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Citronellal perception 
and transmission by Anopheles 
gambiae s.s. (Diptera: Culicidae) 
females
Weijian Wu1,3, Shanshan Li1,3, Min Yang1, Yongwen Lin1*, Kaibin Zheng1 & 
Komivi Senyo Akutse2

Anopheles gambiae s.s. is a key vector of Plasmodium parasites. Repellents, which may be a promising 
alternative to pesticides used to control malaria mosquitoes. Although citronellal is a known mosquito 
repellent, its repellency characteristics are largely unknown. Determining the specific odorant-binding 
proteins (OBPs) and odorant receptors (ORs) that detect and transfer the citronellal molecule in A. 
gambiae s.s. will help to define the mode of action of this compound. In this research, we assessed the 
repellent activity of citronellal in A. gambiae s.s. using a Y-tube olfactory meter, screened candidate 
citronellal-binding OBPs and ORs using reverse molecular docking, clarified the binding properties of 
predicted proteins for citronellal using fluorescence competition binding assay. Results showed that 
citronellal had a dosage effect on repelling A. gambiae s.s.. The 50% repellent rate was determined 
to be 4.02 nmol. Results of simulated molecular docking showed that the only proteins that bound 
tightly with citronellal were AgamOBP4 and AgamORC7. Fluorescence competitive binding assays 
confirmed the simulations. This research determined that citronellal was captured by AgamOBP4 and 
transmitted to AgamORC7 in A. gambiae s.s.. Our study will be beneficial in the further understanding 
the repellent mechanism of citronellal against A. gambiae s.s..

Malaria, which is caused by Plasmodium parasites, is the deadliest circumtropical infectious disease1–4. Mos-
quitos in the Anopheles gambiae Giles (Diptera: Culicidae) species complex are the important insect vectors of 
Plasmodium parasites5–8. The application of chemical pesticides, such as pyrethroids and organophosphates has 
been the most popular strategy for controlling A. gambiae s.s. in recent decades9–12. During this time period, 
pesticide overuse has, unfortunately, led to high levels of insecticide resistance in this mosquito vector, while 
also causing serious pesticide pollution problems, especially in heavily populated areas11,13–15. After becoming 
aware of the serious problems caused by the buildup of resistance and pollution, many agents have resorted to 
alternative control measures, including various mosquito-repellent plants such as citronella, lavender and mint 
to obtain relief from the vector16–18. Citronellal is a monoterpenoid that was originally found in the volatile 
organic compounds (VOCs) emitted from several varieties of mosquito-repellent-plants. It’s reported that cit-
ronellal had high evaporation rate in the first 2 h, so as the efficiency of its repellent or attraction always reach 
the highest level19. Although citronellal and its derivatives have been shown to have mosquito-repellent activity 
against several mosquito species, including Aedes aegypti (L.), A. gambiae s.s. and Culex pipiens L.20–22, its repel-
lency efficiency in repelling A. gambiae s.s. has not been determined. In addition, the mosquito’s recognition 
mechanism and response to citronellal is still largely unknown.

Insects detect small volatile molecules (chemical cues) using soluble odorant binding proteins (OBPs)23–26, 
and subsequently transfer the volatile molecules to odorant receptors (ORs) or olfactory ionotropic receptors 
(IRs)27–31. IRs receive chemical signals such as ammonia, lactic acid, and other carboxylic acids31, while ORs 
related with transmission for small molecular, and have a strong possibility to bind citronellal according to a 
previous study32, so we focused on ORs in this study. The ORs or IRs will then activate olfactory receptor neu-
rons located on the same dendrite33–36. Obviously, the binding of OBPs to the odorant chemical is the initial 
step in the reaction of an insect to a chemical cue. To date, approximately 100 known OBPs are known to affect 
olfaction in A. gambiae s.s.. These have been classified into three subfamilies: Classic OBPs, PlusC OBPs and 
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Atypical OBPs37–40. Previous studies have discovered more than 80 ORs in A. gambiae s.s. as well41,42. However, 
the specific OBPs and ORs that function in detecting and processing citronellal molecules in A. gambiae s.s. 
have yet to be identified.

