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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized
by progressive upper and lower motor neuron (LMN) loss. As ALS and other neurodegenerative
diseases share genetic risk factors, we performed whole-exome sequencing in ALS patients focusing
our analysis on genes implicated in neurodegeneration. Thus, variants in the DHTKD1 gene encoding
dehydrogenase E1 and transketolase domain containing 1 previously linked to 2-aminoadipic and
2-oxoadipic aciduria, Charcot-Marie-Tooth (CMT) disease type 2, and spinal muscular atrophy
(SMA) were identified. In two independent European ALS cohorts (n = 643 cases), 10 sporadic
cases of 225 (4.4%) predominantly sporadic patients of cohort 1, and 12 familial ALS patients of 418
(2.9%) ALS families of cohort 2 harbored 14 different rare heterozygous DHTKD1 variants predicted
to be deleterious. Four DHTKD1 variants were previously described pathogenic variants, seven
were recurrent, and eight were located in the E1_dh dehydrogenase domain. Nonsense variants
located in the E1_dh domain were significantly more prevalent in ALS patients versus controls.
The phenotype of ALS patients carrying DHTKD1 variants partially overlapped with CMT and SMA
by presence of sensory impairment and a higher frequency of LMN-predominant cases. Our results
argue towards rare heterozygous DHTKD1 variants as potential contributors to ALS phenotype and,
possibly, pathogenesis.

Keywords: amyotrophic lateral sclerosis; DHTKD1; neurodegeneration; Charcot-Marie-Tooth disease
type 2; 2-aminoadipic and 2-oxoadipic aciduria; lower motor neuron; whole-exome sequencing
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder char-
acterized by upper and lower motor neuron loss, commonly leading to death due to
respiratory paralysis within three to five years after disease onset [1]. ALS is an umbrella
term covering a large spectrum of different phenotypes with distinct clinical presentations.
Different ALS subtypes can be distinguished depending on the extent of bulbar/spinal up-
per and lower motor neuron affection with different clinical and prognostic characteristics
related to gender and age [2]. A contribution of genetic factors to ALS pathogenesis was
suggested by the observation that 5–10% of ALS patients have a familial predisposition,
and that relatives of apparently sporadic ALS patients, representing the vast majority of
cases, have an increased ALS risk [3]. Three decades of research have implicated at least
25 genes [1] and more than 120 variants in ALS risk (https://alsod.ac.uk/ accessed on
21 October 2021). Additionally, certain genetic aberrations have been reported to modify
the ALS phenotype, suggesting that genetic factors also shape the clinical presentation of
ALS [4]. Moreover, some of the genes identified in ALS patients are also causative for other
neurodegenerative disorders, such as C9orf72 and TARDBP for frontotemporal dementia
(FTD) and Parkinson’s disease, and SPG7 and SPG11 for hereditary spastic paraplegia,
indicating shared pathomechanisms [4–7]. In fact, it appears as though most, if not all ALS
genes may be pleiotropic [8].

Accordingly, in this study, in search of genes implicated in neurodegeneration as
potential novel ALS-associated genes, we identified rare heterozygous DHTKD1 vari-
ants in ALS patients. Pathogenic variants in DHTKD1 encoding dehydrogenase E1 and
transketolase domain containing 1 were previously described in patients with autosomal
recessive 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), a rare metabolic disorder
also characterized by hypotonia, delayed psychomotor development and seizures [9,10],
autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2) [11], and autosomal re-
cessive infantile-onset spinal muscular atrophy (SMA) with cognitive delay [12]. Here, we
aimed at investigating the frequency as well as genotype–phenotype correlations of rare
DHTKD1 variants in two independent ALS cohorts.

2. Materials and Methods
2.1. Patients

Cohort 1 consisted of 225 unrelated ALS patients of central European ethnicity
(133 males, 92 females; 8 with familial ALS, 217 with sporadic ALS) recruited at the motor
neuron disease clinic of the Department of Neurology at Hannover Medical School, Han-
nover, Germany. All patients were examined by a neurologist specialized in motor neuron
diseases and subdivided into one of eight ALS subtypes (upper motor neuron (UMN)-
dominant ALS, bulbar phenotype, flail arm syndrome, flail leg syndrome, respiratory phe-
notype, progressive muscular atrophy (PMA), lower motor neuron (LMN)-dominant ALS,
and classic (Charcot) ALS) [2]. Extensive clinical workup including magnetic resonance
imaging, cerebrospinal fluid analysis, electromyography (EMG), and nerve conduction
studies (NCS) was performed at first examination. UMN-dominant ALS was defined
by clinically predominant UMN signs at disease onset but development of clinically pro-
gressive LMN signs within 2–4 years, thereby distinguishing these cases from primary
lateral sclerosis (PLS), according to the recently renewed diagnostic criteria for PLS [13].
While PLS can be considered as part of the ALS spectrum [14], cases of probable or def-
inite PLS [13] were not included into our patient cohort. In cases with absence of UMN
signs, the diagnosis of PMA was made after careful exclusion of disease mimics, including
search for conduction blocks by extensive NCS and cerebrospinal fluid analysis to rule out
immune-mediated neuropathies, genetic testing for deletions or point mutations in the
SMN1 gene or expansion of the CAG repeat in the androgen receptor gene, and/or muscle
biopsies [2]. Disease progression was measured using the Revised ALS Functional Rating
Scale (ALSFRS-R) [15], the progression rate was calculated as previously described [16].

https://alsod.ac.uk/
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Cohort 2 consisted of 486 familial ALS patients from 418 unrelated families collected
in Germany and Sweden [17], thus carrying a comparable genetic background as cohort 1.

