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Abstract

Background: Genetically identical cells often show significant variation in gene expression profile and behaviour
even in the same physiological condition. Notably, embryonic cells destined to the same tissue maintain a uniform
transcriptional regulatory state and form a homogeneous cell group. One mechanism to keep the homogeneity
within embryonic tissues is the so-called community effect in animal development. The community effect is an
interaction among a group of many nearby precursor cells, and is necessary for them to maintain tissue-specific
gene expression and differentiate in a coordinated manner. Although it has been shown that the cell-cell
communication by a diffusible factor plays a crucial role, it is not immediately obvious why a community effect
needs many cells.

Results: In this work, we propose a model of the community effect in development, which consists in a linear
gene cascade and cell-cell communication. We examined the properties of the model theoretically using a
combination of stochastic and deterministic modelling methods. We have derived the analytical formula for the
threshold size of a cell population that is necessary for a community effect, which is in good agreement with
stochastic simulation results.

Conclusions: Our theoretical analysis indicates that a simple model with a linear gene cascade and cell-cell
communication is sufficient to reproduce the community effect in development. The model explains why a
community needs many cells. It suggests that the community’s long-term behaviour is independent of the initial
induction level, although the initiation of a community effect requires a sufficient amount of inducing signal. The
mechanism of the community effect revealed by our theoretical analysis is analogous to that of quorum sensing in
bacteria. The community effect may underlie the size control in animal development and also the genesis of
autosomal dominant diseases including tumorigenesis.

Background
During embryonic development, cell-cell interaction
plays a pivotal role in generating many types of cells
that constitute a functional adult body. The most preva-
lent of such interaction is embryonic induction, a pro-
cess by which part of a tissue within the embryo
changes its direction of differentiation into another
upon receipt of a signal emanating from the nearby tis-
sue. Such induction events, however, are transient and
therefore the cells that have received the signal must
‘remember’ the event until they terminally differentiate.

The precursor cells generated by an embryonic induc-
tion tend to stay together and form a cell group of like
character. Despite the fact that those cells often proliferate
and their surrounding environment changes as a conse-
quence of morphogenesis, cells in such a group behave as
a collective and express the same set of genes that are
unique to their differentiation process. One of the
mechanisms that control such collective behaviour of cells
during animal development is the so-called community
effect [1]. A community effect was first discovered in the
muscle precursor cells of Xenopus embryos [2]. Muscle
cells are formed from mesoderm, which itself is generated
by an inductive interaction of cells in the equatorial region
of blastula embryos in Xenopus. Naïve ectoderm cells from
blastula embryos change their fate to mesodermal one
when juxtaposed to the endodermal tissue that produces
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the mesoderm-inducing signalling molecules Activin and
Xnr (Xenopus nodal-related) proteins. Mesoderm cells
that contain muscle precursor cells induced in this way or
isolated from early embryos can differentiate into muscle
cells when cultured as a group of many cells but not as
single cells (Figure 1) [3]. This community effect of many
nearby muscle precursor cells requires cell-cell interaction
mediated by FGF4 (Fibroblast Growth Factor 4) protein.
FGF4 (also known as embryonic FGF or eFGF in Xenopus)
is distinct from the mesoderm-inducing signals [4]. FGF4
and the early mesodermal transcription factor Xbra (Xeno-
pus Brachyury) induce expression of each other, thus
forming a positive feedback among a group of cells [5,6]. If
FGF signalling is blocked by the expression of a dominant
negative form of FGF receptor, Xbra expression will be
lost [7]. Although it is intuitively apparent that cell-cell
communication by diffusible factors plays a crucial role in
the community effect, its mechanism is not immediately
obvious. Bolouri and Davidson proposed a model of the
community effect in sea urchin embryos, which is based
on the gene regulatory network operating in the oral ecto-
derm [8]. In their model, cell-cell communication also
plays the central role for the community effect, which is
mediated by the Nodal gene product. The basic regulatory
unit for a community effect thus seems to be a self-activat-
ing feedback loop of a gene that expresses extracellular
signalling ligands.
The model of Bolouri and Davidson also incorporated

an interlinked loop of negative feedback by the Nodal
antagonist Lefty. This negative feedback is responsible
for restricting the area of Nodal expression within the

boundary of the oral ectoderm [9]. Although their model
provides an underlying logic to the gene regulatory net-
work of a community effect, many questions still remain
unanswered: Is positive feedback signalling among cells
sufficient for the community effect? Why does the com-
munity effect require many cells? How is such a popula-
tion size determined? We have addressed these questions
theoretically using a combination of stochastic and deter-
ministic modelling methods. We found that a simple lin-
ear gene cascade that produces a diffusible factor for cell-
cell communication is sufficient to reproduce the com-
munity effect in development. We derived the formula
for the minimal number of cells required for a commu-
nity effect and discuss its wider implications for the
mechanism of collective behaviour of cells.