In this study, we determined the repellent efficiency of citronellal on A. gambiae s.s. using a Y-tube olfac-
tory meter, and then predicted which OBPs and ORs were utilized by the mosquito to bind citronellal using the 
method43. In order to establish the underlying mechanism, we then clarified the exact target OBPs and ORs using 
simulated molecular docking and fluorescence competitive binding tests. It is eager to clear the mechanisms 
involved in the binding of the ligand (citronellal) and its receptors (OBPs and ORs) will aid in testing new active 
components for controlling malaria carrying mosquitoes.

Materials and methods
Mosquito culture.  The A. gambiae s.s. culture used in this experiment was origin from Kenya and kept in 
Institute of Subtropical Agriculture (Fujian Academy of Agriculture Sciences, Zhangzhou, China) for 2 years. 
Distilled water was provided for A. gambiae s.s. oviposition and immature development in an environmental 
incubator (25 °C, 75% RH, L:D = 12:12) until eclosion of the adults. Larvae were fed on MATSUMO fish food 
(Japan Matsuno Aquarium Appliance Limited, Akiko District, Kanagawa, Japan). Adults were allowed to mate 
in net (40 mesh) enclosed cages (40 cm × 40 cm × 40 cm) and fed with 10% litchi honey solution in the first day. 
Three-day-old, hungry mated adults were placed into a 4 °C refrigerator for 2 min and females were selected for 
the experiments.

Dual‑choice olfactory test.  A glass Y-tube (1.6 cm i.d., 12-cm base , two 8-cm arms at a 45° angle from 
one another) olfactory meter described in our previous study was used in this experiment44. A quantity gradient 
series (0.01, 0.10, 1, 10 and 100 nmol) of citronellal with the solvent of triethyl citrate (95% and 99% respectively, 
analytical purity, Sigma-Aldrich LLC., Darmstadt, Germany) was applied to individual cotton balls (5 g), and 
placed into separate collecting jars (one cotton ball per jar, Figure S1). The control cotton ball with triethyl citrate 
(without citronellal) was inserted into the other jar. Teflon tube was used to connect all parts of Y-tube olfac-
tory meter. Fresh air was produced by an air pump at a rate of 200 ± 10 ml/min, and purified by active carbon 
and silicone before flowing into the jars. The headspace of citronellal volatile was combined with the purified 
air and went through one arm of the Y-tube while purified air without citronellal went through the other arm. 
The base of the Y-tube was connected to an air collection bottle. One hundred female A. gambiae s.s. were indi-
vidually released in the air collection bottle (2-cm i.d., 8-cm high), where behavioral responses were monitored 
and recorded over a 300 s period45. The collecting jar, Y-tubes, air collection bottle were cleaned with hot water 
(> 60 °C) after every 10 individuals were tested, and the cotton roll was renewed every 2 h. The olfactory test was 
repeated five times.

The repellent rate was calculated according to the following formula46,47:

The repellent rate of 50% individuals (RQ50) was estimated based on the quantity of citronellal and the related 
repellent rate using the Probit analysis model in the SPSS v.20.0 statistical software.

Citronellal‑binding AgamOBPs and AgamOR prediction.  We first used reverse molecular docking 
to predict the reference OBP and OR proteins which can bind with citronellal. In the reverse molecular docking, 
the 3D structures of citronellal were predicted using Chem3D 17.0 (Thermo Fisher Scientific, Waltham, MA, 
USA), and submitted to the PharmMapper web service. Reference literature was used to access the citronellal-
binding OBPs or ORs26,48. Secondly, the amino acid sequences of the OBPs and ORs in A. gambiae s.s. (Aga-
mOBPs and AgamORs) was accessed from the protein databases: NCBI, PDB and UniProt. Next, we constructed 
phylogenetic trees to detect the highly homologous AgamOBPs and AgamORs with the reference proteins by 
using MEGA749. Finally, the conserved site, hydrophobic domain and protein family of the detected proteins 
were analyzed using the Cluster Omega and HMMER web services according to their amino acid sequences.

