS to screen ~39,000 compounds from the Van-

derbilt Discovery Library (VDL). In detail, we first made HEK cell lines that constitutively

expressed an auxiliary subunit and doxycycline (DOX) dependently expressed the GluA2 sub-

unit of the AMPAR. For these cells the flip splice isoform and pore RNA-edited (i.e. arginine

(R) in the edited site) form of GluA2 was used, resulting in a cyclothiazide (CTZ)-sensitive

and calcium-impermeable channel. The constitutive expression of auxiliary subunits ensured

an excess of auxiliary subunits to associate with mature AMPARs. The RNA-edited form of

GluA2, with an arginine in the pore, naturally conducts less current than the unedited Q iso-

form of the channel, keeping these cell lines healthier during the assay. Nevertheless, while

maintaining these lines, cells were cultured in 30 μM NBQX, an AMPAR antagonist, to decrease

cell death due to excitotoxicity. A2R-GSG and A2R cells did not show any activity in the VSD

assay when exposed to glutamate (data not shown), consistent with negative modulatory func-

tion of GSG1L and low channel conductance of GluA2flip(R) variant [25, 30].

A VSD assay screen

Our initial screening technique utilized a VSD whose fluorescence increases when the cell

depolarizes. This allowed us to detect depolarization of HEK293 cell membranes when func-

tional AMPAR complexes were present and gated by glutamate. After pre-incubation with the

compounds diluted in VSD dye (Fig 1Ai), glutamate was added to the cells (Fig 1Aii), opening

AMPAR auxiliary subunit specific modulators
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the AMPAR, and resulting in an increase in fluorescent signal. To analyze the results, we used

4 different parameters, which we termed CMPDslope, CMPDmaxmin, GLUslope, and GLU-

maxmin, which are described in the methods section above (Fig 1B).

Compounds were classified as hits if a measurement varied by more than 3 standard devia-

tions from the mean signal of an EC50 (3–4 μM) amount of glutamate (Fig 1B(blue)) within

the test population of each 384-well plate. Hits were further categorized into Tier 1–4 as

described in the methods (Fig 1C). The Z’ was used to assess the reliability of the screen in a

high-throughput format. Z’ is the ratio of the difference in standard deviations of positive and

Fig 1. Configuration of VSD assays. (A) Arrangement of wells in compound and glutamate plates added to cells by the FDSS. (i) Compounds (orange) are

added at 10 μM concentration in initial screen and as a 40 μM– 10nM curve (decreasing color saturation) for CRC testing. (ii) Controls to determine a Z’ for

each plate line the edges of the glutamate plate. Positive control = 1mM glutamate (maxGLU, red), 1X FLIPR Blue dye vehicle (VHL, green), negative

control = 30 μM NBQX (NBQX, pink). EC50 glutamate (3–4 μM) is added across the plate (EC50GLU, blue) with columns 2 and 23 used as EC50GLU controls

with DMSO. DMSO control was moved to column 12, in CRC plates. (B) Normalized fluorescence data (ratio of the F/Fo) readout for the FDSS on a VSD

experiment showing the compound and glutamate additions at 10 sec and 300 sec, respectively. Controls are shown in colors corresponding to their colors in

the glutamate plate in A(ii). Different hit windows are shaded in dark orange (CMPDslope), light orange (CMPDmaxmin), purple (GLUslope), and violet

(GLUmaxmin). (C) Definition of Tier 1–4 hits in our initial screen. Hits were determined as those compounds that deviated from the mean of the test

population EC50GLU by more than three standard deviations in the windows specified on a per plate basis. (D) Example of a compound (black trace) that hit

on (1) A2R-stg cells but not on (2) A2R or (3) TetON cells. Controls are maxGLU (red), vehicle (green), 30 μM NBQX (pink), all normalized to EC50GLU

(blue).

https://doi.org/10.1371/journal.pone.0174742.g001
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negative controls over the difference in their means [31]. Values from 0.5–1 indicate that the

response being measured is robust enough to be used as an HTS assay. Each glutamate plate

contains a positive control (1 mM, maxGLU) and a negative control (30 μM, NBQX) to calcu-

late the Z’ score. An example of a hit compound is shown in Fig 1D (black traces), where a

robust response was detected in A2R-stg cells (Fig 1D1) but not in A2R (Fig 1D2) or TetON

(Fig 1D3) cells, which serve as counter-screens.

