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Abstract

The various sub-species of Salmonella enterica cause a range of disease in human hosts.

The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and

invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal sero-

vars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoi-

dal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal

tract and cause systemic bloodstream infections with increased morbidity and mortality. To

investigate this evolution in pathogenesis, we compared the genomes of African iNTS iso-

lates with other Salmonella enterica serovar Typhimurium and identified several macA and

macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC

and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregu-

lated during macrophage infection and after antimicrobial peptide exposure, with macAB

transcription being supported by the PhoP/Q two-component system. Constitutive expres-

sion of macAB improves survival of Salmonella in the presence of the antimicrobial peptide

C18G. Furthermore, these macAB variants affect replication in macrophages and influence

fitness during colonization of the murine gastrointestinal tract. Importantly, the infection out-

come resulting from these macAB variants depends upon both the Salmonella Typhimurium

genetic background and the host gene Nramp1, an important determinant of innate resis-

tance to intracellular bacterial infection. The variations we have identified in the MacAB-

TolC efflux pump in African iNTS may reflect evolution within human host populations that

are compromised in their ability to clear intracellular Salmonella infections.
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Author summary

Salmonella Typhimurium will generally cause acute gut infections in humans. However,

S. Typhimurium strains causing severe, systemic infections have emerged in sub-Saharan

Africa and are phylogenetically distinct from other S. Typhimurium strains. Our compar-

ative genomic analysis revealed S. Typhimurium sequence-type 313 (ST313) from Africa

have notable sequence variations within the macA and macB genes. These genes are

already known to play a role in Salmonella pathogenesis and are otherwise conserved in

Salmonella and many other Gram-negative bacteria. We show that regulation of macAB
transcription depends, in part, on the key Salmonella virulence system PhoP/Q and that

expression of MacAB improves Salmonella resistance to an antimicrobial peptide. African

macAB variants interfere with this antimicrobial peptide resistance function and can alter

Salmonella replication within macrophages. Using competitive infection experiments in

mice, we see that these macAB variants influence fitness in the mammalian gut and sys-

temic sites, with African S. Typhimurium reliant upon its macAB genotype for systemic

infection of susceptible hosts. These results suggest that the evolution of African S. Typhi-

murium has been shaped by human populations with impaired ability to control intracel-

lular Salmonella infections.

Introduction

Salmonella infections continue to be a significant challenge for human health. With an esti-

mated 95 million annual cases, non-typhoidal Salmonella (NTS) infection is typically charac-

terized by severe but self-resolving gastroenteritis in otherwise healthy people [1–3]. Typhoid

and paratyphoid fever cases number more than 14 million annually and are characterized by

invasive, bloodstream infection by Salmonella serovars Typhi and Paratyphi, respectively [4].

Risk for typhoid disease remains high in geographic areas with inadequate sanitation infra-

structure as the infectious cycle relies on human-to-human transmission. While some humans

can become asymptomatic chronic carriers, untreated typhoid fever is often fatal [3]. With

appropriate treatment, the 1% case mortality of typhoid fever is similar to that of gastroenteri-

tis associated with NTS [2,4,5].

Invasive non-typhoidal Salmonella (iNTS) isolates belonging to the serovars Typhimurium

and Enteritidis have caused major disease outbreaks within sub-Saharan Africa [6–9]. These

African iNTS isolates are associated with systemic infections, and particularly high case mor-

tality in children less than 5 years of age, the elderly, and those with comorbidities such as HIV

and malaria [6,10]. Although typhoid infections outnumber iNTS infections by over 25-fold

globally, iNTS caused nearly half as many deaths with overall mortality rates above 14% [5]. In

Africa, iNTS was responsible for 49,600 deaths in 2017 [5]. There is great need to further

understand iNTS pathogenesis and epidemiology in order to improve diagnosis and clinical

outcomes for these increasingly antibiotic resistant infections [11–13].

By multi-locus sequence typing, many Salmonella enterica serovar Typhimurium (S. Typhi-

murium) gastrointestinal isolates are classified as sequence-type 19 (“ST19”), while African S.

Typhimurium associated with invasive disease belong mainly to sequence-type 313 (“ST313”)

[7,9]. ST313 isolates have also been observed in the UK and Brazil, though African ST313 form

a distinct lineage [14–16]. Comparative genomic analysis has identified numerous changes in

African ST313 lineages. While they have acquired unique prophages, plasmids, and antibiotic

resistance genes, African ST313 also display gene degradation events that impair the ability of

these isolates to survive outside of mammalian hosts [13,17–23]. Further gene degradation
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events have been shown to alter invasive and immune stimulating behavior in experimental

animal models, supporting the view that African iNTS strains are evolving from causing

strictly enteropathogenic disease to causing invasive disease in human hosts [15,24–26].

In our comparative analysis of S. Typhimurium ST313 lineage isolates with other Salmo-
nella genomes we observed specific changes at the macAB locus in ST313 lineages. In Gram-

negative bacteria, MacAB forms a tripartite channel with the outer membrane protein TolC to

efflux various antimicrobial compounds as well as endogenous molecules and toxins [27–31].

As an ABC-type efflux pump, hydrolysis of cytoplasmic ATP by MacB directly drives move-

ment of MacA and TolC to translocate molecules from the periplasm into the extracellular

space [32,33]. The naming of macA and macB (previously annotated as ybjY and ybjZ) refer-

ences their ability to confer resistance to macrolide antibiotics when overexpressed together

from a plasmid [34], though in standard laboratory culture conditions macAB is not expressed

in Salmonella [35,36]. In clinical isolates of other bacteria, increased expression of macAB
homologues increases resistance to antimicrobial peptides such as polymyxins [37]. The fact

that MacAB has a virulence role in animal models of oral Salmonella infection [35,38]

prompted us to explore how African ST313-associated macAB gene variants might influence

pathogenesis.

Results

Lineage-specific variation of the macAB locus in invasive African S.

Typhimurium ST313 isolates

Comparative analysis of all currently available genomes of ST313 isolates of Salmonella enterica
serovar Typhimurium identified several genomic changes at the macAB locus that differed from

other gastroenteritis-associated S. Typhimurium (Fig 1A). Although some UK and Brazilian

ST313 isolates carry an indel in the macA gene, this variant is not present in African isolates

from ST313 lineages (1, 2) or sublineages (2.1, 2.2) that are associated with invasive disease (Fig

1A). Instead, all other ST313 lineage isolates in our analysis carry a C➝T non-synonymous

SNP within macA (Fig 1A), which replaces Serine (S174) with Leucine (L174) (Fig 1B and 1C).

Alignment of this sub-region of MacA shows that the Serine residue is highly conserved

amongst other Gram-negative bacterial genera (Fig 1D). The structure of the Escherichia coli (E.

coli) MacAB-TolC complex has been solved [33]; assuming an analogous overall structure in S.

Typhimurium, the hydrophilic Serine174 residue faces the channel interior, residing beyond the

proposed gating ring and in series with other hydrophilic residues that form the interior surface

of the MacA channel [33] (Fig 1E). We hypothesized that the ST313-associated mutation of this

conserved Serine residue to the hydrophobic amino acid Leucine altered the function of the

MacAB-TolC channel, particularly since this mutation would be repeated around the interior of

the fully-assembled hexameric MacA channel (Fig 1E, right).

S. Typhimurium ST313 lineage 1 isolates contain a nonsense mutation in macB [19] chang-

ing the codon for W262 of MacB to a stop codon; this change lies within the amphipathic helix

that precedes the first transmembrane domain [32], leading to the production of a truncated

MacB (Fig 1F) [32]. Furthermore, a two-nucleotide insertion (an indel) that results in a frame-

shift in the macB gene was found in about half of the S. Typhimurium ST313 lineage 2 isolates,

including the reference strain D23580. This pseudogenization event created a stop codon that

truncates the MacB protein (Fig 1F). This truncation interrupts the N-terminal ATP-binding

domain and prevents translation of the transmembrane domains that extend from the cyto-

plasm into the periplasmic space (Fig 1F); assuming an analogous structure to E. coli MacB,

the truncated MacB protein in ST313 Lineage 2 is predicted to be unable to interact with

MacA in the context of the MacAB-TolC efflux pump [32].
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Fig 1. Variation at the macAB locus in African S. Typhimurium ST313. (A) Phylogeny emphasizing all available ST313

isolates from Africa, the UK, and Brazil, with sequence type and lineage membership indicated by first vertical colored bar.