Auto docking.  Auto docking was used to predict the site of the protein (receptor) dock to small molecu-
lar (ligand)43. The three-dimensional (3D) structures of predicted AgamOBPs and AgamORs were constructed 
using SWISS-MODEL (https​://swiss​model​.expas​y.org/)50, and scored with PROCHECK (https​://servi​cesn.mbi.
ucla.edu/PROCH​ECK/)51 and ModBase (https​://modba​se.compb​io.ucsf.edu/). Models of the molecular docking 
between the receptors and the ligands were visualized in SYBYL-X 2.0 (Rohm and Haas Co., North Andover, 
MA, USA).

Fluorescence competitive binding test (FCBT).  For recombinant OBPs, we first need to obtain the 
OBPs related genes. DNA of A. gambiae s.s. female adults was extracted following the procedure used in a previ-
ous study5. The predicted AgamOBPs and AgamORs were detected using standard PCR with specific respective 
primers which were designed using Primer Premier 5 (Premier Biosoft, California, USA; Table S1). Each PCR 
mixture contained 1 μl of A. gambiae s.s. cDNA (200 ng·ml−1; previously extracted using a DNA extraction kit 
from Transgen Biotech, Beijing, China), 12.5 μl prime STAR Max Premix (2 ×), 1.5 μl of each primer (10 mM), 
and 8.5  ml sterilized H2O. The PCR cycling conditions were as follows: an initial denaturation at 94  °C for 
40 s, followed by 35 cycles at 65 °C for 40 s (denaturing), 59 °C for 50 s (annealing) and 72 °C for 3 min. The 
PCR products were verified and sent for sequencing. Recombinant proteins were generated by transforming 
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plasmids containing the verified G protein-coupled receptor (GPCR) genes into Escherichia coli BL21 (DE3) 
cells52. We then induced recombinant protein expression using 1 mM isopropyl ß-d-1-thiogalactopyranoside 
at 37 °C for 6 h. The recombinant proteins were purified using two rounds of Ni21 ion affinity chromatography 
(GE Healthcare, Milwaukee, WI, USA), following the manufacturer’s instructions5,53; the His-tags were removed 
simultaneously using recombinant enterokinase (Novagen, Madison, WI, USA), following the manufacturer’s 
instructions54. The purified proteins were desalted using extensive dialysis. The size and purity of each desalted 
protein were determined using 15% sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE)55.

The binding affinities between the receptors (both OBPs and OR) and the ligands were tested using FCBT; 
synthetic citronellal was used as the ligand and four recombinant proteins were used as the receptors. This assay 
assumes that the receptors are 100% active, and that each receptor can only bind to one ligand56.

Recombinant proteins were dissolved in 50 mM Tris–HCl protein buffer to yield a final concentration of 
2 mmol l−1, respectively. The fluorescence competitive binding were conducted in a 1-cm quartz cell and the 
fluorescence intensity F95S fluorescence spectrophotometer (Shanghai Lengguang Technology Co., Ltd., Shang-
hai, China) at 25 °C with the following parameters: excitation of 10 nm; emission slit of 10 nm; sensitivity of 
2 s; gain value of 2; excitation wavelength of 337 nm; and an emission wavelength range of 370–500 nm, as a 
previous study53.

First, the binding constant (Kd) for each recombinant protein to the 1-N-phenyl-naphthylamine (1-NPN) 
fluorescent probe was detected. In brief, 2 ml of protein solution and 2 μl of 1-NPN solution were added to the 
quartz cell and thoroughly mixed for 1 min. Peak fluorescence was continuously recorded until it stabilized and 
began to decrease. The Kd of the four proteins (receptors) to 1-NPN was then calculated using the Scatchard 
equation57.