Responses to known AMPAR ligands in the VSD assay

Known AMPAR ligands were tested against A2R-stg and A2R-C3 cell lines using this method

to validate our assay. We tested a partial agonist, fluorowillardiine (FW), and two positive allo-

steric modulators (PAM), CX-546 and CTZ [32–34]. FW showed a CMPDslope response com-

parable to the GLUslope response to glutamate alone as expected for a partial agonist (Fig 2A1,

compare black FW and red glutamate traces). Due to an incomplete concentration response

curve (CRC) (Fig 2A2-3), we were unable to calculate a reliable EC50. CX-546 is an ampakine

PAM of AMPARs. In the absence of glutamate, there was a slight increase in fluorescence with

CX-546 only at high concentrations (>250 μM) (Fig 2B1), which would be detected as a hit

even with filtering criteria that we imposed in the actual screening. We found the EC50 for CX-

546 on our A2R-stg cell line to be 59.4 μM. This is an order of magnitude more potent than

the previously reported EC50 of 563 μM for GluA2-stargazin [35]. While an EC50 could not be

accurately calculated for A2R-C3, CX-546 is over two orders of magnitude less potent than for

A2R-stg (Fig 2B2-3). CTZ showed the least amount of activity in the compound only window

(Fig 2C1), consistent with CTZ being a non-competitive allosteric modulator. The EC50s of

CTZ on A2R-stg and A2R-C3 cells were similar, 0.9 μM and 0.8 μM, respectively (Fig 2C2-3).

These values were closer to published values of 2.2 μM on GluA2 alone [36] and 2 μM of

GluA1-stargazin [37] than the EC50 value of CX-546. Responses to a known AMPAR partial

agonist and PAMs demonstrate that our VSD assay can detect these drugs as hits.

Screening workflow

The screening workflow is summarized in Fig 3. Our primary screen tested 39,202 compounds

against A2R-stg cells at a dose of 10 μM to detect changes in response compared to EC50 gluta-

mate (Fig 3 Box A). From these, we pulled 187 Tier 1 hits, 325 Tier 2 hits, 1509 Tier 3 hits, and

3270 Tier 4 hits. Tier 3 and 4 hits were discarded if they didn’t return to baseline before the

addition of glutamate because their GLUslope values were difficult to compare to glutamate

alone, reducing the numbers to be counter-screened to 628 and 44 in Tier 3 and Tier 4, respec-

tively. These 1,184 compounds were subjected to counter-screens using duplicate wells of

10 μM compound to determine their activity against A2R and TetON cells (Fig 1D). Those

compounds that showed activity would indicate auxiliary subunit and AMPAR independent

effect in A2R and TetON cells, respectively, and were discarded. To determine their specificity

for stargazin, these compounds were also screened against A2R-C3 cells. We kept compounds

that were stargazin specific and that hit on both stargazin and CNIH3 (auxiliary subunit spe-

cific) (Fig 3 Box B). Collectively, these counter-screens reduced the number of GluA2-auxiliary

subunit specific hits to 166 compounds. Full CRCs (see methods) were obtained against A2R-

stg and A2R-C3 cell lines to determine if these compounds would fit to a dose response curve

(Fig 3 Box C).

From these initial CRCs using the Vanderbilt Discovery Library plates, 77 PAMs, 10

NAMs, and 3 compounds with different effects on A2R-stg and A2R-C3 were identified. 39

PAMs were stargazin specific, 2 were CNIH3 specific, and 36 potentiated both cell lines. There

were fewer NAMs identified, with only one stargazin specific NAM and 9 NAMs that hit both
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cell lines. 3 compounds showed opposite activity in the two cell lines (Fig 3 Box D). After dis-

carding compounds with a large amount of activity in the compound only window at concen-

trations lower than 7.5 μM (Fig 3 Box D), 57 of these hits were supplied as dry samples from

Life Chemicals to examine their reproducibility (Fig 3 Box E). When repeating CRCs with the

new batch of samples, 48 of the 57 compounds were found to reproducibly show a curve fit in

the range tested (n = 2). The 57 reordered compounds were evaluated in the calcium flux

assays for further testing as described below (Fig 3 Box F).