Salmonella Typhi CT18 was used as an outgroup for tree construction. Presence of macAB variants are shown by
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The recently described African S. Typhimurium ST313 sublineage 2.1 [13] retains the

macAC➝T SNP associated with other ST313 while also having an A➝G SNP in the 5’ untrans-

lated region (5’-UTR) of macA (Fig 1B). Sublineage 2.1 and 2.2 isolates do not carry the macB
mutations associated with lineage 1 or 2 isolates (Fig 1A).

The presence of multiple variations at the macAB locus of African ST313 suggested reduc-

tive or adaptive evolution has occurred [25]. We focused on characterizing macAB variants

found in the most recently isolated African S. Typhimurium ST313 lineages 2 and sublineage

2.1 that are associated with invasive disease (Fig 1C). For clarity, these mutations are desig-

nated: macAC➝T for the non-synonymous SNP shared across all ST313 lineages; macBindel for

the SNP present in ST313 lineage 2 that introduces multiple stop codons due to a frameshift

and truncates the MacB protein; and 5’-UTRmacA
Lin2.1 for the A➝G SNP within the 5’-UTR of

macA of ST313 sublineage 2.1 isolates. We use macAST19 and macBST19 to refer to the alleles

that are carried by S. Typhimurium ST19.

Expression of macAB is promoted by PhoP in Salmonella Typhimurium

The macAB (ybjY-ybjZ) genes are operonic with the transcriptional start site (TSS) located 504

nucleotides upstream of the translational start of the macA gene [36]. This is a particularly

long 5’-UTR, and regions of this type have previously been shown to play important regulatory

roles in Salmonella [42,43].

Since previous studies suggested that macAB is important for S. Typhimurium viru-

lence [35,38], we wanted to clarify how expression of this locus is regulated. In Salmonella
the two-component system PhoP/Q senses low magnesium, acidic pH, and antimicrobial

peptide disturbance of the inner membrane. PhoP up-regulates a set of genes that increase

cellular resistance to antimicrobial peptides and promote survival in macrophages [44–

48]. Previously, PhoP was shown to physically bind to a PhoP-box upstream of the macA
coding sequence, with the authors concluding that PhoP represses macAB transcription

[35].

We previously published the RNA-seq-based transcriptomic profiles of S. Typhimurium

ST19 strain 4/74 during growth in multiple in vitro conditions and during intramacrophage

replication [36,49]. The major pathogenicity locus SPI-2 is important for survival of Salmo-
nella in mammalian phagocytic cells, and expression of SPI-2 genes can be induced by

defined media that mimic some conditions of the vacuolar environment (InSPI2). Our pub-

lished data show that S. Typhimurium 4/74 increases transcription of macA and macB in

low magnesium InSPI2 medium, consistent with a role for stimuli sensed by PhoP/Q in pro-

moting macAB expression (Fig 2A). More recently, we published the transcriptomic profiles

of the macAB genes of S. Typhimurium ST313 strain D23580 using the same environmental

conditions, including intra-macrophage replication [18], summarized at https://tinyurl.

corresponding colored bars. Representative isolates of each lineage are highlighted in red. (B) The macAB genomic locus with

SNP locations and their effects on MacA and MacB proteins. The proximal upstream region of the macA start codon

indicating the PhoP-box characterized by Nishino et al [35] and the 5’-UTRmacA
Lin2.1 SNP identified by Van Puyvelde et al [13]

(B, bottom). 5’-UTR = 5’ untranslated region. TSSmacAB = macAB transcription start site, 504 bases upstream of macA start

codon. RBS = ribosome binding site. (C) macAB genomic locus highlighting variant combinations that pertain to each lineage.

(D) Alignment showing conservation of the amino acid sequence surrounding the S174 residue of MacA with the ST313 S174L

mutation boxed in red. (E) Overlay of 4/74 MacA predicted structure onto E. coli MacAB-TolC (PDB 5NIK), with residues

colored blue and tan for hydrophilic and hydrophobic side chains, respectively. S174 highlighted in magenta (E, left and middle

top) and L174 in yellow (E, middle bottom). S174 highlighted in all chains of the MacA hexamer, with the putative channel

gating ring [33] in boxed outline (E, right). (F) E. coli MacB domain architecture from [32] (E, top) with macBW262Stop and

macBindel truncations of MacB (E, bottom). Overlay of truncated MacB structure (orange) onto E. coli MacB (blue) (F, inset).

4/74 MacA prediction by Phyre2 [39]. Structural diagrams generated with CCP4 [40] using the operation superpose [41].

https://doi.org/10.1371/journal.ppat.1008763.g001
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Fig 2. macAB is a PhoP-regulated gene in Salmonella Typhimurium. (A) Gene expression in InSPI2 media in response to

environmental stimuli, fold-change relative to InSPI2 medium alone. (B) S. Typhimurium intramacrophage gene expression

measured from RAW264.7 macrophages after 8 hours of infection, fold-change relative to expression in LB at early stationary

phase. Panels A and B show RNA-seq data extracted from the SalComD23580, SalComMac, and SalComRegulon databases

reported previously [18,36,49]. (C) ST19 4/74 and 4/74 phoP null mutants (phoP::Tn10) with chromosomally integrated lacZY
transcriptional fusions for either phoN and macAB were grown to mid-exponential phase in N minimal medium, pH 7.4 and high

(10mM) MgCl2 before transfer to the same or low (10μM) MgCl2 media and growth for 90 minutes. β-galactosidase production

was measured by a kinetic Miller assay. (D) At mid-exponential phase, transcriptional fusion strains were shifted from pH 7.4 and

10mM MgCl2 to media buffered to the indicated pH with high (10mM) or low (10μM) MgCl2 and grown for 90 minutes. (E)

Transcriptional fusion strains at mid-exponential phase were exposed to the antimicrobial peptide C18G (5μg/mL) in N minimal

medium at pH 7.4 with 1mM MgCl2 and grown for 90 minutes. Data are from three repeat experiments. ANOVA with Tukey

post-test (C, D), or t-test (E); bar = mean; error = standard deviation.

https://doi.org/10.1371/journal.ppat.1008763.g002
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com/macAB-SalCom474-D23. In data sets from both ST19 isolate 4/74 and ST313 lineage 2

isolate D23580, the macAB transcript is upregulated during replication in RAW264.7 mac-

rophage-like cells, compared to early stationary phase (ESP) growth in LB medium (Fig 2B).

Furthermore, we previously observed that deletion of phoPQ reduced macAB transcription

by about half in InSPI2 medium [50].

To examine macAB transcriptional regulation more closely, we created chromosomal

lacZY transcriptional fusions in S. Typhimurium ST19 isolate 4/74 driven by the endoge-

nous phoN or macAB promoters. We grew these reporter strains overnight in defined N

minimal medium at pH 7.4 with high (10mM) magnesium, a condition that represses PhoP

activity [51]. After subculture and growth to mid-exponential phase, we shifted cells to low

(10μM) magnesium medium, a treatment that up-regulates expression of the PhoP-regu-

lated gene phoN [52]. We found that β-galactosidase levels increased for both phoN::lacZY
(positive control) as well as macAB::lacZY when cells were shifted to low magnesium

medium (Fig 2C). Furthermore, the up-regulation of these genes was impaired when phoP
null mutants were shifted to low magnesium medium (Fig 2C). In addition, when cells with

the phoN and macAB transcriptional fusions were shifted to increasingly acidic conditions

(from pH 5.8 to pH 4.9), levels of β-galactosidase activity were significantly increased (Fig

2D), in agreement with previous reports that acidic pH stimulates expression of PhoP/Q-

dependent genes [53,54].