Next, the ligands were added to the quartz cell along with each receptor, in order to competitively bind to 
the fluorescent probe54. In brief, 2 ml of protein solution and 2 ml of 1-NPN solution were added to the quartz 
cell, and the fluorescence peaks were scanned and recorded. Then, 2 μl of each ligand was added and allowed to 
sit for 1 min before the peak fluorescence was scanned and recorded. We then continued to add 2 μl aliquots of 
the ligand solution until the fluorescence was less than half of the initial value.

The binding curves were then linearized using a Scatchard plot, which calculates the concentration of the 
competitor that halves the initial fluorescence intensity (IC50). The Kd value for each receptor and ligand was 
calculated as:

where Ki represented the binding constant, [1 − NPN] represented the free concentration of 1 − NPN, and K1 − NPN 
was the dissociation constant of each receptor + 1 − NPN complex58.

Results
Efficiency of citronellal repellency to Anopheles gambiae s.s..  Results showed that the repellent 
effect of citronellal on A. gambiae s.s. increased in proportion to the quantity at 10–2–102 nmol. It means that 
there was a dose response effect in the citronellal repellency in A. gambiae s.s. within the experimental treat-
ments. The repellent rate for 50% of individuals (RQ50) was 4.02 nmol (Fig. 1).

Prediction for citronellal‑binding OBPs and ORs in Anopheles gambiae s.s..  A general odor-
ant-binding protein lush (protein ID: 3B6X) in Drosophila melanogaster Meigen (Diptera: Drosophilidae) was 
predicted as the citronellal-binding OBP but not the OR using PharmMapper Server (Table S2). Amino acid 
sequences of 70 OBPs in A. gambiae s.s. (AgamOBPs) were detected from the protein databases in PBD, NCBI 

Ki =
IC50

1+ 1−NPN
K1−NPN

Figure 1.   Regression line for citronellal quantity and its related repellant rate. The error bar means mean ± SE.
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and UniProt. Results showed that amino acid sequences of AgamOBP4, AgamOBP5, AgamOBP6, AgamOBP19, 
AgamOBP20 and AgamOBP83 were highly homogenous with 3B6X, because these six AgamOBPs clustered into 
the branch with 3B6X (Fig. 2a). However, an odorant receptor, OR83b (Protein ID: CG10609) in D. melanogaster 
was reported as a citronellal-binding OR in a previous study59. Amino acid sequences of 76 ORs in A. gambiae 
s.s. (AgamORs) were detected from the Protein database in PBD, NCBI and UniProt. The results showed that 
AgamORC7 was highly homogenous with OR83b because it was clustered in the same branch with OR83b 
(Fig. 2b).

Prediction and determination of the structure of candidate citronellal‑binding AgamOBPs and 
AgamOR.  The amino acid sequences of AgamOBPs and AgamOR were analyzed using the Clustal Omega 
and HMMER web service. Results of sequence cluster showed that there were 6 cysteine residues and more than 
10 hydrophobic binding sites in each of the 6 AgamOBPs amino acid sequences (Figure S2a), meaning that these 
OBPs belongs to classical OBPs. The hidden Markov models analysis confirmed that these 6 AgamOBPs belong 
to the PBP-GOBP subfamily (Figure S2b). Results also showed that AgamORC7 like OR83b, has 7 transmem-
brane domains, and was a typical odorant receptor (Figure S3a and b). We therefore predicted the 3D structure 
by using SWISS-MODEL and evaluated it using the ModBase and PROCHECKweb service. The 3D structures 
of the candidate AgamOBPs and AgamOR are shown in Fig. 3. For AgamOBP4 and AgamOBP20, the published 
3D structures, which were accessed from the Protein Data Bank in Europe, did not need to be predicted. How-
ever, for the others, the 3D structures were reliable according to the value obtained during the evaluation from 
ModBase (Table S3). By using PROCHECK, all the predicted 3D structures had more than 90% of the residues 
located in the favored regions (Figure S4), implying that the predicted 3D structures were reliable.