Fig 2. Behavior of established compounds in VSD assay. (A1) Normalized fluorescence data for VSD assay on A2R-stg cells with 50 μM fluorowillardiine

(black) with maxGLU (red) and NBQX (pink) controls, all normalized to EC50GLU (blue). (A2) CRC curves for FW against A2-stg and (A3) A2-C3 cell lines

calculated from the CMPDslope window. %max GLUslope = (CMPDslope—mean VHLslope)/(mean maxGLUslope—mean VHLslope) is further described in

methods. (B1) Normalized fluorescence data for VSD assay on A2R-stg cells with 1 mM CX-546 (black) with maxGLU (red) and NBQX (pink) controls, all

normalized to EC50GLU (blue). (B2) CRC curves for CX-546 against A2R-stg and (B3) A2R-C3 cell lines calculated from the GLUslope window. %max

GLUslope = (GLUslope—mean VHLslope)/(mean maxGLUslope—mean VHLslope) (C1) Normalized fluorescence data for VSD assay on A2R-stg cells with

500 μM cyclothiazide (CTZ, black) with maxGLU (red) and NBQX (pink), all normalized to EC50GLU (blue). (C2) CRC curves for CTZ against A2-stg and (C3)

A2-C3 cell lines calculated from the GLUslope window. Compound EC50 values that could be reliably calculated are in the top left corner of each graph.

https://doi.org/10.1371/journal.pone.0174742.g002
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A calcium flux assay to further verify hits

Fluo-8 based calcium flux assays were used as a final screen for the 57 ligands selected from the

VSD assay and 28 of these showed PAM or NAM activity on A2Q-stg and/or A2Q-C3 cell

lines that warranted performing full CRC experiments in all A2Q cell lines (Fig 3 Box F). For

this purpose, we had created stable cell lines DOX dependently co-expressing GluA2flip(Q),

the pore unedited, calcium-permeable isoform, and each auxiliary subunit (A2Q, A2Q-stg,

A2Q-C3, A2Q-GSG; summarized in Table 1). To verify our assay, a compound CRC for CTZ

was examined for each cell line, as described below, and gave EC50 values ranging from 0.4 to

1.9 μM, which were in good agreement with the known values (2.2 μM on GluA2 alone [36]

and 2 μM on GluA1-stargazin [37] (Fig 4A1-4) and similar to those calculated from our VSD

assay (Fig 2C2-3).

In brief, the compound CRC assay was conducted as follows (see methods for details). Cells

were loaded with Fluo-8 and excess dye was washed out. After 120 secs of pre-incubation with

compound at concentrations ranging from 30 μM to 30 nM (Fig 4Bi), 1 mM glutamate was

added (Fig 4Bii). In the calcium assay, 250 μM was used as the maxGLU dose because the

GLUslope1 values decreased at higher concentrations of glutamate, making it the dose with

the maximal GLUslope1 response. This decrease in activity at high glutamate concentration

has been seen in other publications [38, 39]. We measured GLUslope in three consecutive time

windows, referred to as GLUslope1-3, because three phases were clearly detectable (Fig 4C).

The final CRC curves were calculated from GLUslope1, obtained from the first 3–6 sec

window.

Prior to compound CRCs, we performed a glutamate potency fold-shift assay to determine

how a maximal dose of compound would shift the EC50 of glutamate on A2Q-stg and A2Q-C3

cells. In this assay, a maximal dose (30 μM) of each compound (Fig 4Di) was incubated on

cells for 120 secs and then a CRC for glutamate ranging from 4 mM to 10 pM was collected

(Fig 4Dii). A rightward shift of the CRC for glutamate to a higher EC50 indicates NAM activity

and a leftward shift to a lower EC50 indicates PAM activity (Fig 4E). 28 of the 57 compounds

modified the activity, when compared to the glutamate EC50 or 1mM glutamate controls per

plate. These compounds, considered active, were then evaluated as a CRC of the compounds

in the calcium flux assay.

VU compound CRCs were collected against all A2Q containing cell lines using the same

protocol as CTZ, described above (Fig 4B). The final compound CRC curves were calculated

from GLUslope1. The area under the curve (AUC) in the GLUmaxmin window was used as an

alternative measure to calculate the CRC because compounds sometimes deviated from the 1

mM glutamate trace in different GLUslope windows. The AUC measures the accumulation of

calcium instead of gating and sometimes produced a CRC fit when GLUslope1 could not

derive an EC50 value.