2.2. Whole-Exome and Targeted DHTKD1 Sequencing

In cohort 1, extraction of genomic DNA was performed from whole blood using the
QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, Germany). Whole-exome sequencing
(WES) on leukocyte DNA of 46 ALS patients and 148 control individuals not affected by
a neurologic disease was performed using the Agilent SureSelect Human All Exon v4 or
v5 + UTR Target Enrichment System (both Agilent Technologies, Santa Clara, CA, USA)
or the IDT xGen Exome Research Panel (Integrated DNA Technologies, Coralville, IA,
USA) on an Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) or a MGISEQ2000 (MGI
Tech, Shenzhen, Guangdong, China) sequencing platform. All samples were sequenced
to a mean target coverage of >50×. Sequencing data were aligned to the human refer-
ence genome GRCh37/hg19 and analyzed using our in-house workflow and a candidate
gene-based strategy with regard to neurodegeneration (Supplementary Table S1) using
CLC Genomics Workbench 20 and Clinical Insight Interpret 8.0 (both Qiagen). Targeted se-
quencing of all coding exons and adjacent splice site regions (±15 base pairs into intron) of
the DHTKD1 gene (NG_033248.1) was done on leukocyte DNA of 179 additional ALS pa-
tients by conventional chain termination protocols on a 3130XL Genetic Analyzer (Thermo
Fisher Scientific, Waltham, MA, USA) (oligonucleotide sequences are given in Supple-
mentary Table S2). The identified variants were prioritized based on their minor allele
frequency (MAF) extracted from the Genome Aggregation Database (gnomAD, v.2.1.1,
https://gnomad.broadinstitute.org accessed on 21 October 2021) and in silico prediction
of their pathogenicity using MutationTaster (http://www.mutationtaster.org accessed on
21 October 2021), Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/ accessed on 21
October 2021), SIFT and PROVEAN (http://provean.jcvi.org/ accessed on 21 October
2021). DHTKD1 variants were classified according to the guidelines of the American
College of Medical Genetics and Genomics and the Association for Molecular Pathology
(ACMG/AMP) [18].

In cohort 2, DHTKD1 variants were extracted from a WES dataset generated as previ-
ously described [17], although only DHTKD1 variants from patients without a pathogenic
variant in a known ALS gene were used in this study.

Nucleotide numbering of the identified variants reflects the nucleotide position in the
coding sequence of human DHTKD1 mRNA (NM_018706.6).

2.3. Metabolic Analysis of Urine and Plasma of DHTKD1 Variant Carrier VALS164

The 2-aminoadipate and 2-oxoadipate levels in urine and plasma of DHTKD1 vari-
ant carrier VALS164 were determined by the GCMS Laboratory, Heidelberg, Germany.
Urine analysis was performed as previously described [19,20] with some modifications.
A urine volume equivalent to 1 µmol creatinine was acidified with hydrochloric acid and
extracted twice with ethyl acetate. After removal of the solvent, the residue was deriva-
tized with N-methyl-N-trimethylsilylheptafluorobutyramide (Macherey-Nagel, Düren, Ger-
many). The resulting trimethylsilyl derivatives were analyzed using the single quadrupole
mass spectrometer DSQ II (Thermo Fisher Scientific) coupled to the gas chromatograph
TRACE GC (Thermo Fisher Scientific). The mass spectrometer was run in the full scan
mode (m/z 50 to m/z 650) with electron impact ionization. Gas chromatographic sep-
aration was achieved on a capillary column (DB-5MS, 30 m × 0.25 mm; film thickness:
0.25 µm; J&W Scientific, Folsom, CA, USA) using helium as a carrier gas. A volume of
1 µL of the derivatized sample was injected in splitless mode. GC temperature parameters
were 80 ◦C for 2 min, ramp 50 ◦C per minute to 150 ◦C, ramp 10 ◦C per minute to 300 ◦C.
Injector temperature was set to 260 ◦C and interface temperature to 260 ◦C. The specific
mass m/z 484 was used for quantification of 2-oxoadipate.