Results
A minimal model of the community effect in animal
development
Our first model of a community effect is based on a
simplified abstract scheme as illustrated in Figure 2A.
This model does not include transcription (mRNA)
steps, and is described by Michaelis-Menten rate equa-
tions without Hill coefficient (cooperativity). The system
has n cells and three components (proteins), xi, yi (i = 1,
2, ..., n) and z. yi is exported from the cell, and is added
to the extracellular pool z. z in turn activates the synth-
esis of xi. z diffuses into and out of the cell freely. This
model explicitly takes account of the system volume Vs

(extracellular volume plus total cell volume) and the
volume of a cell Vc, both of which remain constant in
this model. Note that Vs >n Vc. In the deterministic
regime, each cell has identical dynamics. The system is
described by a set of ordinary differential equations
(ODEs) as follows:

x′
i =

k1 z
z + 1

− δ1xi

y′
i =

k2 xi

xi + 1
− δ2yi

z′ =
n∑

i=1

(
Vc

Vs − n Vc

k3 yi

yi + 1

)
− δ3z.

(1)

Note that Vs - n Vc is the extracellular volume of the
system, so Vc /(Vs - n Vc) is the factor of concentration
adjustment. k1, k2 and k3 are the rate constants for pro-
duction of xi, yi and z, respectively, and δ1, δ 2 and δ 3 for
degradation. Because cells are identical, Eqs.1 reduce to:

x′ =
k1z

z + 1
− δ1x

y′ =
k2x

x + 1
− δ2y

z′ =
μy

y + 1
− δ3z,

(2)

Figure 1 Diagram depicting the community effect in
development. This figure illustrates the concept of the community
effect in an abstract manner. See Introduction for a description of
the community effect in muscle development.
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where

μ =
n Vck3

Vs − n Vc
. (3)

The initial condition is zt = 0 > 0 (or xt = 0 > 0 or yt =

0 > 0).

The condition for a community effect
The ODEs of Eqs.2 can be solved analytically (see
additional file 1). We found that above a certain criti-
cal cell number nc, the system is activated and
becomes self-sustaining. Figure 2B shows a typical pro-
file of cell activity (concentration of x) at the steady
state plotted as a function of community size n. The
critical community size nc is

nc =
Vs

Vc(ξ + 1)
, (4)

where

ξ =
k1 k2k3

δ1δ2δ3
. (5)

From Eq.3 and cell density h = n Vc /Vs, the critical
cell density for a community effect hc is

ηc =
1

ξ + 1
. (6)

Note that ξ’s numerator is the product of the synthesis
rates and the denominator is the product of the degra-
dation rates. Therefore nc is partly determined by the
balance of synthesis and degradation of the components
in the positive feedback network. Interestingly, we will
reach a similar conclusion about the determinant of nc
for a more elaborate model described below.

A model of the community effect with transcription
The second model includes transcription (mRNA) steps
and is basically a linear combination of the three-stage
model of gene expression described in additional file 1,
coupled with cell-cell communication. Similar models of
gene expression have been adopted in a number of pre-
vious studies ([10] for example; see [11] for review).
The model consists of a linear cascade of two genes, A

and B. Gene A corresponds to the transcription factor
Xbra gene and gene B is analogous to FGF4 gene in
Xenopus, which is the direct target of Xbra [6]. Protein
molecules synthesized from active gene B (Bpin) are
transported out of the cell at the rate �. After diffusing
away from the cell that produced them, a secreted extra-
cellular Bp (Bpout) molecule binds to one of the cells in
the community irreversibly, and the protein is then con-
verted into another transcriptional activator (Cp). This
process corresponds in real Xenopus embryonic cells to
the binding of FGF4 proteins to FGF receptors that acti-
vate the signal transduction mediated by the MAP
kinase cascade, which in turn induces Xbra expression
[12-15].
In the model, the diffusion of Bpout, its binding to a

cell surface receptor and conversion into Cp are treated
as a single process, which is represented by a combined
rate constant ε. In this lumped-up process, diffusion of
Bpout and its binding to the receptor is the rate-limiting
step because the intracellular FGF signalling mediated
by the MAP kinase pathway is thought to be fast relative
to those processes. Unless taken up by the cells, Bpout
decays with the rate δd, either by degradation or by dif-
fusion away from the cells. Cp activates the gene A, thus
closing the positive feedback loop. A crucial aspect of
the model is that this positive feedback is not a simple
loop but a complex network with many cells. Also
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Figure 2 A minimal model of a community effect . (A) A
schematic depiction of the model. Each molecule or state is
indicated in red, and arrows indicate reactions/transitions between
those states with reaction rate parameters as indicated. See text for
details. (B) Steady state of [x] plotted as a function of community
size n. Parameter values used for the plot are: k1, k2, k3 = 0.02; δ1, δ