Cationic antimicrobial peptides induce expression of PhoP-regulated genes [52] and play

bacteriostatic and bactericidal roles during Salmonella infection of macrophages [55]. To test

whether macAB gene expression is upregulated by antimicrobial peptides, we grew the phoN
and macAB transcriptional fusion strains in moderate (1mM) magnesium followed by treat-

ment with a sub-inhibitory concentration of the salt-insensitive, cationic antimicrobial peptide

C18G [52]. Exposure to C18G induced higher β-galactosidase activity in the phoN and macAB
transcriptional fusion strains (Fig 2E). These experiments collectively show that macAB tran-

scription is facilitated by PhoP under biologically relevant conditions.

African S. Typhimurium ST313 macAB variants influence replication in

macrophages

We next wanted to determine if the genetic changes in the macAB locus of the ST313 lineages

commonly associated with invasive disease in Africa had functional consequences during

infection. We focused our experiments on lineage 2 and sublineage 2.1 macAB variants, rea-

soning that the lineage 1 macBSTOP would have effects that are similar to the lineage 2 macBin-

del. Furthermore, ST313 lineage 1 isolates are no longer causing a clinical problem in Africa

[12]. To ensure otherwise native regulation of the macAB genes, we introduced marker-less

nucleotide changes directly into the macAB locus of the ST19 isolate 4/74 or the ST313 lineage

2 isolate D23580. The 4/74 macAC➝T mutant was made to test the impact of this SNP alone,

the 4/74 macAC➝T macBindel mutant to represent the lineage 2 macAB genotype, and the 4/74

5’-UTRmacA
Lin2.1 macAC➝T mutant to represent the lineage 2.1 macAB genotype (Fig 1C). We

additionally made a 4/74 5’-UTRmacA
Lin2.1 mutant to test whether this SNP alone affects

pathogenesis.

Similarly, we modified D23580 to test the role of individual macAB SNPs in modulating vir-

ulence. The ST313 lineage 2 macBindel was first removed, yielding D23580 macAC➝T macBST19.

This was followed by alteration of the macAC➝T SNP, creating a D23580 strain with the full

ST19 genotype (D23580 macAST19macBST19). We confirmed that our engineered strains car-

ried the desired nucleotide modifications, with no unintended mutations elsewhere in the

chromosome, by whole genome sequencing (see S2 Table and Materials and Methods).
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Previous studies have shown that S. Typhimurium ST19 strains 14028S and SL1344 with

deletions of macAB replicate poorly within mouse macrophages [38,56]. We infected the

murine RAW264.7 macrophage cell line with a range of our marker-less macAB mutants to

assess Salmonella intracellular replication. As expected, we found that ST19 4/74 phoP and

macAB null mutants showed significantly reduced replication in macrophages compared to

parental 4/74 (Fig 3A). Replication of the 4/74 macAC➝T mutant was significantly lower than

the parental 4/74 and similar to replication of the macAB null mutant (Fig 3A) showing this

ST313-associated SNP likely impairs MacAB-TolC functionality during intramacrophage rep-

lication. The 4/74 macAC➝T macBindel mutant (ST313 lineage 2 genotype) also showed lower

replication than parental 4/74 (Fig 3A). Interestingly, the 5’-UTRmacA
Lin2.1 SNP alone signifi-

cantly reduced replication of 4/74, while the 4/74 5’-UTRmacA
Lin2.1 macAC➝T mutant with the

full ST313 sublineage 2.1 genotype replicated at a level similar to the macAB null mutant (Fig

3A).

Fig 3. S. Typhimurium ST313 macAB variants impede ST19 4/74 replication in RAW macrophages. RAW264.7 cells were

infected at an MOI of 10 with bacteria from overnight stationary phase cultures. Replication was assessed by plating bacteria at

the indicated timepoints with fold-replication calculated relative to CFU/well at t = 0 as described in Materials and Methods. (A)

S. Typhimurium ST19 4/74 with derived mutants, and (B) ST313 lineage 2 isolate D23580 with derived mutants. Two-way

ANOVA (time, strain) with Dunnett’s post-test comparing each mutant to the parent strain; bar = geometric mean; error

bars = geometric standard deviation. �� = p< 0.01, ��� = p< 0.001, ���� = p< 0.0001.

https://doi.org/10.1371/journal.ppat.1008763.g003
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We also assessed replication of S. Typhimurium D23580, the reference ST313 lineage 2

African isolate, in murine RAW264.7 macrophages. D23580 replicated extensively in RAW

cells to a higher level than 4/74 (Fig 3A and 3B), as previously reported [17]. We made

marker-less point mutations in D23580 to change the macAC➝T and macBindel SNPs to the

respective ST19 alleles. The D23580 macAC➝TmacBST19 and D23580 macAST19macBST19

mutants showed no change in fold-replication in this experimental setting when compared to

the parent D23580 (Fig 3B).

Taken together, these results show the macAB-associated SNPs of S. Typhimurium ST313

lineages do have phenotypic consequences in macrophage replication, though the replication

effect may be epistatic. The ST19 strain 4/74 shows reduced levels of intra-macrophage replica-

tion when macAB is modified to the various ST313 genotypes, suggesting that these SNP muta-

tions impair MacAB-TolC function. In contrast, an African ST313 lineage 2 isolate maintains

its level of intra-macrophage replication irrespective of macAB genotype. This implies that

D23580 has a macAB-independent mechanism for its enhanced replication phenotype in

RAW macrophage-like cells.

ST19 macAB provides resistance to the cationic antimicrobial peptide

C18G

Previous studies have shown that MacAB homologues can contribute to increased resis-

tance to antimicrobial peptides in other bacteria [32]. In E. coli, the TolC-dependent secre-

tion of the helical, amphiphilic peptide enterotoxin II is facilitated by MacAB, but not by

other TolC-interacting partners [57]. Additionally, another ABC-type efflux pump

(MtrCDE) improves Neisseria resistance to both macrolide antibiotics and antimicrobial

peptides [58]. Since we showed macAB expression in S. Typhimurium is regulated by the

PhoP/Q system that is important for antimicrobial peptide resistance, we hypothesized that

MacAB of Salmonella would also support replication in the presence of amphiphilic cationic

antimicrobial peptides.

We took a reductive approach to quantify the impact of macAB genotype on antimicrobial

peptide resistance. We reasoned that the contribution of MacAB to antimicrobial peptide

resistance could be obscured in vitro by the profound PhoP-induced membrane modifications

that dramatically slow antimicrobial peptide interactions with the cell envelope [59]. Further-

more, the constitutively expressed AcrAB-TolC pump effluxes a wide variety of compounds

and can mask the contributions of other efflux pumps like MacAB during in vitro tests of anti-

biotic resistance [34,60]. Thus, we compared the contributions of MacAB variants to Salmo-
nella growth in the presence of the antimicrobial peptide C18G using 4/74 phoP acrAB macAB
null mutants harboring low-copy plasmids constitutively expressing macAST19macBST19 (the

ST19 genotype), macAC➝TmacBST19 (the ST313 macA SNP alone), or macAC➝TmacBindel (the

ST313 lineage 2 genotype). We found that the macAST19macBST19 plasmid facilitates growth of

the 4/74 phoP acrAB macAB null mutant in minimal medium in the presence of 2μg/mL C18G

(Fig 4A), while cells expressing macAC➝TmacBST19, macAC➝TmacBindel, or carrying empty

plasmids show much longer lag times (Fig 4A). With a subinhibitory level of C18G treatment

(1μg/mL), all strains grew equally well, indicating the differences in lag time are not due to tox-

icity from expression of MacAB variants (Fig 4B). Comparison of lag times (Fig 4, inset table)

suggests that the macAC!T SNP impairs resistance to C18G while the macBindel further dis-

ables the MacAB-TolC channel. These data demonstrate that the ST19 macAB genotype assists

growth in the presence of inhibitory concentrations of C18G and can do so independently of

other PhoP-induced genes.
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MacAB contributes to the ability of the S. Typhimurium ST19 isolate 4/74

to outcompete the iNTS ST313 isolate D23580 in the gut

Previous work has shown that MacAB promotes survival of Salmonella in the mouse gut after

oral infection of C57BL/6 mice [38]. In addition, gut colonization is known to induce tran-

scription of PhoP/Q regulated genes in Salmonella [61]. We thus hypothesized that the macAB
mutations acquired by African S. Typhimurium ST313 isolates may impact fitness in the gut.