The 2-aminoadipate levels were determined in urine and plasma by the EZ:faast
amino acid GCMS analysis kit (Phenomenex, Torrance, CA, USA) with some modifications.

https://gnomad.broadinstitute.org
http://www.mutationtaster.org
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/
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Based on cation-exchange solid-phase extraction, 2-aminoadipate was measured as a
chloroformate derivative by gas chromatography mass spectrometry. The system consisted
of a gas chromatograph 7820A coupled to the mass spectrometer 5977 Inert MSD (Agilent
Technologies). The capillary column used was DB-5MS, 30 m × 0.25 mm; film thickness:
0.25 µm (J&W Scientific). The temperature programming of the gas chromatograph started
at an initial temperature of 60 ◦C and was increased to 290 ◦C at 7 ◦C/min. After a hold
time of 2 min, the temperature was further increased to 300 ◦C at 10 ◦C/min. Helium was
used as carrier gas in the constant pressure mode. The temperature of the MSD transfer
line was 290 ◦C. Inlet was operated using the splitless mode with a temperature of 280 ◦C.
Injection volume was 1 µL of the derivatized sample. Quantification ion for 2-aminoadipate
was mass m/z 244.

2.4. Histological Analysis of a Muscle Biopsy from DHTKD1 Variant Carrier VALS054

A muscle biopsy of patient VALS054 obtained for differential diagnostic purposes
during the initial workup was processed according to standard histological techniques.
Sections were stained with hematoxylin-eosin, nonspecific esterase, modified Gomori
trichrome and combined cytochrome c oxidase and succinate dehydrogenase (COX/SDH).

2.5. Statistical Analysis

Statistical analysis was done using MATLAB and Statistics Toolbox Release 2018b (The
MathWorks, Natick, MA, USA). Student’s t-test, Fisher’s exact test or Mann–Whitney U
test were used, as applicable; a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Genetic Analysis of Two Independent Cohorts of ALS Patients

To identify novel genes potentially associated with ALS, a pilot WES analysis was
performed on 27 genetically unsolved ALS patients of cohort 1. A candidate gene-based
strategy was applied prioritizing rare (MAF ≤ 0.5%), non-silent variants not present in
in-house controls and predicted to be deleterious in 694 genes associated with neurode-
generation, revealing the DHTKD1 gene as the only gene harboring such variants in
two patients (Supplementary Table S1). In one patient, a heterozygous nonsense variant,
DHTKD1:c.1246C>T p.(Gln416*), predicted to truncate the encoded protein within the first
dehydrogenase domain (E1_dh; Figure 1) was detected. Another patient was found to carry
a heterozygous missense variant, DHTKD1:c.1364G>A p.(Arg455Gln) (Figure 1, Table 1),
previously reported in patients with AMOXAD [10]. As two ALS patients carried rare
DHTKD1 variants in our pilot study and the identified aberrations were loss-of-function
and known pathogenic variants, we aimed to determine the frequency of rare DHTKD1
variants in all 225 patients of cohort 1. Whole-exome and targeted sequencing revealed
four additional DHTKD1 variants, i.e., c.209C>G p.(Ala70Gly), c.593T>C p.(Met198Thr),
c.628G>T p.(Ala210Ser), and c.2185G>A p.(Gly729Arg), in eight of 198 further ALS patients
(Table 1). Interestingly, the c.2185G>A p.(Gly729Arg) variant, previously described in
AMOXAD [9] and SMA [12], was detected in three patients, significantly more frequently
than in the gnomAD control data set (3/225 ALS patients of cohort 1 versus 154/59,472
controls; p = 0.022, two-sided Fisher’s exact test). In total, six different rare non-silent
DHTKD1 variants predicted to be deleterious were identified in 10 sporadic ALS cases
of 225 (4.4%) patients of cohort 1. All were confirmed to be heterozygous by Sanger se-
quencing (Figure 1A) and affected highly or moderately conserved amino acid residues
(Figure 1B).
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Figure 1. DHTKD1 variants identified in ALS patients of cohort 1 (A,B) and cohort 2 in this study,
and described in other disorders previously (C). (A) Electropherograms showing the six different
heterozygous rare (MAF ≤ 0.5%) DHTKD1 variants predicted to be deleterious by at least one in
silico prediction tool, i.e., MutationTaster, PolyPhen-2, SIFT, or PROVEAN, detected in leukocyte
DNA of 10 sporadic ALS patients of cohort 1 (affected nucleotides are highlighted by an arrow).
The c.209C>G p.(Ala70Gly) and c.628G>T p.(Ala210Ser) variants were detected twice, the c.2185G>A
p.(Gly729Arg) variant in three ALS patients. (B) DHTKD1 variants identified in ALS patients of cohort
1 affect highly or moderately conserved amino acids, according to Alamut Visual 2.15 (Interactive
Biosoftware, Rouen, France). (C) Schematic representation of rare DHTKD1 variants described in
ALS patients of this study, i.e., sporadic ALS patients of cohort 1 (red) and familial ALS patients
of cohort 2 (blue), and, previously, in the following other diseases: 2-aminoadipic and 2-oxoadipic
aciduria (AMOXAD) [9,10,22], Charcot-Marie-Tooth disease type 2Q (CMT2Q) [11,21,23,24], and
infantile-onset spinal muscular atrophy (SMA) [12]. The DHTKD1 protein contains three functional
domains according to the Pfam database (http://pfam.xfam.org/protein/Q96HY7 accessed on 21
October 2021): (1) dehydrogenase E1 component (E1_dh), (2) transketolase, pyrimidine binding
domain (Transket_Pyr), and (3) 2-oxoglutarate dehydrogenase, C-terminal (OxoGdeHyase_C).

http://pfam.xfam.org/protein/Q96HY7
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Table 1. Rare heterozygous non-silent DHTKD1 variants predicted to be deleterious identified in sporadic ALS patients of cohort 1 (n = 225 ALS patients).