Fig 3. Workflow for identifying AMPAR-auxiliary subunit modulators. (A) 39,202 compounds were

initially screened using the VSD assay against A2R-stg cells. (B) 1,184 hits from (A) were counter-screened

against A2R, TetON, and A2R-C3 cells. (C) 116 compounds were identified from counter-screening in (B) as

being stargazin or auxiliary subunit specific (i.e. they did not hit on A2R or TetON cells). These were tested for

full compound CRCs against A2R-stg and A2R-C3 cells using the VSD assay. These CRCs identified 90 hits

that fit to sigmoidal dose response curves with potency under 10 μM. (D) We identified 39 stargazin specific

PAMs, 2 CNIH3 specific PAMs, and 36 PAMs that had activity in both A2R-stg and A2R-C3 cells. We also

found 1 stargazin specific NAM and 9 compounds with NAM activity on both cell lines. Three compounds gave

opposite effects in the two cell lines. Hits were discarded for reorder if they showed activity in the compound

only window. Hits with activity in the CMPD only windows were discarded. (E) 57 of the 90 compounds in (D)

were re-screened with new batch samples as compound CRCs in the VSD assay. (F) 57 hits were tested in

the glutamate potency fold-shift calcium flux assay and 28 were subjected to a full compound CRC calcium

flux assay to study their effects using an orthogonal approach.

https://doi.org/10.1371/journal.pone.0174742.g003
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Fig 4. Controls and experimental setup for calcium flux assays. (A) CRC curves for CTZ in the presence of 1 mM glutamate from (1) A2Q-stg, (2)

A2Q-C3, (3) A2-GSG, (4) A2Q cell lines in the calcium flux assay. These CRCs are calculated from the GLUslope1 (t = 122-125s) window. Calculated EC50

values are included in the top left of the graph. %max GLUslope = (GLUslope–mean VHLslope) / (mean maxGLUslope–mean VHLslope) as described in

methods. (B) Compound and glutamate plates added to cells by the FDSS in our Fluo-8 calcium flux compound CRC assay. (i) Compounds (orange) are

added as a 30 μM– 30 nM CRC (decreasing color saturation). (ii) Controls to determine a Z’ for each plate line the edges of the glutamate plates. Positive

control = 250 μM glutamate (maxGLU, red), high calcium buffer vehicle (VHL, green), and negative control = 30 μM NBQX (NBQX, pink). 1 mM glutamate is

added across the plate (blue) with columns 12 and 23 used as a 1mM glutamate and DMSO control. (C) Vehicle subtracted, normalized fluorescence data

readout for the FDSS on A2Q-stg cells in a calcium flux experiment showing the compound and glutamate applications at 10s and 120s, respectively.

Controls are shown in colors corresponding to their colors in the glutamate plate in (D). Different hit windows are shaded in blue (GLUslope1, 122-125s), red

(GLUslope2, 126-132s), yellow (GLUslope3, 140-150s), green (GLUmaxmin). The orange window is a reference baseline (CMPD baseline) prior to the

glutamate addition used to determine if the compound shows activity in the absence of glutamate. (D) Compound and glutamate plates added to cells by the

FDSS in our Fluo-8-based glutamate potency fold-shift assay. (i) Compounds (orange) are first added at 30 μM with DMSO controls in columns 1,24, and

also in K1-K12, F13-23, P13-23, overlapping with glutamate concentration curves for a per plate comparison to compound. (ii) Controls are loaded on the

edge as in (Bii) and a glutamate CRC is loaded horizontally ranging from 4 mM to 10 pM (decreasing color saturation). (E) An example of the readout for our
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Description of candidate compounds

As described above, all compounds were subjected to a counter-screen against A2R and

TetON cells. While this should, in theory, remove compounds with any activity on AMPAR

without auxiliary subunits present, the increased sensitivity of the calcium flux assay revealed

that some compounds did show NAM or PAM activity in A2Q cells. Our pipeline has led us to

specify 3 compounds for further characterization (summarized in Fig 5) that exhibit the most

robust difference in pharmacology between cell lines. In addition, these three compounds have

attractive chemical structures and properties for further hit-to-lead exploration. Each of the

three molecules identified bears a modular chemical structure with a central five-membered

heterocyclic core structure—either a 1,3-triazole, isoxazole, or a 1,2,4-oxadiazole. The trisub-

stituted triazole containing a carbocyclic amide structure represented by VU0612951 displayed

modest NAM activity (Fig 6A), whereas, the disubstituted isoxazole VU0627849 maintains

robust potentiator activity (Fig 6B). Lastly, VU0539491, which contains a unique 1,1, disubsti-

tuted cyclic structure, also partially related to VU0612951 via the benzylic reverse-amide,

shows mixed pharmacology (NAM and PAM) depending on the cell-type (Fig 6C).