To test this, we pretreated C57BL/6J mice with streptomycin and orally infected the next day

with an equal mixture of 4/74 and the ST313 lineage 2 isolate D23580. We measured cecum

and colon CFUs at day 2 after infection to calculate a competitive index (CI) and found that

the ST19 strain 4/74 outcompeted D23580 by ~20-fold (Fig 5A). To test whether macAB con-

tributed to this fitness difference, we competed macAB null mutants of 4/74 and D23580. The

relative fitness of D23580 in gut tissues improved by approximately 5-fold when both isolates

lacked macAB (Fig 5A), indicating that the ability of 4/74 to outcompete D23580 in the gut

was partly macAB-dependent. To test whether the ST19 macAB genotype modulated D23580

fitness in the gut, we competed unmodified 4/74 with the D23580 macAST19macBST19 mutant.

We found that altering macAB locus SNPs to the macAST19macBST19 genotype in D23580

improved its relative fitness in the cecum, colon, and feces when in competition with 4/74 (Fig

5B). These data show that the lower fitness of lineage 2 isolate D23580 in the mouse gut is

partly due to its macAB genotype.

For S. Typhimurium, the type-3 secretion systems (T3SS) encoded by the SPI-1 and SPI-2

pathogenicity islands are important for inducing colitis during gut infection [62,63]. Previous

work has shown S. Typhimurium ST313 isolates from Africa induce less host inflammation

due to lower SPI-1-mediated invasion activity and reduced levels of flagellin expression when

compared to ST19 strains [19,26,64]. Since macAB was shown to play a role in the streptomy-

cin pre-treatment model of colitis [38], we suspected that 4/74 could be using SPI-1 and/or

Fig 4. S. Typhimurium ST19 macAB provides superior resistance to the antimicrobial peptide C18G. 4/74 phoP acrAB macAB null mutants with

low-copy pACYC177 plasmids constitutively-expressing macAB variants (pJH14-17, see S3 Table) were grown in N minimal medium, pH 7.4 and

1mM MgCl2. Overnight stationary phase cells were washed and normalized to OD600 = 1 before 1:200 final dilution into fresh N minimal medium

with 2μg/mL C18G (A) or 1μg/mL C18G (B). OD600 was monitored over time using a BioTek Synergy HTX plate reader. Growth curves presented

here are from one experimental run and representative of three independent experiments. Plotted data points are the geometric mean of

quadruplicate or triplicate microplate wells. Lag time (inset table) was determined as time to reach OD600 = 0.15.

https://doi.org/10.1371/journal.ppat.1008763.g004
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SPI-2-induced inflammation in the gut to outcompete D23580. Accordingly, we competed 4/74

and D23580 strains that lacked T3SS-1 (orgA null mutants) or T3SS-1/T3SS-2 (orgA ssaV null

mutants). The competitive advantage of 4/74 over D23580 was not dependent upon the pres-

ence of T3SS-1 or T3SS-1/2 to induce gut inflammation (Fig 5C). However, there was a signifi-

cant ~2.9-fold improvement in relative fitness of D23580 orgA ssaV macAB null versus 4/74

orgA ssaV macAB null mutants in the cecum compared to their orgAssaV null mutants with

unmodified macAB (Fig 5D). These data demonstrate that macAB can influence relative fitness

of D23580 versus 4/74 in the gut in the absence of T3SS-1/T3SS-2 induced inflammation.

Host genetics shape the utility of macAB genotypes for D23580 systemic

infection

Since we saw no impact of the ST19 macAB genotype on D23580 replication in RAW264.7

cells, we predicted that ST313 macAB-associated SNPs might be dispensable or otherwise have

Fig 5. macAB influences fitness of S. Typhimurium D23580 in competition with 4/74 after oral infection. C57BL/6J mice

(Nramp1-/-) were orally gavaged with streptomycin one day prior to oral infection with 5x107 CFU each of a mixture of 4/74 and

D23580 in PBS. Tissues were isolated for CFU determination and calculation of competitive index at day 2 after infection. (A)

Competitive index of unmodified D23580 (“+”) versus unmodified 4/74 (“+”) compared to the competitive index of D23580 macAB
null (“–”) versus 4/74 macAB null (“–”). (B) Competitive index values of 4/74 versus D23580, or 4/74 versus D23580

macAST19macBST19. Two-way repeated measures ANOVA on log-transformed data with Sidak’s post-test within organ, p-values as

indicated in (A, B). (C) Competitive index of D23580 versus 4/74 and their T3SS-1 (orgA null) or T3SS-1/2 (orgA ssaV null)

mutants. Two-way repeated measures ANOVA on log-transformed data with no significant differences in (C). (D) Competitive

index of D23580 versus 4/74 T3SS-1/T3SS-2 mutants (orgA ssaV null) compared to competition of T3SS-1/2 mutants with full

deletions of macAB (orgA ssaV macAB null) in each isolate. t-test on log-transformed data from the cecum in (D). Dots are

competitive index values for individual mice with lines plotted at the geometric mean. See S1 Fig for CFU/g values.

https://doi.org/10.1371/journal.ppat.1008763.g005
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no impact on the ability of D23580 to spread to systemic tissues. To exclude the contributions

of known differences between ST19 and African ST313 in their inflammatory and disseminat-

ing behaviors in vivo [19,24,26,64], we competed D23580 with isogenic D23580 macAB
mutants. To calculate a competitive index, we created a marked D23580 strain by placing a

kanamycin resistance cassette at an intergenic site on the D23580 chromosome (see Materials

and Methods) that was chosen for its low transcriptional activity when assessed by RNA-seq

under a variety of growth conditions. After oral infection of C57BL/6J mice with the marked

D23580-KanR strain and the parent D23580, we observed a competitive index of 1 in the gut

and systemic sites, showing that the intergenic kanamycin marker insertion did not affect fit-

ness in this model (Fig 6A). We found that the D23580 strain modified to the macAST19-

macBST19 genotype was outcompeted more than 4-fold by the isogenic D23580-KanR strain in

systemic sites (liver and spleen), while showing no difference in the cecum (Fig 6A). This

implies the macAC➝TmacBindel genotype provides an advantage to D23580 during systemic

infection.

One important hypothesis regarding the emergence of African iNTS lineages is that the

immune status of certain human populations in sub-Saharan Africa provides a permissive

niche for systemic S. Typhimurium infection, thus uniquely shaping Salmonella evolution

[15,65–67]. In our infection experiments with RAW264.7 macrophages (BALB/c origin) and

C57BL/6J mice, the host gene Nramp1 is not functional. BALB/c and C57BL/6J mice have a

Glycine to Aspartic Acid (G169D) mutation in Nramp1 (i.e. a genotype of Nramp1D169/D169)

which inactivates Nramp1 to yield a more permissive environment for Salmonella replication

within macrophages [68]. Nramp1 dramatically restricts intracellular bacterial infection at sys-

temic sites through the removal of magnesium and other divalent cations from the vacuolar

environment [68–72]. However, Nramp1 has further influence on the host immune response.

For example, Nramp1+/+ mice have more rapid innate responses than isogenic Nramp1-/-

mice, with higher levels of interferon γ (IFN-γ) and increased influx of neutrophils during the

streptomycin pretreatment model of Salmonella-induced colitis [73] and in the dextran

sodium sulfate (DSS)-induced colitis model [74]. Furthermore, Nramp1+/+ dendritic cells pro-

duce more inflammatory cytokines than Nramp1-/- dendritic cells during Salmonella infection

[75], an important route for the early, rapid dissemination of D23580 into the mesenteric

lymph nodes [24]. These published data suggest that, in addition to the role of Nramp1 in con-

trol of intramacrophage replication of Salmonella, many relevant parameters of the immune

response differ between Nramp1-/- and Nramp1+/+ mice, especially in the amount of IFN-γ
produced [76]. Furthermore, IFN-γ, in conjunction with other stimuli, induces maximal upre-

gulation of Nramp1 transcription [9]. Thus, Nramp1 genotype has pleiotropic effects on the

course of Salmonella infection. Given our results in a mouse background with defective

Nramp1 (Fig 6A), we thus sought to test the effects of D23580 macAB genotypes during infec-

tion in mice with a more robust immune response.