Patient ID Chromosomal
Position a Exon Nucleotide

Change b

Amino
Acid

Change b

Reference
SNP

MAF
(gnomAD
Controls c)

Prediction
Previously

Reported in
ACMG/AMP

Criteria dMutation
Taster PolyPhen-2 SIFT PROVEAN

VALS054
VALS102 10:12123525 2 c.209C>G p.(Ala70Gly) rs34644609 0.003700 Disease

causing Benign Tolerated Neutral - Uncertain
significance

VALS046 10:12129604 4 c.593T>C p.(Met198Thr) - - Disease
causing

Probably
damaging Damaging Deleterious -

Uncertain
significance

(PM2_moderate;
PP3_supporting)

VALS095
MD086 10:12129639 4 c.628G>T p.(Ala210Ser) rs146741810 0.002554 Disease

causing Benign Tolerated Neutral -
Uncertain

significance
(BP4_supporting)

MD011 10:12136158 7 c.1246C>T p.(Gln416*) rs200722918 0.00004988 Disease
causing - - - -

Pathogenic
(PVS1_very

strong;
PM1_moderate;

PP3_supporting)

MD022 10:12139688 8 c.1364G>A p.(Arg455Gln) rs142068634 0.0001394 Disease
causing

Probably
damaging Damaging Deleterious AMOXAD e (AR)

Pathogenic
(PS1_strong;
PS3_strong;

PM1_moderate;
PP3_supporting)

MD025
VALS001
VALS164

10:12154929 13 c.2185G>A p.(Gly729Arg) rs117225135 0.001295 Disease
causing

Possibly
damaging Damaging Deleterious AMOXAD f (AR),

SMA g (AR)

Pathogenic
(PS1_strong;
PS3_strong;
PS4_strong;

PM1_moderate;
PP3_supporting)

Abbreviations: AMOXAD: 2-aminoadipic and 2-oxoadipic aciduria; AR: autosomal recessive; MAF: minor allele frequency; SNP: single nucleotide polymorphism; SMA: spinal muscular
atrophy. a According to GRCh37/hg19. b According to DHTKD1 transcript NM_018706.6 and DHTKD1 protein NP_061176.4. c Genome Aggregation Database v2.1.1 controls. d [18].
e [10]. f [9]. g [12].
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Table 2. Rare heterozygous non-silent DHTKD1 variants predicted to be deleterious identified in familial ALS patients of cohort 2 (n = 418 ALS families).

Patient
ID

Chromosomal
Position a Exon

Nucleotide
Change b

Amino
Acid

Change b

Reference
SNP

MAF
(gnomAD
Controls c)

Prediction
Previously

Reported in
ACMG/AMP Criteria d

Mutation
Taster PolyPhen-2 SIFT PROVEAN

C2-Pt1
C2-Pt2 10:12126716 3 c.488G>A p.(Arg163Gln) rs78189904 0.0006568 Disease

causing Benign Tolerated Neutral
Eosinophilic
esophagitis

(AD) e

Uncertain significance
(PS1_strong;

BP4_supporting)

C2-Pt3 10:12129565 4 c.554C>T p.(Ser185Leu) rs149544379 - Disease
causing Benign Damaging Neutral - Uncertain significance

C2-Pt4
C2-Pt5 10:12131114 5 c.847A>G p.(Met283Val) rs145337285 0.0004113 Disease

causing Benign Tolerated Deleterious - Uncertain significance
(PM1_moderate)

C2–Pt6 10:12131234 5 c.967G>A p.(Asp323Asn) rs529235889 0.00001832 Disease
causing

Possibly
damaging Damaging Deleterious -

Uncertain significance
(PM1_moderate;
PP3_supporting)

C2-Pt7 10:12133617 6 c.1093A>T p.(Asn365Tyr) rs747758630 0.00001828 Disease
causing

Probably
damaging Damaging Deleterious -

Uncertain significance
(PM1_moderate;
PP3_supporting)

C2-Pt8 10:12136221 7 c.1309G>T p.(Glu437*) rs138884194 0.00004988 Disease
causing - - -

CMT2Q f

(AD),
AMOXAD g

(AR)

Pathogenic
(PVS1_very strong;

PS1_strong;
PM1_moderate;

PP3_supporting)

C2-Pt9 10:12139688 8 c.1364G>A p.(Arg455Gln) rs142068634 0.0001394 Disease
causing

Probably
damaging Damaging Deleterious AMOXAD g

(AR)

Pathogenic
(PS1_strong;
PS3_strong;