Hit molecule VU0612951 was identified as a NAM in both A2R-stg and A2R-C3 cell lines

in the VSD assay. In the raw VSD traces, NAM activity on A2R-stg was evident even at submi-

cromolar concentrations, while on A2R-C3 cell line the NAM effect required concentrations

higher than 1 μM (Fig 7A). The ~40% decreases in %max GLUslope across the CRC (Fig 7B)

and right-shifts in the glutamate potency fold-shift assay (Fig 5) indicate strong NAM activity

for stargazin and CNIH3 containing AMPAR complexes. The magnitude of effect on GLUs-

lope for VU0612951 was low in the calcium flux assay and only evident at high concentrations

(Fig 7C, 30 μM), making it difficult to reliably obtain CRCs. In fact, the CRCs calculated from

GLUslope did not show a negative trend on any cell line except A2Q-stg (Fig 7D). We there-

fore used %max AUC instead of %max GLUslope to derive CRCs (Fig 7E), the results of which

are consistent with VU0612951 as a NAM.

The most promising PAM discovered was VU0627849. The VSD raw data shows PAM

activity on both A2R-stg and A2R-C3 complexes at concentrations as low as 2.5 μM (Fig 8A).

These data fit well to CRCs calculated from the GLUslope (Fig 8B). This compound did not

show any activity on A2R cells in our counter-screens (Fig 3 Box B). VU0627849 was also a

PAM in all GluA2-expressing cell lines in the calcium flux assay. VU627849 potentiated A2Q-

glutamate potency fold-shift assay. A rightward shift of the NBQX pretreated cells (red) as compared to glutamate alone (black) indicates NAM activity. The

leftward shift of CTZ pretreated cells (grey) indicates PAM activity.

https://doi.org/10.1371/journal.pone.0174742.g004

Fig 5. Table of results from VSD and calcium flux assays. EC50 or IC50 values determined by CRC fits from GLUslope. Boxes highlighted green indicate

an EC50 or a positive trend, red indicate an IC50 or a negative trend. Estimated EC50 values are added in italics, but are estimated due to incomplete CRC

curves or insufficient differences in %max GLUslope across the CRC. Glutamate potency fold-shift assays indicate how much fold-change occurred in the

glutamate EC50 when cells were pretreated with 30 μM compound. Values greater than 2 indicate PAM activity and less than 1 indicate NAM activity.

https://doi.org/10.1371/journal.pone.0174742.g005
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stg cells the least compared to all others and its level of potentiation does not change between

7.5 and 30 μM (Fig 8C solid orange). At these concentrations, the increases in response of

A2Q-stg cells to VU0627849 were fixed to ~300 arbitrary fluorescence units (AFU), while in

the other three cell lines the effects nearly doubled from 7.5 μM to 30 μM. (Fig 8C, compare

solid lines between 30 and 7.5 μM). While the increase in GLUslope on A2Q-stg cells fits to a

sigmoidal dose response curve, the positive change in %max GLUslope is only ~30% as com-

pared to>80% for the other A2Q containing cell lines. (Fig 8D). VU0627849 shows similar

values to CTZ for increase in %max GLUslope across the CRC for A2Q-C3, A2Q-GSG, and

A2Q cells. There was no appreciable difference in potency seen between cell lines for CTZ, but

VU0627849 shows a lower EC50 for A2Q-C3 than A2Q-GSG or A2Q cells (Fig 4A1-4 and Fig

5). Collectively, our data suggest that this compound acts as a PAM only on A2R when in com-

plex with auxiliary subunits, but positively modulates A2Q regardless of the presence of auxil-

iary subunits. In fact, VU0627849 is least efficacious on the A2Q-stg cells when comparing all

four complexes we tested.

VU0539491 was a particularly interesting compound identified by our VSD screen. It acted

as a PAM on A2R-stg cells, but a NAM in A2R-C3 cells in the VSD assay (Fig 9A and 9B).