Simulated molecular docking.  Reverse molecular docking indicated that oxygen atoms on aldehydes 
of citronellal were the most active docking site (Fig. 4a). Our simulated molecular docking indicated that Aga-
mOBP4, AgamOBP5, AgamOBP20 and AgamORC7 docked with citronellal successfully (Fig.  4b–e), while 
AgamOBP6, AgamOBP19 and AgamOBP83 could not. For each protein, the total score of auto docking was 
> 4.5 (Table S4), suggesting that all proteins bound tightly to their ligands. Furthermore, the generated binding 
sites were observed at PHE66 and THR69 in AgamOBP4, SER88 in AgamOBP5, THR101 in AgamOBP20 and 
ARG205 in AgamORC7 (Fig. 4b–e).

Fluorescence competitive binding assay.  Prior to recombination of the target proteins, genes and pro-
teins of the four (AgamOBP4, AgamOBP5, AgamOBP20 and AgamORC7) were detected in gels (Figure S5). 
Results showed that the binding curves of 1-NPN and each single recombinant protein had good degree of fitting 
(R2 > 0.9), and the relative linearization with showed in Scatchard plot were all fit a straight line (Fig. 5a–d). It 
means that 1-NPN was a suitable competitive fluorescent reporter for the recombinant proteins. The AgamOBPs 
competitive binding assays indicated that AgamOBP4 had high binding affinity to citronellal, with an IC50 value 
of 1.23 μM, and Ki value of 0.71 μM. Similarly, AgamORC7 had high binding affinity to citronellal, with an IC50 
value of 2.23 μM, and Ki value of 1.57 μM (Fig. 5e,f). For AgamOBP5 and AgamOBP20, they could not reduce 
fluorescent rate down below 50%. This suggests that it is difficult for small molecules to bind to these two pro-
teins.

Discussion
In this study, we first quantified and tested the repellency of citronellal to A. gambiae s.s., and then established the 
underlying mechanism involved, indicating that A. gambiae s.s. bound and transmitted citronellal with odorant 
binding proteins AgamOBP4 and AgamORC7.

Citronellal gets a lot of attention for its repellency efficiency against mosquito20,21,32,59,60, although its exact 
mode of action is still unknown. This lack of knowledge regarding the mechanism involved in its activity can be 
attributed to the inconsistency of the diverse methods used to determine the repellency of volatiles in insects60–68. 
In this study, we used a Y-tube olfactory meter which included in its design, most of the critical elements neces-
sary for determining the mosquito-repellent activity of citronellal in vitro. The Y-tube olfactory meter is a widely 
accepted approach for studying odor detection in insects69–74. Our results confirmed that citronellal volatiles 
repelled A. gambiae s.s. and that its efficiency exhibited significant dose response effects in the defined experi-
mental treatments. This signifies that citronellal may be bound by AgamOBPs and transferred to AgamORs by 
these OBPs.

There are currently more than 70 AgamOBPs and AgamORs in the protein databases (UniProt, PDB database, 
NCBI). When studying the functions of proteins, much information can be inferred by starting with homolo-
gous proteins. By using reverse molecular docking, an OBP, 3B6X, was coupled to citronella in D. melanogaster, 
but no OR was found. Fortunately, a citronellal-docking OR, OR83b, had been found in D. melanogaster in a 
previous study59. Therefore, the homologous proteins, 3B6X and OR83b, found in A. gambiae s.s., AgamOBP4, 
AgamOBP5, AgamOBP6, AgamOBP19, AgamOBP20, AgamOBP83 and AgamORC7 were clustered in phylo-
genetic trees. Classical OBPs have been found to have six conserved cysteine residues and hydrophobic binding 
sites75–77, while ORs which are similar to G-protein coupled receptors have seven transmembrane domains48,78–80. 
Each of these typical traits were found in the amino acid sequences of predicted OBPs and OR, indicating that 
all of the predicted proteins were eligible.