PM1_moderate;
PP3_supporting)

C2-Pt10
C2-Pt11 10:12139866 8 c.1542G>T p.(Gln514His) - - Disease

causing Benign Damaging Deleterious - Uncertain significance
(PP3_supporting)

C2-Pt12 10:12150010 12 c.2150T>C p.(Leu717Pro) - - Disease
causing

Probably
damaging Damaging Deleterious -

Uncertain significance
(PM1_moderate;
PP3_supporting)

Abbreviations: AD: autosomal dominant; AMOXAD: 2-aminoadipic and 2-oxoadipic aciduria; AR: autosomal recessive; CMT2Q: Charcot-Marie-Tooth disease type 2Q; fALS: familial
ALS; MAF: minor allele frequency; SNP: single nucleotide polymorphism. a According to GRCh37/hg19. b According to DHTKD1 transcript NM_018706.6 and DHTKD1 protein
NP_061176.4. c Genome Aggregation Database v2.1.1 controls. d [18]. e [25]. f [21]. g [10].
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Next, we analyzed rare DHTKD1 variants and their frequency in familial ALS (co-
hort 2). In cohort 2, nine rare heterozygous DHTKD1 variants predicted to be deleterious
were found in 12 unrelated familial ALS patients of 418 (2.9%) ALS families (Table 2),
consisting of eight missense and one nonsense variant. The c.488G>A p.(Arg163Gln),
c.847A>G p.(Met283Val) and c.1542G>T p.(Gln514His) variants were detected in two pa-
tients each. Two of the variants, i.e., c.1542G>T p.(Gln514His) and c.2150T>C p.(Leu717Pro),
were not found in gnomAD database v2.1.1 controls. Five of the variants were located
within the first dehydrogenase domain (E1_dh) of the DHTKD1 protein, including the non-
sense variant, c.1309G>T p.(Glu437*), predicted to truncate the protein within this domain
(Figure 1C). The c.1309G>T p.(Glu437*) variant was previously described in AMOXAD [10]
and CMT2Q [21]. The c.1364G>A p.(Arg455Gln) missense variant, previously reported in
cases of AMOXAD [10], was identified in cohort 1 and cohort 2 (Figure 1C).

Of the 14 different DHTKD1 variants identified in both cohorts, eight were located in
the first dehydrogenase domain of the DHTKD1 protein. Notably, loss-of-function variants
located in the first dehydrogenase domain of DHTKD1 were significantly more frequent
in ALS patients of cohorts 1 and 2 than in gnomAD v2.1.1 controls (2/643 unrelated ALS
cases of cohorts 1 and 2 versus 25/51,060 controls; p = 0.0442, two-sided Fisher’s exact test).

3.2. Clinical Characteristics of Sporadic ALS Patients Carrying DHTKD1 Variants

Sporadic ALS patients with DHTKD1 variants of cohort 1 (n = 10) were available for
detailed clinical and electrophysiological phenotyping (Supplementary Table S3). DHTKD1
variant carriers were almost exclusively from Germany, had a median age of disease onset
of 71 years (range: 49–73 years), and the site of onset was mainly spinal (8/10) and less
frequently bulbar (2/10). The most frequent symptoms at disease onset were deterioration
of fine motor skills or weakness of the hand (6/10) followed by walking difficulties (2/10)
or speech difficulties (2/10).

In all sporadic ALS patients carrying DHTKD1 variants, EMG revealed disseminated
signs of acute and chronic denervation. NCS were available in 9/10 DHTKD1 variant
carriers, showing axonal and demyelinating motor neuropathy in 4/9 cases (VALS054,
VALS102, VALS095, VALS001), axonal motor neuropathy in 5/9 cases (VALS046, MD011,
MD022, VALS164, MD025), and additional sensory neuropathy in 4/9 cases (axonal and
demyelinating in VALS054 and VALS095, axonal in MD022 and MD025) with matching
clinical signs including pallhypaesthesia, hypaesthesia or reduced sharp/blunt differenti-
ation. Two further DHTKD1 variant carriers (MD011, VALS164) presented with sensory
impairment but normal sensory NCS. No possible underlying causes (e.g., diabetes, alcohol
abuse, or chemotherapy) were present in five of the six cases with sensory impairment,
whereas patient VALS054 was diagnosed with diabetes mellitus type II (Supplementary
Table S3).

To test for signs of AMOXAD in patient VALS164 showing heterozygosity for the
c.2185G>A p.(Gly729Arg) variant previously described in AMOXAD patients compound
heterozygous for this and another variant [9], the only carrier of an AMOXAD-associated
variant from cohort 1 who was still alive, urine and plasma samples of patient VALS164
were subjected to metabolic analysis of 2-aminoadipate and 2-oxoadipate levels. The urine
concentration of 2-aminoadipate was close to the upper reference limit, while 2-oxoadipate
was hardly detectable in patient VALS164 (Table 3).

Table 3. Metabolite levels in sporadic ALS patient VALS164 carrying the DHTKD1:c.2185G>A
p.(Gly729Arg) variant.