We performed competitive oral infections after streptomycin pretreatment in resistant

Nramp1G169/G169 C57BL/6J mice (hereafter, Nramp1+/+ mice). When we competed

D23580-KanR with either the parent D23580 or D23580 macAST19macBST19 in Nramp1+/+

mice, systemic loads in liver and spleen at day 3 were equivalent, regardless of macAB geno-

type (Fig 6B). However, in this Nramp1+/+ host environment the macAST19macBST19 geno-

type did confer a fitness advantage to D23580 in the cecum (Fig 6B). This fitness advantage

for the macAST19macBST19 genotype on the D23580 background is analogous to our obser-

vations in gut tissues when competing D23580 with 4/74 in C57BL/6J mice that are

Nramp1-/- (Fig 5B).

Overall, our murine infection and competition experiments show that S. Typhimurium

ST313-associated macAB SNPs and indels influence Salmonella fitness depending, in part, on
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the host Nramp1 genotype. During gut infection, the ST19 macAB genotype provides a fitness

benefit to D23580 in competition with an ST19 isolate in permissive Nramp1-/- mice (Fig 5).

We also show that the impact of the ST313 lineage 2 macAB genotype upon systemic coloniza-

tion by D23580 is Nramp1-dependent (Fig 6A).

Fig 6. Host Nramp1 genotype alters the utility of the D23580 macAB genotype during systemic infection. Isogenic

competition of a kanamycin-marked D23580 with parent D23580 or D23580 macAST19macBST19 in (A) Nramp1-/- C57BL/6J

mice or (B) Nramp1+/+ C57BL/6J mice, day 3 post oral infection after streptomycin pre-treatment. Two-way ANOVA with

repeated measures on log-transformed data using Sidak’s post-test within organ, p values as indicated. Dots are competitive

index values for individual mice with lines plotted at the geometric mean. See S2 Fig for CFU/g values.

https://doi.org/10.1371/journal.ppat.1008763.g006
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Discussion

We have provided new insights into the function of the MacAB-TolC channel in Salmonella
Typhimurium pathogenesis by exploring the consequences of variations in the 5’-UTR and

coding sequence of macAB that are found within ST313 lineages associated with invasive dis-

ease in Africa. We show that macAB expression is influenced by PhoP and that the ST19

macAB genotype improves functional resistance to the antimicrobial peptide C18G. ST313-as-

sociated variations in macAB genotype can affect antimicrobial peptide resistance as well as

replication in a permissive macrophage-like cell line. In mice, the ST313-associated macAB
gene variants contribute to the lower relative fitness of ST313 lineage 2 isolate D23580 in com-

petition with the ST19 strain 4/74 in inflamed and uninflamed settings in the gut.

Previously, macAB mutants of S. Typhimurium were reported to show impaired oxidative

stress resistance [38]. However, S. Typhimurium macAB null mutants of 4/74 did not show

survival defects after peroxide treatment when compared to the parent strain (S3A Fig). Fur-

thermore, sub-lethal concentrations of hydrogen peroxide did not induce transcription of

macAB after short-term in vitro exposure (Fig 2A) or in time course assays with the 4/74

macAB::lacZY transcriptional reporter strain (S3B Fig). Poly-specificity allows efflux pumps to

take on various functional roles since net cellular resistance to toxic compounds results from

redundancies in efflux pumps and dynamic properties of the outer membrane [77]. Given the

poly-specificity of efflux channels like MacAB-TolC, it is likely that, in addition to antimicro-

bial peptides, some bacterially-generated molecules are exported to directly quench reactive

oxygen species (ROS), as proposed by Bogomolnaya and colleagues [38,78]. However, this oxi-

dative stress resistance function of MacAB may depend upon experimental conditions and the

bacterial genetic background.

We thus do not exclude a direct role for macAB in oxidative stress resistance in Salmonella
but propose that an additional function is to counteract the effects of antimicrobial peptides

encountered in both the gut and systemic sites. Indeed, bacterial responses to oxidative stress and

antimicrobial peptide exposure are tightly linked by the PhoP/Q two-component regulatory sys-

tem [79,80]. Antimicrobial peptide exposure induces transcription of genes in the RpoS regulon

that assist bacterial adaptation to oxidative stress [81,82]. We have shown that macAB variants

confer distinct levels of antimicrobial peptide resistance independently from other PhoP-medi-

ated effects. Notably, on its own the macAC➝T SNP which leads to the S174L mutation in MacA

reduces the utility of MacAB in resistance to C18G (Fig 4). The role played by the PhoP/Q system

in upregulating transcription of macAB is consistent with the MacAB-TolC channel of Salmo-
nella countering antimicrobial peptide exposure, either through direct efflux or by assisting trans-

location of other bacterial factors important to cope with antimicrobial peptide stress.

Although one publication suggested PhoP repressed macAB transcription in Salmonella
after low magnesium treatment [35], other published data suggest that macAB is positively reg-

ulated by PhoP. We have previously noted that phoPQ null mutants have lower expression of

macAB when grown in InSPI2 medium [50], while others have seen that S. Typhi production

of MacA protein under low magnesium conditions is PhoP-dependent [83]. Furthermore,

macAB is important for S. Typhimurium replication in macrophages [38,56], a niche where

PhoP/Q signaling is active and important for Salmonella survival [55,61]. In addition to the

different Salmonella isolates used across studies, our results suggesting PhoP promotes macAB
transcription may arise from differences in experimental conditions, the importance of regula-

tory kinetics such as PhoP turnover [38], changes in ribosomal RNA levels in response to low

magnesium [84], or coordinated activity with other transcriptional regulators [59]. We con-

clude that PhoP-inducing signals generally serve to maximize macAB transcription in

Salmonella.
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The macAB locus contains additional regulatory complexity that requires further investiga-

tion. While we show that the 5’-UTRmacA
Lin2.1 SNP is sufficient to impair replication of 4/74 in

macrophages (Fig 3A), the mutation did not affect the level of macAB transcription in low

magnesium medium (S4 Fig). The mapped transcriptional start site (TSS) of macA is 504

nucleotides upstream of the start codon and is located within the divergently-transcribed gene

ybjX (also known as somA) (see Fig 1B and https://tinyurl.com/macAB-Jbrowse). Long 5’-

UTRs have been shown to have trans-acting regulatory roles in expression of virulence genes

in both S. Typhimurium [43,85] and S. Typhi [42]. Such 5’-UTR elements can post-transcrip-

tionally regulate gene expression through formation of RNA secondary structures that control

interactions with small regulatory RNAs, or by directly influencing transcript stability [86].

The 5’-UTRmacA
Lin2.1 SNP in particular is near the ribosome binding site of the macA tran-

script which could impact translation initiation (see Fig 1B). We observed that expression of

MacAB from a high-copy plasmid (pUC19) or a plasmid with an arabinose-inducible pro-

moter is toxic to cells, a lethality phenomenon reported by others [29]. Additionally, MacA

exhibits high binding affinity for TolC in vitro, suggesting it may outcompete other TolC-

interacting efflux pumps whenever MacAB is expressed [87]. Taken together, these observa-

tions support the conclusion that the tight transcriptional regulation of macAB functions to

provide utility without compromising other cellular functions.