2, δ 3 = 0.01; Vc = 1; Vs = 800.
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important is that the model has no explicit intracellular
feedback mechanism.
For the sake of simplicity of the model, we have made

some assumptions. First, a Bpout protein binds to any
cell in the system with equal probability. This assump-
tion is valid if extracellular concentration of Bpout is
similar across the cell community. We have examined
whether this is the case in embryos theoretically. In zeb-
rafish embryos, a half-life of FGF8, a member of FGF
protein family, was measured to be around 18 min [16]
and its diffusion coefficient about 91 μm2/s. We would
expect FGF4 proteins in Xenopus embryos has similar
degradation and diffusion rates and applied them to a
simple model of diffusion. From this analysis, we have
concluded that the assumption is valid under a certain
condition (see additional file 1).
Second, cell division is not considered in the model

and cell number remains constant. Third, cells are in a
closed system whose size (i.e., volume) is also constant.
In real Xenopus embryos, the cell community is sur-
rounded by other tissues or cells. Finally, we set the
initial condition as follows: at time = 0, both genes A
and B are inactive. In early Xenopus embryos, Activin/
Xnr signalling induces naïve ectodermal cells to become
muscle precursors cells. Instead of introducing another
molecule as an inducer into our model, Bpout substitutes
the role and 500 molecules of it is present at time = 0,
which rapidly decays (t1/2 ≈ 33min ≪ duration of simu-
lations). This substitution does not affect our analysis
because the steady state is independent of the initial
condition (see below).

The deterministic model and the condition for a
community effect
The model we have just described is represented by a
set of rate equations:

[Ac]′ = α1[Cp] [Ag] − α2[Ac] (7)

[Ar]′ = β [Ac] − δm [Ar] (8)

[Ap]′ = γ [Ar] − α1[Ap] [Bg] + α2[Ba] − δa[Ap] (9)

[Ba]′ = α1 [Ap] [Bg] − α2[Ba] (10)

[Br]′ = β [Ba] − δm[Br] (11)

[Bpin]′ = γ [Br] − (κ + δb)[Bpin] (12)

[Bpout]′ = nκ [Bpin] − (nε + δd)[Bpout] (13)

[Cp]′ = ε[Bpout] − α1[Cp] [Ag] + α2[Ac] − δc[Cp]. (14)

Here, [Ag] + [Ac] = [Bg] + [Ba] = 1 because of the con-
servation of the gene copy numbers. In Eq.13, ε is multi-
plied by n because each cell acts as a sink for Bpout. All
variables in Eqs.7-14 are the number of each molecule
(per unit volume) per cell except [Bpout], which repre-
sents the number of extracellular Bp. All other reaction
rates are depicted by the arrows in Figure 3.
We first performed numerical simulations of the

deterministic rate equations Eqs.7-14 (parameter values
in Table 1). Figure 4A and 4B show the time course of
[Ap] and [Bpout] (ε = 5.78 × 10-7). The analysis revealed
that following induction at t = 0 with [Bpout] = 500,
gene expressions increase after a time lag and become
self-sustaining. But the cell’s activity becomes self-sus-
taining only when the number of cells present is above
a certain critical number nc. This is a community effect,
which is analogous to the one observed in Xenopus
embryos. We asked how this critical community size nc
is determined. In fact, nc can be derived from the steady
state solution of Eqs.7-14 as

nc =
δd

ε(ρ − 1)
, (15)

where

ρ =
α2

1 β2γ 2κ

α2
2 δaδcδ2

m(κ + δb)
(16)

(see additional file 1). r must be larger than 1 in order
to have a community effect for any community size.
With the parameter values used in the simulations (Table
1), we obtain r ≈ 7.2 and the critical community size nc ≈
97. Comparing the diagram of the model (Figure 3) and
Eq.16, the meaning of r becomes apparent: the numera-
tor of r is the product of the rate constants of all reaction
steps that promote the cascade of gene expressions in the
cell, while the denominator is the product of the rates of
reactions in the opposite direction such as protein degra-
dation. An important conclusion drawn here is that nc is
independent of the initial condition. Therefore, so long
as [Bpout] > 0 at t = 0, a community effect will be trig-
gered when the community size n >nc, although in sto-
chastic simulations [Bpout] at t = 0 must be sufficiently
large (see below). We have already seen a similar condi-
tion for a community effect with a simplified model of
the community effect that omits transcription steps (for
which nc is described in Eqs.4 and 5, see Figure 2). When
ξ ≫ 1, nc is proportional to 1/ξ. Similarly from Eq.15,
when r ≫ 1, nc is proportional to 1/r.

Gene copy number and the critical population size for a
community effect
We next asked how copy number of genes affects the
community effect in our model. This is an important
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question to ask because certain types of genetic disor-
ders such as cancer may be the consequence of a muta-
tion in one of the two copies of the gene that is
required for a community effect (see Discussion). When
multiple copies of genes are present per cell, such as
diploid cells, the critical cell number nc for a community
effect is:

nc =
δd

ε(a bρ − 1)
, (17)

where a and b are the copy numbers of gene A and
gene B, respectively and r is defined in Eq.16 (see addi-
tional file 1, Eq.38 for derivation). The critical commu-
nity sizes nc are 22 for a = 2, b = 2, and 45 for a = 1, b

Figure 3 A model for the community effect in development. See main text for details. Each molecule or state is indicated in red, and arrows
indicate reactions/transitions between those states with reaction rate parameters as indicated.