Metabolite Urine (mmol/mol Creatinine) Plasma (µmol/L)

2-aminoadipate 5.5 (upper limit: 8) 1.9 (upper limit: 6)

2-oxoadipate 0.2 (upper limit: 25) Not detectable
Metabolite levels and upper limits were determined by the GCMS Laboratory, Heidelberg, Germany.
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Patient VALS054 was initially diagnosed with PMA, and a muscle biopsy of the
left biceps brachii was obtained for the differential diagnosis of myopathy/myositis.
Neuropathological evaluation revealed a distinctive pattern of neurogenic damage in-
cluding grouped atrophy, single muscle fiber atrophy, and single muscle fiber necrosis
upon hematoxylin-eosin, nonspecific esterase, and modified Gomori trichrome staining.
In mitochondrial-targeted staining, combined COX/SDH staining displayed reduced or
absent COX activity in single muscle fibers (Figure 2).
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Figure 2. Muscle biopsy of ALS patient VALS054 of cohort 1 diagnosed with the PMA subtype carry-
ing the DHTKD1:c.209C>G p.(Ala70Gly) variant. Muscle sections were stained using (A) hematoxylin-
eosin, (B) nonspecific esterase, (C) modified Gomori trichrome, and (D) combined cytochrome c
oxidase and succinate dehydrogenase (COX/SDH). Histopathological analysis revealed a distinctive
pattern of neurogenic damage including groups of atrophic muscle fibers (GrA), single atrophic mus-
cle fibers (unfilled arrows), and scattered muscle fiber necrosis (filled arrows). In the COX/SDH stain,
up to six fibers per cross section were COX negative (blue fibers denoted by asterisks), suggesting
mitochondrial dysfunction.

In direct comparison of DHTKD1 variant carriers to non-carriers in cohort 1, no
significant differences in demographic or individual clinical parameters were identified
(Table 4). However, when grouping the ALS subtypes PMA and LMN-dominant ALS
together, DHTKD1 variant carriers more frequently belonged to this grouped subtype with
lower motor neuron involvement (2/10, 20% versus 8/215, 3.72% in non-carriers, p = 0.066,
two-sided Fisher’s exact test), although the difference was not statistically significant.
Additionally, there was a trend towards a higher ALSFRS-R progression rate indicating
faster disease progression in DHTKD1 variant carriers compared to non-variant carriers
(median ALSFRS-R progression rate/month: 1.17 versus 0.55; p = 0.068, Mann–Whitney U
test). Furthermore, patients carrying a DHTKD1 variant more frequently showed severe
axonal damage (mean compound motor action potential < 1 mV in median nerve) at initial
diagnosis compared to non-variant carriers (3/9, 33.3% versus 14/150, 9.3%; p = 0.057,
two-sided Fisher’s exact test), although not quite statistically significant.
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Table 4. Clinical and electrophysiological characteristics of ALS patients from cohort 1 comparing
DHTKD1 variant carriers and non-carriers.

Characteristics

DHTKD1
Variant Carriers

Number (%), Mean ± SD
or Median (Range)

DHTKD1
Non-Variant Carriers

Number (%), Mean ± SD
or Median (Range)

p-Value *

Number of Patients
with Available Data

(Carriers/
Non-Carriers)

Sex

Male 6 (60) 127 (59.1) 1.0 10/215

Age at onset (years) 71 (49–73) 63 (25–84) 0.272 10/212

Disease duration (years) a 2.50 (1.58–9.08) 2.42 (0.25–19.25) 0.992 10/212

Site of onset

Bulbar 2 (20) 62 (28.8) 0.729 10/215

Spinal 8 (80) 153 (71.2) 0.729 10/215

ALS subtype

Classic (Charcot’s) ALS 6 (60) 143 (66.5) 0.737 10/215

Bulbar 2 (20) 31 (14.4) 0.644 10/215

UMN 0 (0) 3 (1.40) 1.0 10/215

Flail arm 0 (0) 24 (11.16) 0.605 10/215

Flail leg 0 (0) 4 (1.86) 1.0 10/215

Respiratory 0 (0) 2 (0.93) 1.0 10/215

PMA 1 (10) 3 (1.40) 0.167 10/215

LMN 1 (10) 5 (2.33) 0.241 10/215

Grouped PMA and LMN 2 (20) 8 (3.72) 0.066 10/215

Disease progression

Time to wheelchair (years) 1.58 (0.92–8.42) 1.92 (0.25–16.0) 0.911 7/108

Time to NIV (years) 1.04 ± 0.21 2.46 ± 1.45 0.130 2/37

Time to PEG (years) 1.17 (1.17–1.42) 1.83 (0.25–7.58) 0.160 3/51

Weight loss (kg/month) 0.53 (1.67–0) 0.25 (6.33–0) 0.532 10/208

ALSFRS-R progression
rate/month b 1.17 (2.17–0.24) 0.55 (7.0–0.04) 0.068 9/188

Nerve conduction study

CMAP in median nerve (mV) c 3.28 ± 2.74 4.44 ± 2.73 0.22 9/150

Severe axonal damage (mean
CMAP <1mV in median nerve) 3 (33.3) 14 (9.3) 0.057 9/150