While exhibiting a slight decrease in signal in the raw data from the calcium flux assay for

A2Q-C3 cells (Fig 9C, 30 μM blue trace), it was clearly categorized as a NAM in the glutamate

fold-shift assay (Fig 5). In addition, VU0539491 showed PAM activity in the A2Q-GSG cell

line (Fig 9C green trace), which appeared as a positive trend in the CRC calculated from GLUs-

lope (Fig 9D A2Q-GSG) and was corroborated by a more robust fit in the CRC calculated

from the AUC (Fig 9E A2Q-GSG). Slight NAM activity on A2Q and A2Q-stg cell lines can be

seen in the highest dose (40 μM) of VU0539491 (Fig 9C orange and red traces). As in the

A2Q-GSG cells, the CRCs calculated from GLUslope showed negative trends for A2Q and

A2Q-stg (Fig 9D A2Q-stg and A2Q), but CRCs calculated from the AUC show more robust

curve fits (Fig 9E A2Q-stg and A2Q). The combination of these data indicates that VU0539491

acts as a slight NAM on A2R-C3 and A2Q, but a PAM on A2Q-GSG.

We have conducted a preliminary electrophysiological investigation of the compound

VU0627849. Using a fast ligand application system, A2R and A2R-stg cells were stimulated with

1mM glutamate using a 100 ms pulse followed by a 50 ms interval and a second 20 ms pulse to

evaluate recovery from desensitization (Fig 10A and 10B red traces). In the presence of 40 μM

VU0627849, we observed no change in peak amplitude but delayed increase in resensitization

within 10 ms following initial activation and desensitization (Fig 10B blue trace). In addition,

an increased amplitude in the second pulse of glutamate was observed. These effects are drug

Fig 6. Chemical structures of our candidate hits. (A) Structure of VU0612951 highlighting the 1,3-triazole group in red. (B) Structure of

VU0627849 highlighting the isoxazole group in red. (C) Structure of VU0539491 highlighting the 1,2,4-oxadiazole group in red.

https://doi.org/10.1371/journal.pone.0174742.g006
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specific because wash out of VU0627849 restored the original current (Fig 10B, black trace). We

also see a small effect on A2R cells that was not seen in the VSD assay (Fig 10A blue trace).

VU0627849 acted as a PAM on A2R-stg cells, corroborating our HTS data from the VSD assay.

Fig 7. Characterization of VU0612951. (A) Raw data for compound CRCs in the VSD assay. A2R-stg (orange) and A2R-C3 (blue). EC50GLU traces are

represented by dashed lines. Compound concentrations are indicated in the top left corner. (B) CRCs calculated from GLUslope in the VSD assay for A2R-

stg and A2R-C3 cells. Error bars are standard deviations. (C) Raw data for compound CRCs in the calcium flux assay. A2Q (red), A2Q-stg (orange),

A2Q-GSG (green), and A2Q-C3 (blue). Dashed lines are signal of 1mM glutamate without compound. (D) Compound CRCs in calcium flux assay for A2Q-

stg, A2Q-C3, A2Q-GSG, and A2Q cell lines. These are derived from the GLUslope1 window. (E) Compound CRCs calculated from the AUC in the

GLUmaxmin window of the calcium flux assay plotted as %max AUC in the GLUmaxmin window (see Fig 4C) vs. log [compound].

https://doi.org/10.1371/journal.pone.0174742.g007
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Discussion

High-throughput screening has been valuable in identifying TARP γ-8 subunit specific NAMs

[23, 24, 40]. Given the structural and functional variety of AMPAR auxiliary subunits we pre-

dicted that there should be more compounds that are targeted against specific members of this

family of complexes and chose to study those containing stargazin, CNIH3, and GSG1L. From

a relatively small library of 39,000 compounds, our HTS workflow identified 3 compounds for

further studies.

In the current study, we focus on the PAMs and NAMs that showed activity in the presence

of glutamate. Our initial data already identified compounds that show activity in the absence

Fig 8. Characterization of VU0627849. (A) Raw data for compound CRCs in the VSD assay. A2R-stg (orange) and A2R-C3 (blue). EC50GLU traces are

represented by dashed lines. Concentrations of compound are indicated in the top left corner. (B) CRCs calculated from GLUslope in the VSD assay for

A2R-stg and A2R-C3. (C) Raw data for compound CRCs in the calcium flux assay. A2Q (red), A2Q-stg (orange), A2Q-GSG (green), and A2Q-C3 (blue). 1

mM glutamate traces are represented by dashed lines. (D) CRCs calculated from GLUslope1 in calcium flux assay for A2Q-stg, A2Q-C3, A2Q-GSG, and

A2Q cell lines. Plotted as %max GLUslope vs. log [compound].

https://doi.org/10.1371/journal.pone.0174742.g008
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of glutamate and there remains a possibility of identifying new agonists by choosing to study

compounds that hit in the CMPDslope window, as seen when testing fluorowillardiine. Fur-

thermore, the primary screening was conducted for only one third of the existing Vanderbilt

Discovery Library. Collectively, our HTS workflow described here has potential to identify

additional candidate compounds in the future.