Table 1 Parameter values used in simulations

Parameter Reaction Parameter value (sec -1) t0.5(approx.)

a1 Binding of transcriptional activator to promoter 1.93 × 10 -4 1 hr

a 2 Dissociation of transcriptional activator from promoter 3.47 × 10 -2 20 sec

b Transcription 1.16 × 10 -2 1 min

g Translation 2.31 × 10 -2 30 sec

δa, δb, δc, δd Degradation/disappearance of proteins 3.47 × 10 -4 33 min

δm Degradation of mRNA 1.16 × 10 -3 10 min

� Exocytosis 3.85 × 10 -4 30 min

ε ’Communication’ by extracellular factor 2.31 × 10 -6 or 5.78 × 10 -7 83 or 333 hrs

Simulation parameters are all within biologically or biochemically relevant range, which usually spans orders of magnitude, such as the one for protein
degradation rates. Where possible, we have referred to reaction rates that have been determined experimentally to choose parameter values for simulations (for
example, [39-45]). ε is an abstract parameter and its value for stochastic simulations was estimated and chosen so that a community effect could be realised in
silico.
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= 2 according to Eq.17 with the parameters listed in
Table 1 and ε = 5.78 ×10-7. These values are in good
agreement with the stochastic simulation results (see
below). Therefore, nc for the community of heterozy-
gous diploid cells, i.e., one copy of gene A is defective, is
larger than that of the community of homozygous
diploid cells. Gene copy number also significantly affects
the expression of the genes at steady state (see below).

Stochastic simulations of the community effect model
We next performed stochastic simulations over a range
of n communicating cells. Because a community effect
concerns the heterogeneity of a cell population, noise in
gene expression becomes an important aspect that
needs to be examined by stochastic simulations. We
used the same parameter values as those for the three-
stage model of gene expression (Table 1). Figure 4D and

Figure 4 Simulation results of the community effect model. (A, B) Numerical simulations of the deterministic rate equations Eqs.7-14. (A) is
the plot for [Ap] and (B) for [Bpout]. Simulation results for different community size are shown. With 100 cells, very little gene expression occurs
at steady state (not shown) as 100 cells are close to nc ≈ 97. (C) Average number of Ap at steady state (10000 min) as a function of community
size (solid lines). Dotted curves indicate number of Ap at steady state ([Ap]*) obtained by Eqs.35 in additional file 1. Plots are shown for ε = 2.31
× 10-6 and 5.78 × 10-7. (D, E) Time series of [Ap] and [Bpout] as overlays of 100 stochastic simulation results (temperature map) for community
size of 300 cells and ε = 5.78 × 10 -7. Solid lines show a typical simulation result. (F) Probability distributions of [Ap] at steady state (t = 10000
min in stochastic simulations) for community size n = 140, 200, and 500 cells. ε = 5.78 × 10 -7. All simulations in this figure are with one gene
copy each for gene A and gene B.
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4E show a plot of [Ap] and [Bpout] over time in the
simulations with n = 300. After an almost quiescent
time lag, [Ap] and [Bpout] increase and reach steady dis-
tributions, and their expressions become self-sustaining.
The steady-state average of [Ap] in the stochastic simu-
lations (solid lines in Figure 4C) is in good agreement
with that of the deterministic rate equations (dotted
lines in Figure 4C, which are calculated by Eqs.35 in
additional file 1).
We performed 100 simulations for each community

size n, and calculated the percentage of active cells ([Ap]
> 0) at the end of each simulation: the results are shown
for haploid (Figure 5A, B), homozygous diploid (C, D)
and heterozygous diploid cell communities (E, F; also
see the next section). When the community size is
below the critical cell number nc (indicated in each
panel in red), the community effect does not occur and
all cells become quiescent. In contrast, when the com-
munity size n is larger than nc but close to it (n ≈ nc),
the behaviour of cells becomes unpredictable: sometime
all the cells are active while in other occasions they are
all inactive or only partially active (Figure 5A, B, C and
5E, t = 3000 min). However, this heterogeneity is transi-
ent and the community eventually become homoge-
neous after a sufficiently extended time period (Figure
5D and 5F, t = 10000 min). These results indicate the
probabilistic nature of a community effect when n ≈ nc ,
that is, the system can end up with either of two stable
states with a finite probability. In contrast, if the com-
munity size is sufficiently large (n ≫ nc), all cells
become active (Figure 4F and Figure 5).

Gene expression control by a community effect
During embryogenesis, cell differentiation usually
accompanies cell proliferation. Before terminal differen-
tiation, precursor cells must divide and achieve a certain
population size. But at the same time they must main-
tain a constant gene expression profile that is required
for them to become specific tissue such as muscle. We
asked how the amount of gene expressions changes if
community size grows in our scenario of a community
effect.
Figure 6A shows that the heterozygous diploid cell

community (a = 1, b = 2 or a = 2, b = 1) have a dimin-
ished expression of gene A (and gene B, data not
shown) compared to the homozygous diploid cell com-
munity (a = 2, b = 2). Figure 6B shows [Ap] at steady
state ([Ap]*) as a function of community size n with dif-
ferent gene copy numbers. The plot indicates that, even
when cells in the community continue to proliferate,
[Ap]* (and also [Bpin]*, data not shown) of the heterozy-
gous diploid cells never reaches that of normal homozy-
gous cells. The analysis revealed that [Ap]* has a
theoretical upper limit [Ap]∗max (dotted lines in Figure