Sensory neuropathy (NCS
and/or clinical) 6 (60) 85 (39.5) 0.332 10/215

Abbreviations: ALS: amyotrophic lateral sclerosis; ALSFRS-R: revised amyotrophic lateral sclerosis functional
rating scale; CMAP: compound muscle action potential; LMN: lower motor neuron; NCS: nerve conduction
study; NIV: non-invasive ventilation; PEG: percutaneous endoscopic gastrostomy; PMA: progressive muscular
atrophy; SD: standard deviation; UMN: upper motor neuron. * Significant difference at p < 0.05. Comparisons
between DHTKD1 variant carriers and non-variant carriers were made using the two tailed Fisher’s exact test for
dichotomous variables, Mann–Whitney U test or Student’s t-test for continuous variables. a Until last follow-up
(VALS054, VALS164), total invasive ventilation (MD086) or death (MD011, MD022, MD025, VALS001, VALS046,
VALS095, and VALS102) b ALSFRS-R progression rate/month: high numbers indicate fast progression, c CMAP
in-house standard for median nerve > 7 mV.

4. Discussion

Since ALS is known for its heterogeneous genetic architecture [26], we aimed at
identifying additional genetic factors that may contribute to or modify the phenotype of
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ALS patients. DHTKD1 was identified as an interesting candidate gene by WES and a
candidate-based approach using a list of genes associated with neurodegeneration (n = 694
genes) in a pilot study of ALS patients of cohort 1. Altogether, in cohort 1, 4.4% of cases,
i.e., 10 sporadic ALS patients, and in cohort 2, 2.9% of families, i.e., 12 familial ALS patients,
were found to carry rare heterozygous DHTKD1 variants. Collectively, the analysis of both
ALS cohorts (n = 643 unrelated cases) yielded the identification of 14 different rare DHTKD1
variants in ALS.

DHTKD1 is a nuclear gene encoding dehydrogenase E1 and transketolase domain
containing 1, a protein involved in the final degradative pathway of L-lysine that is critical
for mitochondrial metabolism [9,27]. Accordingly, the diminished DHTKD1 expression
in vitro resulted in mitochondrial dysfunction and increased production of reactive oxygen
species [11,25,28]. There is evidence that the alteration of mitochondrial function occurs
early and contributes to the pathogenesis of neurodegenerative diseases including ALS
and other neuromuscular disorders [29,30]. Consistently, a number of genetic aberrations
causing ALS, FTD, and CMT sensorimotor axonal neuropathy were shown to compromise
mitochondrial function, e.g., the GGGGCC repeat expansion in C9orf72 [31], VCP (valosin
containing protein) mutations [32], CHCHD10 (coiled-coil-helix-coiled-coil-helix domain
containing 10) mutations [33,34], and DYNC1H1 (dynein cytoplasmic 1 heavy chain 1)
mutations [35,36]. Based on these findings, it is conceivable that rare DHTKD1 variants
that affect mitochondrial metabolism may increase ALS risk and be contributors to the
ALS phenotype.

Of the 14 different rare DHTKD1 variants identified here in 643 unrelated ALS cases,
all were predicted to be deleterious according to at least one of four prediction tools, four
variants were pathogenic according to the ACMG guidelines [18], eight variants were
located in the E1_dh dehydrogenase domain of the DHTKD1 protein, two of which were
loss-of-function variants predicted to truncate this important functional domain, and seven
variants were detected more than once, providing in silico evidence for the pathogenicity of
most of the DHTKD1 variants described here. Four DHTKD1 variants detected in our ALS
cohorts were previously described in patients with disorders affecting the nervous system,
that is autosomal recessive AMOXAD, a metabolic condition characterized by elevated
2-aminoadipate and 2-oxoadipate levels in urine and/or plasma and varying neurological
symptoms [9,10], autosomal recessive infantile-onset SMA with cognitive delay [12] and
autosomal dominant CMT disease type 2Q (CMT2Q) [21], two neuromuscular disorders, as
well as in patients with autosomal dominant eosinophilic esophagitis, sometimes accompa-
nied by muscle weakness [25]. Functional in vitro analyses were previously performed on
two of the DHTKD1 variants identified here and support their pathogenicity. Leandro et al.
reported that mutant DHTKD1 harboring the c.1364G>A p.(Arg455Gln) variant was less
soluble and enzymatically inactive [37]. Similarly, DHTKD1 containing the c.2185G>A
p.(Gly729Arg) variant displayed decreased catalytic efficiency for NADH production when
assembled into the 2-oxoadipate dehydrogenase complex (OADHc), of which DHTKD1 is
a component [38]. Conversely, recent in vitro data suggest that deficient DHTKD1 activ-
ity may be partially compensated by oxoglutarate dehydrogenase (OGDH) [39], arguing
against a very severe effect of DHTKD1 variants.