To analyze the binding details for the predicted proteins and citronellal, the 3D structures for both receptors 
and ligand were utilized. Because only two 3D structures of predicted protein, AgamOBP4 and AgamOBP20 had 
been published, the others were predicted by referring to published homologous proteins using SWISS-MODEL. 
The reliability of the predicted 3D structures was evaluated using PROCHECK. Several other studies on OBPs 
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Figure 2.   (a) Phylogenetic tree for AgamOBPs, and (b) AgamORs. Numbers on the branch instead of raw 
branch length values. Blue color indicated proteins of A. gambiae s.s., red color indicated homogenous proteins.
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and ORs have used similar methods and predicted reliable ligands for the receptors81–85. We further simulated 
molecular docking for the predicted protein and citronellal in order to understand their binding traits. Our 
results showed that only AgamOBP4, AgamOBP5, AgamOBP20 and AgamORC7 can successfully dock with 
citronellal. According to the AutoDock results, the binding sites in AgamOBP5, AgamOBP20 and AgamORC7 
were hydrophilic amino acids, Ser, Thr and Arg respectively, while Phe in AgamOBP4 was found as a hydro-
phobic amino acid86–88. Previous studies have demonstrated that the binding site in OBPs to insoluble odorant 
molecules should contain a hydrophobic amino acid residue75,89,90. This means that, in reality, AgamOBP5 and 
AgamOBP20 may not bind with citronellal. In addition, there were two 92 Å docking sites on AgamOBP4, imply-
ing that AgamOBP4 was capable of binding with two ligands. We also evaluated the binding traits of AgamOBP4, 
AgamOBP5, AgamOBP20 and AgamORC7 with citronellal through fluorescence competitive binding assay. 
These results indicated that citronellal can tightly bind to AgamOBP4, but cannot bind well with AgamOBP5 
and AgamOBP20. This finding was comparable with the results obtained in AutoDock.

In this study we demonstrated the mosquito-repellent activity of citronellal and quantified the activity with 
RQ50 values. Using our results, one can conjecture that, through direct and indirect evidence, AgamOBP4 sol-
vent in the lymph of mosquito antennae can bind citronellal, and then transmit the information to AgamORC7 
on the surface of neuron cells. This research gives a model for exploring the mosquito-repelling mechanism of 
many other chemicals, e.g. N,N-diethyl-3-methylbenzamide (DEET). However, we will need a negative control 
(AgamOBP4 or AgamORC7 mutant A. gambiae s.s.) to verify the function of predicted proteins after the genes 
in the antenna can be knocked down. In addition, citronella oil is among monoterpenoids that produce very 
high levels of initial spatial repellency followed by relatively lower repellent efficacy, and have a function of 
intrinsic repellency of their molecules (i.e., their ability to elicit a physiological response at an odorant receptor) 
and their volatility. It is dictated by their molecular weight, polarity, and the intermolecular forces among the 

Figure 3.   Predicted 3D structure of AgamOBP4, AgamOBP5, AgamOBP6, AgamOBP19, AgamOBP20, 
AgamOBP83 and AgamORC7.

Figure 4.   Details of AutoDock for citronellal with predicted proteins. (a) possible binding site of citronellal 
to proteins; (b–e) binding sites of AgamOBP4, AgamOBP5, AgamOBP20 and AgamORC7 with citronellal. 
Numbers followed amino means the location of the residues in the amino sequences.
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molecules of the repellent compound or with the treated surface (as oppose to sesquiterpenoids), further studies 
are therefore warranted to test this effect for longer period of time for validation and during its application in 
the field conditions. In summary, the findings of our study not only help to explain the mechanism involved in 
mosquito-repellent activity, they may also provide a technical basis for the development of an effective mosquito 
repellent through a chemical ecology approach.

Figure 5.   Binding of receptors to ligands. (a, b, c, e) Binding curves and relative Scatchard plots for the 
fluorescent probe (1-NPN) with AgamOBP4, AgamOBP5, AgamOBP20 and AgamORC7; (d, f) Competitive 
binding curves for OBPs and OR with citronellal. Bmax, maximal binding capacity; IC50, halves the initial 
fluorescence intensity; Kd, binding constant for each recombinant protein to the 1-NPN fluorescent probe; Ki, 
Kd value for each receptor and ligand.
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