We have not demonstrated the direct structural consequences for the MacAB-TolC channel

that result from the macAB SNPs present in ST313 isolates. Such changes might include

assembly kinetics of the MacA hexamer, stability or mechanical function of the tripartite com-

plex, or perhaps altered association with other important constituents of the Gram-negative

cell envelope [37]. The E. coli MacA protein can bind tightly to rough LPS via residues on the

N-terminus with affinity that is higher than that of polymyxin B, prompting the suggestion

that rough LPS may be a cargo of the channel [29]. Given that PhoP is required for maximal

macAB transcription and that MacAB-mediated resistance to C18G did not require other

PhoP-regulated genes (Fig 2B and 2C), we speculate that rough LPS-binding by MacA is a

structural feature important for its antimicrobial peptide resistance function. While the ST313

macAC➝T SNP resulting in the S174L mutation impairs MacAB-mediated resistance to C18G,

it is possible this SNP variant improves efflux of other substrates not tested here and thus

might serve a direct role in the pathogenic adaptation of African iNTS. Further structural

investigation of the Salmonella MacAB-TolC channel will provide new insights into the role of

this important efflux pump in Salmonella physiology and host-pathogen interactions.

It is not immediately clear why S. Typhimurium ST313-associated macAB gene variants

lead to different infection outcomes depending on strain background; however, some possibil-

ities may be proposed based on current knowledge. In the case of D23580 and other ST313

lineage 2 isolates, the mutation responsible for the marked increase in expression of the PhoP-

regulated protease PgtE [88] could sufficiently compensate for antimicrobial peptide resistance

otherwise provided by the ST19 macAB genotype. In this case, the ATP-dependent MacAB--

TolC channel might siphon energy or even directly interfere with other genes or behaviors

unique to the D23580 strain background. Such loss-of-function mutations that favor the activ-

ity of other pathogenesis mechanisms have been noted in Salmonella evolution. For Salmonella
Typhi, a stop codon that interrupts fepE prevents very-long O-antigen production [89], which

in turn permits the horizontally-acquired Vi capsule to have maximal immune evasive effects

during systemic infection [90]. Finally, it has been shown that point mutations in the highly

expressed AcrAB-TolC efflux pump can alter expression of a variety of Salmonella pathogenic

genes indirectly without affecting expression of other efflux pumps [91]. Further research will

be required to identify other Salmonella genes that might interact with the macAB genotype to

influence pathogenesis.
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In single infections, S. Typhimurium D23580 and other ST313 isolates readily colonize the

intestinal tracts of a variety of animals including primates, rodents, and chickens [23,24,92–

94]. A recent study of competitive fitness in the streptomycin-pretreatment model of mouse

colitis showed that D23580 can outcompete the ST19 isolate IR715, a strain that is derived

from the common laboratory reference isolate 14028S [23], further confirming the ability of

ST313 to infect multiple animal species. We show that differences in macAB genotype are

partly responsible for a relative fitness defect of D23580 during competition with the ST19 iso-

late 4/74 in the inflamed and uninflamed gut (Fig 5A, 5B and 5E). Several factors could con-

tribute to these differences in competitive fitness of D23580 versus certain ST19 strains. Both

D23580 and IR715 do not express sopE, a SopEF prophage-encoded virulence factor delivered

by the T3SS of SPI-1 [19,26]. In contrast, sopE is present in 4/74 and the closely-related ST19

isolate SL1344 [95]. sopE is known to drive substantial cecal inflammation in the streptomycin

pretreatment model of colitis [96]. Further, the ST19 strains SL1344 and 4/74 contain the

pCol1b plasmid and can produce colicin Ib, potentially helping Salmonella outcompete other

Enterobacteriaceae in the inflamed gut [97]. We found that ST19-associated macAB gene vari-

ants increase fitness of D23580 in scenarios with robust gut inflammation, such as in competi-

tion with a S. Typhimurium ST19 isolate that has sopE [96] and in mice with Nramp1
functionality [73]. However, when D23580 infects a more permissive host, such as Nramp1-/-

C57BL/6J mice, its ST313 lineage 2 macAB variant is advantageous for systemic infection (Fig

6B). Thus, D23580 shows a degree of specialization for systemic infection that depends upon

both its macAB genotype and parameters of the host innate immune response. Our experi-

ments reinforce the value of testing Salmonella isolates in various host genotypes to identify

potentially important host-pathogen gene interactions.

Although no studies have specifically linked NRAMP1/SLC11A1 polymorphisms to the sus-

ceptibility of humans to invasive Salmonella, several NRAMP1 polymorphisms found within

West African populations are strongly linked to susceptibility to intracellular infection with Myco-
bacterium tuberculosis [98,99]. We note that numerous parameters in mammalian hosts that are

related to susceptibility to invasive Salmonella disease are also compromised in Nramp1-deficient

mice, as summarized below. For example, macaques that were previously infected with simian

immunodeficiency virus have diminished IL-17 production that reduces the influx of neutrophils

into the gut, thus compromising control of Salmonella dissemination from the gut [100]; simi-

larly, neutrophil influx into the gut during Salmonella colitis is delayed in Nramp1-/- mice [73].

Nramp1 also regulates the oxidative burst capacity of phagocytes [101]. A reduced oxidative burst

response is observed in Gambian children recovering from malaria infection [102] and is likely a

consequence of malaria-induced hemolysis as revealed by experiments in mice [65].

In humans, STAT4 variants have been linked to increased risk for invasive Salmonella infec-

tion. Specifically, a genome-wide-association study identified a STAT4 polymorphism in chil-

dren in Kenya and Malawi which correlated with reduced IFN-γ responses of ex vivo stimulated

immune cells [103]. The importance of IFN-γ to control of Salmonella infection at both acute

and chronic stages has been clearly demonstrated [104], and upregulation of NRAMP1 in mac-

rophages is part of the response to IFN-γ [105]. Malaria, malnutrition, and HIV can compro-

mise innate resistance to intracellular bacterial infection through a wide variety of mechanisms,

including alterations in macrophage responsiveness to IFN-γ [106]. Based on outcomes of our

competitive infections using Nramp1-/- and Nramp1+/+ mice, we speculate that the S. Typhi-

murium ST313-associated macAB gene variants represent adaptive evolution for systemic infec-

tion when restriction of Salmonella dissemination is compromised in the host.

Oral infection of mice with Salmonella Typhimurium after streptomycin pretreatment

causes substantial inflammation and colitis, which depends on the function of SPI1 and

SPI2-encoded type three secretion systems [107]. Although D23580 exhibits less T3SS-1
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mediated invasion in vitro and in animal infections [19,26], we found that D23580 was out-

competed by 4/74 in the mouse gut whether or not both isolates lacked T3SS-1 or T3SS-1/2,

and this fitness defect was partly macAB-dependent (Fig 5D and 5E). Although all of these

experimental models vary in degree and type of inflammation, they share a diverse and

dynamic set of host- and microbe-generated antimicrobial peptides. We suggest that MacAB

contributes to Salmonella pathogenesis by countering antimicrobial peptide stress as part of

the bacterial response orchestrated by the PhoP/Q two-component system.

The S. Typhimurium ST313-associated macAB variants we have characterized suggest a

pattern of evolutionary convergence toward a degraded function of the MacAB-TolC efflux

pump. While MacAB remains functional amongst S. Typhimurium lineages associated with

gastroenteritis, we conclude that inactivation of the MacAB system within African ST313 line-

ages represents a unique adaptation that may facilitate systemic infection of permissive hosts.

Materials and methods

Vertebrate animal ethics statement

All animal experiments were approved by the Stanford University Administrative Panel on

Laboratory Animal Care (APLAC) with oversight by the Institutional Animal Care and Use

Committee (IACUC) under local Protocol ID 12826. Animals were housed at specified-patho-

gen free (SPF) level in University facilities accredited by the Association of Assessment and

Accreditation of Laboratory Animal Care (AAALAC) International.

Phylogenetic tree construction and macAB status visualization

The sources of all the genomic data files used are listed in S1 Table. The assembled genomes of

18 S. Typhimurium strains, including the ST19 representative strain 4/74 [108] and ST313 rep-

resentative strain D23580 [9], were obtained from GenBank, while the raw sequencing data of

267 S. Typhimurium ST313 strains derived from previous publications [12,13,15,16,109] were

downloaded from SRA (https://www.ncbi.nlm.nih.gov/sra/) and EMBL-EBI (https://www.ebi.

ac.uk/) databases. To root the phylogenetic tree, the genome of Salmonella Typhi CT18 was

downloaded from GenBank and used as the outgroup.