In vivo evidence for variant pathogenicity in our study came from a metabolite anal-
ysis in ALS patient VALS164 carrying the DHTKD1:c.2185G>A p.(Gly729Arg) variant,
an AMOXAD disease-causing mutation [9]. Urine levels of 2-aminoadipate, elevated in
AMOXAD patients with biallelic DHTKD1 mutations [9,10,22], were close to the upper
reference limit in patient VALS164, although carrying a heterozygous DHTKD1 variant only.
A muscle biopsy performed in ALS patient VALS054 diagnosed with the PMA subtype
and carrying the DHTKD1:c.209C>G p.(Ala70Gly) variant showed the expected pattern of
neurogenic atrophy. Additionally, reduced or missing COX activity was observed in single
muscle fibers reflecting heterogeneously distributed mitochondrial dysfunction, potentially
related to the ALS phenotype [40,41] and the identified genotype. However, partial COX
deficiency may also be associated with other processes, such as ageing. Taken together,
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epidemiological, in silico, in vitro, and in vivo evidence support a pathogenic effect of 12
of the 14 rare DHTKD1 variants identified here.

Nonsense variants located in the E1_dh dehydrogenase domain of DHTKD1 were
significantly more prevalent in ALS patients of cohorts 1 and 2 of this study compared to
controls. Such nonsense variants are predicted to result in a truncated DHTKD1 protein
devoid of intact functional domains (Figure 1C). One of these variants, DHTKD1:c.1309G>T
p.(Glu437*), was previously described in a patient with CMT2, a hereditary motor and
sensory axonal neuropathy [21]. A different DHTKD1 nonsense variant in the same domain,
c.1455T>G (p.Tyr485*), was reported in a Chinese pedigree with CMT2 and symmetric
muscle wasting, predominant weakness of the distal parts of the lower limbs, decreased
or absent deep tendon reflexes, and mild to moderate deep sensory impairment [11].
These data suggest a genetic link between ALS and CMT2, and a phenotypic overlap may
be expected in patients harboring variants in the same gene. Consistently, the majority
(6/10, 60%) of ALS patients of cohort 1 carrying DHTKD1 variants suffered from sensory
impairment and/or sensorimotor neuropathy, which is normally not a part of the strictly
motor neuron phenotype of ALS, whereby an age-dependent effect cannot be excluded in
our patients. Moreover, DHTKD1 variant carriers of ALS cohort 1 were more likely to have
predominant LMN involvement than non-variant carriers. Our findings are in line with
the fact that a DHTKD1 variant detected in three ALS patients of cohort 1 was previously
described in infantile-onset SMA, another motor neuron disorder characterized by muscular
atrophy and weakness due to LMN degeneration, whereby the variant was heterozygous
in late-onset ALS and homozygous in infantile-onset SMA [12]. Dhtkd1-deficient mice
are characterized by progressive weakness and atrophy in the distal limbs with motor
and sensory dysfunction aggravated by age, accompanied by decreased nerve conduction
velocity [42]. Similarly, nerve conduction studies showed more severe axonal damage in
ALS patients with rare DHTKD1 variants compared to non-variant carriers, although these
results only reached borderline significance. Taken together, our data provide evidence
that rare DHTKD1 variants may modify the ALS phenotype and, possibly, contribute to
ALS risk.

In our study, DHTKD1 variants were identified in both sporadic and familial ALS
cases. This is in line with recent literature questioning the utility of distinguishing between
familial and sporadic ALS for clinical or even genetic counseling purposes. Pathogenic vari-
ants in ALS-related genes have not only been detected in familial but also in apparently
sporadic ALS, and, as in familial ALS, the ALS risk is increased in relatives of apparently
sporadic ALS patients [3]. Despite the observed similarities of DHTKD1 variant carriers
here, their phenotype does show some heterogeneity. This may be explained by addi-
tional genetic and environmental factors in our ALS patients carrying DHTKD1 variants.
Oligogenic inheritance, environmental and lifestyle factors, e.g., smoking and extensive
physical exercise, as well as age are discussed to play a role in ALS pathogenesis [26,43,44].

5. Conclusions

Considering that (i) DHTKD1 variants and diminished DHTKD1 expression result-
ing in reduced enzymatic activity can affect mitochondrial function [9,11,25,28], which is
known to be involved in ALS pathogenesis [29,30], (ii) a sensorimotor axonal neuropathy,
i.e., CMT2, and a motor neuron disease, i.e., SMA, have been associated with DHTKD1
variants [11,12,21], (iii) variants in CMT-associated genes have been identified in ALS
patients and vice versa in earlier reports, e.g., CHCHD10 [33,34], DYNC1H1 [36,45], or
VCP [46,47], and (iv) this study reports rare heterozygous DHTKD1 variants in two inde-
pendent ALS cohorts in 4.4% of cases or 2.9% of families, respectively, with data supporting
the pathogenicity of most identified variants, and describes similarities in the ALS pheno-
type of some DHTKD1 variant carriers, we propose that DHTKD1 variants may contribute
to and modify the ALS phenotype.
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