6B). Therefore, the compromised gene expression in the
heterozygous diploid cell community cannot be com-
pensated by increasing its population size.
Figure 6B also indicate that [Ap]* remains fairly con-

stant for large cell community. This is advantageous for
the community because the gene expression is not
affected by the change of cell number. In contrast, the
steady state level of Bpout ([Bpout]*) increases as the
community size grows (Figure 6C). [Bpout]* is also
orders of magnitude larger than [Ap]* for a large com-
munity. Therefore, [Bpout] works as a collective ‘mem-
ory’ of cells while the activity (gene expressions) of each
cell is still weak after the induction of the community.
We next asked how different environments outside

the cell affect gene expressions. It is easily imaginable
that the extracellular environment changes during
embryogenesis. This should alter ε, which reflects how
fast cells communicate with each other (i.e. the average
distance between cells), and δd that defines how fast
Bpout decays or drifts away from the cells.
Figure 7 shows steady-state activity [Ap]* and [Bpout]*

as a function of ε (Figure 7A, B) and δd (Figure 7C, D).
In Figure 7A and 7B, the intersection of each line for
constant cell number with the axis of ε corresponds to
the value of ε for which that cell number is nc. Similar
argument can be applied in Figure 7C and 7D to the
value of δd with regard to nc. Figure 7A indicates that
for the large population n ≫ nc, [Ap]* is independent of
ε. Therefore, a small fluctuation of has little influence
on the expression of Ap at steady state. In contrast,
[Bpout]* can change dramatically in response to a slight
change in ε if n ≈ nc. For example, for ε = 1.12 × 10 -6

and n = 50 (≈ nc), [Bpout]* is ≈ 23 but increases to ≈
3200 when ε changes upward by half (ε ≈ 1.68 10 -6)
while it becomes 0 when ε changes downward by the
same amount (ε ≈ 0.56 × 10 -6). On the other hand,
when n ≫ nc, [Bpout]* is relatively insensitive to small
changes in ε. Similarly, [Ap]* and [Bpout]* is independent
of δd when n ≫ nc. For n ≫ nc, a small perturbation of
δd barely influences [Bpout]* or [Ap]*. In contrast, [Bpout]
* could change drastically when n ≈ nc (Figure 7C, D).
We also examined how noise in gene expression is

affected by the change in ε when n ≫ nc, in other
words, how robust cell’s activity is to changes of extra-
cellular environment. Noise (coefficient of variation) was
calculated from the stochastic simulation results
described above. Table 2 summarises the calculations. It
turned out that, as system size (i.e., tissue size) grows
without cell proliferation (i.e., with smaller ε), the noise
of the steady state gene expression [Ap]* becomes larger.
On the other hand, as cell number in the community
grows with a constant system size, gene expression
noise decreases. Therefore, when cell number and sys-
tem size increase at the same time, the effect of these
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Figure 5 Community effect observed in stochastic simulations. Distributions of percentage of active cells in the community for a range of
community size as indicated. 100 simulations were performed for each community size. Percentage of active cells ([Ap]> 0) at the end of
simulation was calculated for each simulation, plotted as a histogram, which are combined as 3D plots. (A) The histogram for ε = 5.78 × 10 -7, a
(copy number of gene A) = 1, b (copy number of gene B) = 1. (B) ε = 2.31 × 10 -6, a = 1, b = 1. (C, D) ε = 5.78 × 10 -7, a = 2, b = 2. (E, F) ε =
5.78 × 10 -7, a = 1, b = 2. (A, B, C, E) are the histograms at t = 3000 min in the simulations and (D, F) at t = 10000 min. Note that (C) and (D) are
obtained at different time points from the same set of simulations, so are (E) and (F). Histograms for a = 2, b = 1 are similar to Fig. 5E and F
(data not shown).
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cancels out and noise in gene expression would remain
at the same level.
The above observations indicate that if a cell commu-

nity is dispersed (i.e., ε ® 0 and δd ® ∞), cells cannot
keep the self-sustaining gene expressions of a commu-
nity effect. Conversely, the gene expressions are main-
tained as long as cells are close enough to each other (ε
above the threshold) and the community is insulated to
prevent too much loss of Bpout (δd below the threshold).
These are the hallmarks of a community effect.