SNIPPY v4.4.0 [110] was used to map the sequencing data against 4/74, call the SNPs, con-

struct pseudo-genomes, and make a genome alignment. SNIPPY used Freebayes [111] as the

variant caller, the default parameter of minimal coverage was 10, and the minimal fraction was

0. For the assemblies from GenBank, SNIPPY used contigs as the input. Recombinant regions

were detected and removed from the alignment using Gubbins v2.4.1 [112]. RAxML-NG

v0.9.0 [113] was used to build a phylogenetic tree, with substitution model GRT+G. The phylo-

genetic tree was visualized on iTol [114] (https://itol.embl.de/). Based on the phylogeny and

prior publications, the ST313 strains were classified into UK ST313 [15], Brazil ST313 [16],

lineage 1 [12], lineage 2 [12], lineage 2.1 [13], and lineage 2.2 [109].

The macA 5’-UTR, macA, and macB sequences of strain 4/74 were used to generate BLAST

databases with BLAST 2.9.0+ [115]. Raw reads of all the strains were assembled using Unicy-

cler v0.4.8 [116]. The quality of assembly was checked by Quast v5.0.2 [117]. The N50 value of

all assemblies was >20kb, and the number of contigs was <600. The genome assemblies were

queried against the databases using the BLASTn algorithm.

Bacterial strains, plasmids, primers and growth conditions

See S2 Table for bacterial strains used in this study. Where applicable, P22 HT105/1 int-201
phage was used to move marked mutations from previously-generated S. Typhimurium
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mutants into the 4/74 strain according to standard protocols. Salmonella were routinely grown

in LB Lennox (10g/L tryptone, 5g/L yeast extract, 5g/L NaCl) for cloning manipulations or in

LB Miller (10g/L NaCl) for infection assays with the following antibiotic concentrations: strep-

tomycin, 200μg/mL; chloramphenicol, 25μg/mL; tetracycline, 15μg/mL; kanamycin, 40μg/mL;

and gentamicin, 25μg/mL (GoldBio).

See S3 Table for plasmids and S4 Table for primers used in this study.

InSPI2 and intramacrophage RNA-seq data

RNA-seq transcript per million (TPM) values were extracted from previously published

SalCom datasets [18,36,49] and used to calculate fold-change expression values presented in

Fig 2.

Lambda (λ) red recombination for marked mutants

Marked mutants were made based on the λ red procedure [118] using the temperature sensi-

tive pSIM5-Tet plasmid that contains a temperature shock inducible promoter driving recom-

binase expression [20]. Briefly, primers with 40bp homology targeting the flanking regions of

gene to be deleted were used to amplify the FRT-flanked kanamycin cassette from pKD4. 4/74

or D23580 / pSIM5-Tet cells were grown with streptomycin and tetracycline at 30˚C overnight

in LB Lennox before subculturing 1:100 into fresh mediumand growing to an OD of 0.4. The

culture was then incubated at 42˚C shaking for 15 minutes before placing on ice make cells

competent for electroporation. Cells were washed with chilled double-distilled water, followed

by electroporation of 800ng of purified PCR product. Cells were recovered in SOC for 1.5

hours shaking at 30˚C before pelleting and plating on LB kanamycin plates. After overnight

growth at 37˚C, individual colonies were struck across fresh plates to purify single colonies,

followed by colony PCR to confirm correct insertion of the kanamycin cassette. For 4/74,

marked mutants were moved into a clean 4/74 strain background using P22 HT105/1 int-201
phage, and the correct insertion was confirmed by PCR.

For construction of D23580-KanR we amplified the kanamycin resistance cassette from

pKD4 using primers del_23_F and del_23_R for insertion by λ red recombination as described

above. These primers target the KanR cassette to the intergenic region between

STMMW_41451 and STMMW_41461 between coordinates 4441510 and 4441511 in D23580

(GenBank: FN424405.1). This region is part of the remnant prophage Def4 [20] and not tran-

scribed in RNA-seq datasets in variety of in vitro conditions [18]. Correct insertion of the

KanR cassette was confirmed by primers Fw_STM4196-7_ext and Rv_STM4196-7_ext.

D23580-KanR was confirmed to be cured of temperature sensitive pSIM5-Tet after growth at

37˚C by testing isolated colonies for tetracycline sensitivity.

Construction of lacZY reporter strains

Chromosomal β-galactosidase (lacZY) transcriptional fusions were made using the method of

Ellermeier and colleagues [119]. 4/74 marked mutants with FRT-flanked kanamycin cassettes

derived from pKD4 were electroporated with 200ng pCP20, recovered for 1 hour in SOC at

30˚C before plating dilutions on LB streptomycin chloramphenicol plates, followed by growth

at 30˚C overnight. Colonies were re-struck to purify for single clones, then patched onto LB

kanamycin and LB streptomycin chloramphenicol plates to confirm loss of kanamycin by

FLP-recombinase activity. Two kanamycin sensitive colonies were picked and grown in LB

Lennox at 30˚C, followed by electroporation with 200ng pCE36 plasmid purified from the Sal-
monella pir+ strain JS198/pCE36 [119]. Cells were recovered in SOC at 37˚C and plated on LB
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kanamycin to select for pCE36 integration. Purified colonies were screened by PCR using P1

and Lac primers for integration of pCE36 into the FRT site [119].

Scarless mutant generation

In order to study the influence of these nucleotide changes on Salmonella pathogenesis without

otherwise altering macAB regulation or introducing other changes in the genome, we used

scarless mutagenesis to make nucleotide changes in the genome of a given Salmonella isolate.

We used the suicide plasmid pEMG system described by Martı́nez-Garcı́a and de Lorenzo

[120] and as applied to Salmonella Typhimurium by Owen and colleagues [20]. Genomic

DNA from 4/74 or D23580 was used as template for Phusion (ThermoFisher) PCR of 1600bp

flanking the polymorphism to be transferred. For marker-less deletions, 800bp flanking each

side of the region to be deleted were amplified to generate two PCR products. Primers were

designed to include ~20nt overhangs to permit Gibson Assembly of a single 1600bp fragment

(for marker-less nucleotide changes) or the two 800bp flanking regions (for marker-less dele-

tions) into pEMG that was previously digested with XbaI and KpnI-HF (New England Biolabs,

NEB). Purified PCR product (Qiagen) and digested pEMG backbone were assembled with the

DNA HiFi Assembly MasterMix (NEB). The 5’-UTRmacA
Lin2.1 SNP was incorporated into

pEMG::macAST19 or pEMG::macAC➝T by PCR using primer pairs 1309,1310 and 1311,1312;

the two PCR products were assembled with HiFi DNA Assembly MasterMix with pEMG pre-

viously digested with XbaI and KpnI-HF. A given pEMG::X plasmid was mobilized from E.

coli S17-1 λpir into recipient Salmonella by conjugation, followed by selection for transconju-

gants on M9 minimal agar plates formulated with 0.2% glucose, 1mM MgSO4, and 40μg/mL

kanamycin. Merodiploid transconjugants were resolved by electroporation of pSW-2 as previ-

ously described [20], followed by colony PCR and standard Sanger sequencing of PCR product

to identify clones with the intended point mutations. Confirmed mutants were cured of unsta-

ble pSW-2 by several passages in LB before patch plating to confirm loss of pSW-2 by gentami-

cin sensitivity.

To confirm that key strains contained the intended engineered nucleotide(s) and no unin-

tended mutations in other parts of the genome, the four strains 4/74 macAC➝T, 4/74 macAC➝T-

macBindel, D23580 macAC➝TmacBST19 and D23580 macAST19macBST19 were genome-

sequenced using Illumina paired-end sequencing (SNPsaurus, Oregon) as indicated in S2 Table

and aligned to reference genomes (NCBI) using CLC Genomics Workbench (Qiagen).