Fig 9. Characterization of VU0539491. (A) Raw data for compound CRCs in the VSD assay. A2R-stg (orange) and A2R-C3 (blue). EC50GLU traces are

represented by dashed lines. Compound concentrations are indicated in the top left corner. (B) CRCs calculated from GLUslope in VSD assay for A2R-stg

and A2R-C3. (C) Raw data for compound CRCs in the calcium flux assay. A2Q (red), A2Q-stg (orange), A2Q-GSG (green), and A2Q-C3 (blue). Traces

obtained from applying 1 mM glutamate are represented by dashed lines. (D) Compound CRCs calculated from the GLUslope1 window in our calcium flux

assay for A2Q-stg, A2Q-C3, A2Q-GSG, and A2Q cell lines. These show negative and positive trends but no curve fits. (E) Compound CRCs calculated

from the AUC in the GLUmaxmin window of the calcium flux assay plotted as %max AUC vs. log [compound] as in (7E).

https://doi.org/10.1371/journal.pone.0174742.g009
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An interesting byproduct of our study is the pharmacology of CX-546 on AMPARs in com-

plex with different auxiliary subunits. CX-546, an ampakine PAM, shows more than an order

of magnitude increase in potency on A2R-stg cells over A2R-C3 cells. In a previous report,

CX-546 had different Emax values when applied to AMPAR with different TARPs, but the dif-

ference in CX-546 EC50 values for different Type I TARPs were all within the same order of

magnitude [35]. While absolute potencies in our VSD assay may not be reliable, we postulate

that the relative difference in the potencies of CX-546 on the two complexes indicates unique

pharmacology dependent on auxiliary subunits.

We identified 3 compounds for future characterization. We propose that VU0612951 is

an indiscriminate NAM. While we were aiming to identify compounds with subunit specific

effects, this compound has less standard deviation and a more robust response from A2R-stg

cells than any others. The overall NAM profile of VU0612951 and its modular triazole core will

make this an attractive template for further chemical modification to identify analogs with sub-

unit specificity (Fig 6A). VU0627849 is an effective PAM that responds in the VSD and calcium

flux assays similarly to CTZ, though they have dissimilar structures (Fig 6B). Unfortunately, it

Fig 10. Electrophysiology with VU0627849. (A) Whole-cell recordings of A2R cell line with (blue) and

without (red) VU0627849 (40μM). (B) Whole-cell recordings of A2R-stg cell line with (blue) and without (red)

VU0627849 (40μM). Recording after washout of drug is in black. In these experiments, glutamate (1mM) is

applied for 100 ms and 20 ms pulses with or without VU0627849.

https://doi.org/10.1371/journal.pone.0174742.g010
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also hits multiple AMPAR complexes, but it has very little activity on A2R cells and seems to

affect A2Q-stg cells less than the other A2Q cell lines in both calcium flux assays. VU0627849

could be used as a starting scaffold to determine if functional groups could be added to any of

the rings to skew the activity more specifically toward a certain AMPAR-auxiliary subunit com-

plex. VU0539491 gave conflicting results between the VSD and calcium flux assay. It appears to

be a PAM in A2R-stg and NAM in A2R-C3 cell lines but acts as a NAM in the A2Q-stg and

A2Q cell lines and as a PAM in A2Q-GSG (Fig 6C). VU0539491 showed similar potency in all

cell lines, but the compound is most efficacious on A2R-stg cells, as a PAM, in the raw data at

~2 μM. The glutamate potency fold-shift assay also identified it as a NAM on A2Q-stg and

A2Q-C3 cells (Fig 5). This compound will be interesting to study because it can act as a PAM or

a NAM depending on which auxiliary subunit is present.