Discussion
The mechanism of the community effect in development
The pioneering experimental work by Gurdon et al.
[2-4] and the recent theoretical work by Bolouri and
Davidson [8] have suggested that the feedback cycle of
cell-cell communication by diffusible signalling proteins
and their self-induction is essential for a community
effect. However, it has been unknown whether this posi-
tive feedback among cells by cell-cell communication is
sufficient or an additional layer of interlinked gene regu-
lation is necessary for a community effect. Nor has it
been clear how the size of a cell community to bring
about a community effect is determined. Our present
work has provided a theoretical basis for the community
effect and demonstrated the crucial role of the positive
feedback between cells by diffusible factors. Our model
with a simple linear gene cascade and cell-cell commu-
nication by signalling factors reproduces the main char-
acteristics of a community effect, that is, (1) it requires
many cells, (2) cells in the community must be near
each other, and (3) the gene expressions for the com-
munity effect becomes self-sustaining after the initial
transient induction.
With regard to the condition for a community effect,

the same conclusion has been drawn from the simplified
minimal model and the more elaborate model with tran-
scription steps. The analytical formula for the critical
cell number of the community nc (Eqs.4 and 15)
explains the above characteristics (1) and (2) of the
community effect: first, nc is determined by the balance
of synthesis and degradation of the components
involved, i.e., mRNAs and proteins; second, it is gov-
erned by the parameter that reflects how fast cells can
communicate with each other (k1 or ε), and also by how
close cells are located to each other. In other words, the
cell density of the community must be above a critical
threshold to have a community effect. This is the most
fundamental principle of the community effect, which
has been observed experimentally but its theoretical

Figure 6 Influence of gene copy number on gene expressions
at steady state. (A) Probability distribution of [Ap] at the end of
stochastic simulations for the community size n = 100 (t = 10000
min). Plots for different combinations of gene copy numbers are
shown as indicated. (B) [Ap] at steady state ([Ap]*) is plotted as a
function of community size for different gene copy numbers as
indicated. [Ap]* is calculated according to Eqs.35 in additional file 1
with parameter values in Table 1, ε = 5.78 × 10 -7. Dotted lines are
the theoretical maxima [Ap]∗max. (C) [Bpout] at steady state ([Bpout]*)
is plotted as a function of community size for different gene copy
numbers. Parameter values are the same as in (B). [Bpout]* also
approaches to the theoretical upper limit [Bpout]∗max (not shown;
[Bpout]∗max ≈ 358000 for a = 2, b = 2; 308000 for a = 1, b = 2;
172000 for a = 2, b = 1; 143000 for a = 1, b = 1).
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basis has been unknown. When the size of the commu-
nity is less than nc, there is only one steady state with
all cells being quiescent.

The intrinsic property of the cell community dictates the
community effect
An important insight from our model analysis is that
the expression level of genes at self-sustaining steady
state ([Ap]* and [Bpin]*) is independent of the magni-
tude of the initial induction. The analytical solution of

the steady state (Eqs.35 in additional file 1) indeed con-
tains no term for the initial condition. But the system’s
dynamics changes according to the initial transient
induction, i.e., the higher, or the longer the initial induc-
tion, the shorter the time required for the system to
reach the steady state (data not shown). Therefore, it is
the intrinsic property such as the community size that
dictates the community effect and the outcome (i.e.,
steady state gene expressions). It is not the extrinsic
inductive signal that is required for a community effect
per se, although it is required to trigger the community
initially. Our model analysis also suggests that this
intrinsic self-organising property of the community
requires no explicit intracellular feedback mechanism,
but only a linear cascade of a signal transduction and its
downstream gene expressions of signalling molecules for
cell-cell communication.
Nevertheless, a community of precursor cells must

receive sufficient inductive signals because the lag period
before steady state (Figure 4A, B, D and 4E) must be
within the time frame of the program of embryogenesis
[17]. And also the amount and duration of the inductive
signal, which acts as a morphogen in a concentration-

Figure 7 Influence of the cell-cell communication rate ε and the decay rate of extracellular factor δd on gene expressions. Protein
number of Ap and Bpout at steady state for different communitysizes are plotted as a function of ε (A, B) and δd (C, D). These plots are with
gene copy numbers a = 1, b = 1, but qualitatively similar plots can be obtained with different gene copy numbers.

Table 2 Noise in gene expression depends on community
size and communication rate ε

Community size
(cell number)

ε (sec -1) Mean Standard
deviation

Noise

200 2.31 × 10 -6 260.8 70.0 0.268

200 5.78 × 10 -7 87.7 43.1 0.492

300 5.78 × 10 -7 146.6 54.7 0.373

500 5.78 × 10 -7 212.7 63.7 0.300

Noise (coefficient of variation = standard deviation/mean) in gene expression
was calculated from the steady state distribution of [Ap]*, which was derived
from the stochastic simulations with one copy each of genes A and B, and
with parameter values as listed in Table 1.

Saka et al. BMC Systems Biology 2011, 5:54
http://www.biomedcentral.com/1752-0509/5/54

Page 10 of 14



dependent manner [18], must be within the right range.
For instance in early Xenopus embryos, naïve ectodermal
cells must receive a high concentration of Activin/Xnr
signal to become muscle precursor cells. For the pat-
terning of ventral neural tube by the morphogen Sonic
Hedgehog (Shh) in vertebrates, the duration of Shh sig-
nalling is critical for the morphogen interpretation [19].
In our model, the length of the initial induction also
affects the system’s dynamics as mentioned above. With
an adequate level and duration of the initial induction,
the community effect would be fully activated at the
right time and the precursor cells can proceed to the
next step of differentiation.

The community effect and pattern formation in
development
Although our model can reproduce the qualitative hall-
marks of the community effect quite well, it cannot pro-
vide the mechanism that restricts the area of the
community effect within a boundary. Simulations of our
model indeed showed that the community effect spreads
across the whole community (data not shown), indicat-
ing that an additional control mechanism is necessary to
restrict the community effect within the boundary of an
embryonic field. Such mechanism must be essential for
patterning the embryo. One obvious candidate for that
is a negative feedback regulation by an antagonist of the
diffusible factor for cell-cell communication, as indicated
in the model of Bolouri and Davidson [8], although such
additional control is dispensable for the community
effect.
For the sake of simplicity, we have omitted the spatial

information and presumed that the cells in a community
are well mixed in our model. Therefore it remains
unknown how the spatial arrangement of the cells influ-
ences the community effect. This question is highly rele-
vant to the mechanism of morphogenesis and the
patterning of embryonic tissues. It may well be the case
that the incorporation of explicit spatial information (i.
e., the cells’ relative position to each other in the com-
munity) and diffusion term of the extracellular factors
partly solves the problem of unrestricted spread of the
community effect in the current model (also see addi-
tional file 1). The importance of the spatial distribution
of cells has also been highlighted for quorum sensing of
bacteria [20], a process that is similar to the community
effect (see below). It remains to be seen how the com-
munity effect is coupled with the mechanism of pattern
formation in development.

Robust gene expression control by a community effect
We have found that the community effect is a robust
control mechanism to keep uniform gene expressions
across a group of cells. When the community size is

sufficiently large (n ≫ nc), gene expressions for the
community effect become independent of ε, which
reflects the average distance between each pair of cells
in the community, and δd, which defines how fast Bpout
decays or diffuses away form the community (Figure 7).
In other words, a small fluctuation of the extracellular
environment has little influence on the gene expression
of a large uniform cell community. This is an advantage
for the cells undergoing morphogenesis, because that
allows cells to move as long as they are close to each
other.
We also found that, although an individual cell’s activ-

ity is weak during the lag period just after the initial
induction (Figure 4), the pool of extracellular protein
(Bpout) accumulates quickly and becomes large enough
to buffer the fluctuations of gene expressions of each
cell. The community effect is thus a simple yet robust
mechanism to keep the uniform collective behaviour of
cells, especially in the changing environment during
embryogenesis.

Community effect as a mechanism of size control and
tumorigenesis
How size is controlled in embryos and in adults remains
an intriguing problem in biology. Size control is linked
to pattern formation during embryogenesis, which can
be viewed as the partitioning of the limited mass of an
embryo. Processes of cell proliferation, growth (increase
of cell mass) and death are all part of the size control
and their balance determines the size of tissues in
embryos, and ultimately that of the organs in adult
bodies [21]. But how do tissues or organs sense their
size and execute those processes? A community effect
may be a strong candidate for that mechanism because
it arises from the intrinsic self-organising property of
the cell population as our theoretical work suggests.
As a mechanism of the size control, a community

effect stops cell proliferation and growth, and promotes
cell death when the cell population and its density in
the tissue or organ exceeds a certain threshold. This
regulation can be achieved by placing a given compo-
nent in the gene circuit of the community effect (e.g.,
Ap in our model) upstream of the cell cycle/cell death
regulators or growth factors. This sort of system allows
tissues and organs to limit their size autonomously. The
community effect could be part of the mechanism not
only of size control but also of tissue homeostasis in
general. However, the mechanism of this sort is vulner-
able when something goes wrong with the community
effect. The positive feedback mechanism is indeed impli-
cated in the onset of autosomal dominant diseases
[22,23].
Let us consider diploid organisms for example. If one

of the two copies of gene A in our model has become

Saka et al. BMC Systems Biology 2011, 5:54
http://www.biomedcentral.com/1752-0509/5/54

Page 11 of 14



defective due to a mutation of the gene, its expression at
steady state [Ap]* is greatly compromised (Figure 6A). If
the compromised steady state expression is below the
threshold for size control, cells in the tissue or organ
continue to proliferate and grow indefinitely in theory
because the loss of gene A’s expression cannot be com-
pensated by increasing the number of cells in the com-
munity, as we have seen in our model analysis. This
may explain the origin of a certain type of cancer.
Recent studies have demonstrated that haploinsuffi-
ciency of tumour suppressor genes contributes to
tumorigenesis (reviewed in [24]). In fact, it has been
proposed that disruption of a quorum sensing mechan-
ism triggers tumorigenesis [25]. Conversely, the abnor-
mal amplification of gene A or gene B in our model
may lead to the premature termination of a tissue
growth, or atrophy.