We acknowledge that full auxiliary subunit occupancy cannot be guaranteed with most of

our cell lines and low auxiliary subunit occupancy of the AMPAR may have masked less robust

candidate hits. Also, the potencies reported herein may not reflect the potency of these com-

pounds on a fully occupied receptor. We do, however, use a tethered construct for the A2Q-stg

cell line, guaranteeing a fully occupied receptor which shows the same response as A2R-stg

cells for VU0612951 and VU0627849.

Further characterization using electrophysiology to validate selectivity and potency is nec-

essary for these hits. Fluorescent signal based assays do not measure the fast kinetics of the

AMPAR. Specifically, while a deviation in GLUslope and AUC are good indicators that the

compounds are acting as PAMs or NAMs, we are not directly measuring gating, which occurs

in several milliseconds. An initial investigation of the compound VU0627849 by fast ligand

application electrophysiology recapitulated the results obtained from the VSD assay. Confirm-

ing the specificity of these compounds or further tailoring these scaffolds to make them spe-

cific may offer a whole new class of compounds for basic research and clinical use. Differential

expression patterns for auxiliary subunits throughout the central nervous system seem to be a

naturally designed way to specifically target AMPARs in certain regions of the brain or times

of development.

Supporting information

S1 Table. Primary VSD screen Analysis. Calculations from the primary VSD screen against

A2R-stg cells. Each row represents a single well and the values that were calculated from the

raw FDSS data using the Vanderbilt screening analysis platform WaveGuide. Each column

represents a parameter calculation or sample description with detailed descriptions in row 2.

(XLSX)

S2 Table. VSD counter-screens Analysis. Calculations from the VSD counter-screens against

A2R-stg, A2R-C3, A2R and TetON cells. Each row represents a single well and the values that

were calculated from the raw FDSS data using the Vanderbilt screening analysis platform

WaveGuide. Each column represents a parameter calculation or sample description with

detailed descriptions in row 2.

(XLSX)

S3 Table. VSD known ligand CRC Analysis. Calculations from the VSD CRC assays for the

known ligands fluorowillardiine, CX-546, and CTZ. Each row represents a single well and the

values that were calculated from the raw FDSS data using the Vanderbilt screening analysis

platform WaveGuide. Each column represents a parameter calculation or sample description

with detailed descriptions in row 2.

(XLSX)
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S4 Table. Raw data for known ligand VSD CRC graphs. Raw FDSS data used to create

graphs in Fig 2. Each sheet is labeled with a barcode that corresponds to a certain cell line. Cell

line barcodes and ligand well assignments can be found in S3 Table, columns B, C, and E.

Each row represents the Ex480/Em540 fluorescence values for a single well and each column

from E to ON is a time point taken at 1Hz sampling.

(XLSX)

S5 Table. VSD compound CRC Analysis. Calculations from the VSD compound CRCs

against A2R-stg and A2R-C3 cells. Each row represents a single well and the values that were

calculated from the raw FDSS data using the Vanderbilt screening analysis platform Wave-

Guide. Each column represents a parameter calculation or sample description with detailed

descriptions in row 2. Highlighted columns were used to plot CRC graphs.

(XLSX)

S6 Table. Calcium flux glutamate potency fold-shift Analysis. Calculations from the calcium

flux glutamate potency fold-shift assay on A2Q-stg and A2Q-C3 cells. Each row represents a

single well and the values that were calculated from the raw FDSS data using the Vanderbilt

screening analysis platform WaveGuide. Each column represents a parameter calculation or

sample description with detailed descriptions in row 2. Highlighted columns were used to plot

glutamate CRC graphs and derive the values in Fig 5.

(XLSX)

S7 Table. Calcium flux compound CRC Analysis. Calculations from the calcium flux com-

pound CRCs against A2Q-stg, A2Q-C3, A2Q-GSG, A2Q cells. Each row represents a single

well and the values that were calculated from the raw FDSS data using the Vanderbilt screen-

ing analysis platform WaveGuide. Each column represents a parameter calculation or sample

description with detailed descriptions in row 2. Highlighted columns were used to plot CRC

graphs.

(XLSX)

S8 Table. Raw data for calcium flux compound CRC graphs. Raw FDSS data used to create

graphs in Figs 7–9. Each sheet is labeled with a barcode that corresponds to a certain cell line.

Cell line barcodes and VUcompound well assignments can be found in S7 Table, columns A,

B, and D. Each row represents the Ex480/Em540 fluorescence values for a single well and each

column from E to KR is a time point taken at 1Hz sampling.

(XLSX)
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