Similarity between the community effect in development
and the quorum sensing in bacteria
The community effect in development is a typical exam-
ple of a collective behaviour of cells, which seems to be
quite universal and can be found not only in metazoans
but also in microorganisms, for instance, the quorum
sensing of bacteria. Although there is a number of dif-
ferent mathematical models of quorum sensing, all
known quorum-sensing systems have the same network
architecture (reviewed in [26]): first, low molecular-
weight molecules called autoinducers are synthesized
and released by the cells; second, these autoinducers
bind to cognate receptors in the cells, which in turn
induce their own production as well as the enzyme that
catalyse the production of autoinducers. This leads to
change in gene expressions across the cell population.
The fundamental architecture of quorum-sensing net-
work is therefore analogous to that of community effect
and the positive feedback of cell-cell communication lies
at the heart of these two disparate systems of collective
cellular behaviour. The same principle for a community
effect described in this work may thus apply to quorum
sensing as well. To our knowledge, this mechanistic
similarity between the community effect and quorum
sensing has never been discussed. The quorum sensing
network structure is, however, different from that of the
community effect and has a pair of interlinked positive
feedbacks. This additional complexity is responsible for
the switch-like behaviour of the network [27], which
may enhance the system’s population-dependent
response (i.e., community effect).
Chen and Weiss constructed an artificial quorum sen-

sing system in yeast S.cerevisiae [28]. They integrated
the Arabidopsis cytokinin production and its receptor
components with the cell’s endogenous osmotic stress
sensing signalling pathway. This synthetic hybrid

circuitry allows cells to communicate with each other
and confers quorum sensing. Incidentally, their artificial
quorum-sensing system has demonstrated experimen-
tally that a simple signal transduction that stimulates
the production of a diffusible factor for cell-cell commu-
nication is sufficient for a collective behaviour of cells, i.
e., quorum sensing. This is consistent with our theoreti-
cal analysis of the community effect model, which has
similar network architecture.
For both community effect and quorum sensing, cell

density must be above the critical threshold. Our theo-
retical analysis has also indicated that cells need to be in
an insulated system to minimize the loss of extracellular
signalling factors from the community, especially just
after the induction before the system reaches fully-acti-
vated steady state. Conversely, these principles may be
relevant to collective behaviour of cells in general and
prove to be a useful guidance to tissue engineering and
biotechnology. For example, they may be applied to
maintain stem cells and direct their differentiation in
vitro, or to engineer bacterial cells that activate gene
expressions when the cell population reaches a critical
cell density [29].

Conclusions
Our model analysis indicates that a linear gene cascade
with positive cell-cell interactions is sufficient to repro-
duce the community effect in animal development. The
critical community size required for a community effect
is determined by the balance of synthesis and degrada-
tion of the components involved in the process, as well
as the cell density. It suggests that the community’s
long-term behaviour is independent of the initial induc-
tion level, although the initiation of a community effect
requires a sufficient amount of inducing signal. The
mechanism of the community effect is analogous to that
of quorum sensing in bacteria. The community effect
may underlie the size control in animal development
and also the genesis of autosomal dominant diseases
including tumorigenesis.

Methods
Stochastic simulations
Stochastic simulations were performed using the well-
established Gillespie Monte Carlo algorithm [30], which
is based on the theorem of Joseph L. Doob, one of the
founders of theory of stochastic processes [31]. The
algorithm offers an exact solution to the stochastic evo-
lution of a system of chemical reactions. We used two
different platforms that make use of the algorithm,
SPiM (the Stochastic Pi-Machine [32]) and a tailored
stochastic C-code. SPiM is a simulator package based
on the stochastic Pi-calculus [33], which has been
applied recently to modelling of chemical reactions and
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biological systems [34,35]. The codes used in this study
are provided in additional file 2 and 3 (stochastic Pi-cal-
culus) and additional file 4 (C code). Detailed descrip-
tion of SPiM including how to run simulations is
available at the web site [32]. The SPiM codes used in
this study have been built upon the earlier works
[36-38].

Mathematical analysis of the model
Mathematica® (Wolfram Research) was used for the
mathematical analysis and numerical integration of the
deterministic models, and also for statistical analysis of
stochastic simulations.

Additional material

Additional file 1: The deterministic community effect models,
derivation of the critical community size and a model of diffusion
in a spherical tissue. Details of the mathematical analysis is described in
this file for (1) a minimal model of a community effect (Eq.2), (2) a three-
stage model of gene expression and (3) the complete model with
transcription (Eqs.7-14) and (4) a model of diffusion in a spherical tissue.

Additional file 2: SPiM code for the three-step gene expression. The
file is in simple text format (.txt) and runs in SPiM without changing its
format. The name of the file may need to be changed without spaces, e.
g., AdditionalFile2.txt in order to run simulations by the
command line version of SPiM.

Additional file 3: SPiM code for the community effect model. This
file is also in simple text format (.txt) and runs in SPiM without changing
its format. The name of the file may need to be changed without
spaces, e.g., AdditionalFile3.txt to run simulations. This SPiM
code is for 10 cells with two copies each of gene A and gene B. You
would not see any interesting simulation results with 10 cells, but need
to increase the community size to at least above 22 cells to have a
community effect with the parameter values in the code.

Additional file 4: C code for the community effect model. This C-
program was written by EU. In order to run the program, it requires the
random number generators (C codes called <gasdev.c>, <nrutil.
c> and <ran1.c>) provided in [46] and a C-compiler installed on your
computer. It can be opened and read by a standard text editor.
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