Plasmid construction

The macAB sequence was amplified from genomic DNA templates with Phusion polymerase

(ThermoFisher) using primers 1223 and 1224. The PCR product and pBAD33.1 (Addgene

#36267) were digested with NdeI and HindIII-HF (New England Biolabs, NEB) followed by T4

ligation and transformation into NEB 10beta competent cells. The cassette inclusive of the T7

ribosome binding site, macAB, and the two transcriptional terminators was amplified with Phu-

sion polymerase using primers 1272 and 1273 from pBAD33.1-macAB templates. The PCR

products and destination pACYC177 were digested with ScaI and PstI, purified using the PCR

purification kit (Qiagen), and ligated with T4 polymerase before transformation into NEB

10beta competent cells, selecting on kanamycin. The promoter for the AmpR gene thus drives

expression of the macAB gene inserted at the ScaI site within the AmpR sequence of pACYC177.

Stimulation conditions for PhoP-regulated gene expression

The procedures here are based on methods described by Bader and colleagues [52]. For low-

magnesium treatment, cells were grown at 37˚C overnight in N minimal medium with
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100mM Tris-HCl pH 7.4, 0.2% deferrated Casamino acids (Chelex treated), 0.2% glycerol, and

10mM MgCl2 (high magnesium) with relevant antibiotics. Cells were subcultured 1:100 into

fresh medium and grown to OD600 ~0.2, or about 4 hours. Cells were washed 3x in the same

medium or medium with 10μM MgCl2 (low magnesium) and returned to the incubator, grow-

ing for a further 90 minutes. Where applicable, N minimal medium was buffered with 10mM

MES at pH 5.8 or 4.9. For β-galactosidase assays, 1 mL of cell culture was then transferred to a

microcentrifuge tube and placed on ice, followed by one wash in 1mL pre-chilled 100mM

phosphate buffer, pH 7. A 150μL aliquot was removed and the OD600 was checked on a

microplate reader (Synergy HTX, BioTek) and recorded. The aliquot was returned to the origi-

nal tube and cells were pelleted again in a chilled centrifuge. The supernatant was removed

and the pellet was frozen immediately on dry ice and transferred to -80˚C storage.

For C18G stimulation, cells were grown overnight in N minimal medium, pH 7.4 (see

above) formulated with 1mM MgCl2. We titrated C18G (Anaspec) to confirm a concentration

that did not inhibit growth, identifying 5μg/mL as optimal, similar to what was reported by

Bader and colleagues [52]. Cells were subcultured 1:100 and grown to OD ~0.2 before pelleting

and resuspending in fresh media with or without 5μg/mL C18G. Cells were grown for a further

90 minutes and processed as described above.

β-galactosidase assays

We used a modified lysis protocol and a kinetic microplate assay to measure β-galactosidase

activity based on the methods described by Schaefer and colleagues [121] and Thibodeau and

colleagues [122]. Bacterial pellets were removed from -80˚C to room temperature, thawed

briefly, then resuspended in 200μL of 100mM phosphate buffer, pH 7.0. A 200μL mixture of

20% PopCulture (Millipore) and 8U/μL of rLysozyme (Millipore #71110–4, Lot 3277983, 30U/

μL) was added to each sample and vortexed for 5 seconds. After 5 minutes at room tempera-

ture, the sample was vortexed again and incubated for a further 5 minutes. During lysis opti-

mization tests, this freeze/thaw and lysis buffer treatment achieved a>95% reduction in

OD405 within two minutes, and the suspension was visually clear within 20 seconds. In each

well of a 96 well microplate, 70μL of Z-buffer with 0.05M β-mercaptoethanol was added. After

lysis, 80μL of sample was added in quadruplicate wells, with control wells having lysis buffer

only; a lysed pellet of wild-type 4/74 cells with no lacZY reporter served as an additional con-

trol. Using a multichannel pipette, 30μL of ONPG (Sigma) previously dissolved in 100mM

phosphate buffer at 4μg/mL was added to each well. The microplate was transferred immedi-

ately to a Synergy HTX (BioTek) plate reader that was pre-equilibrated to 28˚C. OD420 was

measured every minute for 90 minutes, incubating at 28˚C with shaking between reads. The

change in absorbance at 420nm over time was calculated from the slope of the reads and used

in the standard Miller unit calculation,

Miller units ¼
slopeðOD420Þ � 1000

OD600 � 2:5 � 0:08

where OD600 is the density of cells in 1mL before pelleting and freezing; 2.5 corrects for the

pellet resuspension in a 400μL lysis volume; and 0.08 is the volume of sample (in mL) assayed

per well.

Antimicrobial peptide sensitivity assay

4/74 phoP acrAB macAB null mutants with indicated pACYC177 plasmids were grown aerobi-

cally overnight in N minimal media, pH 7.4 (100mM Tris-HCl) with 1mM MgCl2, 0.2% Casa-

mino acids, and 0.2% glycerol with appropriate antibiotics. Cells were normalized to OD600 of
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1 = 1x109 cells/mL, then diluted 1:100 into fresh medium without antibiotics. 75μL of fresh

medium alone or 2x final concentration of C18G (Anaspec, Fremont, CA) in fresh medium

were added to wells of a sterile, polypropylene 96-well flat-bottomed plate (Griener BioOne,

Product 655261). 75μL (~7.5x104 cells) of the 1:100 bacterial suspension was added to wells in

quadruplicate for a final 1:200 dilution of cells, with final μg/mL C18G as indicated. C18G was

titrated previously, with higher concentrations (�3μg/mL) preventing growth of all strains

while treatment at concentrations�1.5μg/mL showing no differences in growth kinetics com-

pared to untreated wells. The plate was sealed with a Breathe-Easy gas permeable film (Diversi-

fied Biotech) and OD600 was measured every ten minutes while growing at 37˚C with linear

shaking using a Synergy HTX plate reader (BioTek). Lag time was calculated as the time to

reach OD600 = 0.150.

Macrophage infection assays

RAW264.7 cells were passaged in DMEM + 10% FBS with 4.5g/L glucose and 110mg/L sodium

pyruvate and L-glutamine. For infection, cells were seeded at 2.5x104 cells per well in a 96 well

plate starting 24 hours prior to infection. Single Salmonella colonies were picked from recently

struck LB plates and grown overnight in LB Miller with appropriate antibiotics. After 16–18

hours of culture, cells were pelleted, washed once in PBS, and concentration was determined

by OD600 of 1 = 1x109 CFU/mL. Bacteria were diluted to 1x108/mL and added to DMEM

complete medium for a final 2.5x106 CFU/mL concentration. Medium was aspirated from the

RAW cells with a multichannel and replaced with 50μL of fresh media. 100μL of each inocu-

lum (2.5x105 CFU, MOI = 10) was added in quadruplicate for each time point (0, 8 and 20

hours). Plates were spun at 300g for 10 minutes at room temperature (21–25˚C), then incu-

bated at 37˚C with 5% CO2 for 30 minutes to allow phagocytosis. Meanwhile, the inoculum

was diluted 10-fold in PBS and plated to confirm the MOI. After 30 minutes, the medium was

then aspirated and RAW cells were gently washed twice with 100μL medium, replacing finally

with 100μL of DMEM complete with 100μg/mL gentamicin. The RAW cells were incubated at

37˚C for 60 minutes, then the high gentamicin medium was removed and replaced with

medium with 20μg/mL gentamicin to suppress extracellular growth of Salmonella for the

remainder of the culture period (this was t = 0). At each timepoint, medium was aspirated and

RAW cells were washed 3x with 150 μL PBS before lysis in 30μL of 1% Triton X-100 at room

temperature. After 5 minutes, the wells were pipetted vigorously with a multichannel, then

each well was topped with 120μL of PBS. The well suspensions were mixed, serially diluted in

PBS, and spot-plated to calculate CFUs per well.

Mouse strains

C57BL/6J (Stock Number 000664), mice were purchased from Jackson Laboratories. C57BL/6J

Nramp1G169/G169 mice were previously described [123].

Streptomycin pre-treatment model of colitis

Mice 7–12 weeks old were deprived of food briefly for 4 hours prior to gavage with 20mg strep-

tomycin in sterile water. The next day, overnight stationary phase cultures of Salmonella
strains grown with appropriate antibiotics were pelleted and washed twice in PBS before cell

quantification by OD600. Twenty hours after streptomycin treatment, mice were again briefly

deprived of food for 4 hours, followed by gavage of an equal mixture in PBS of 5x107 CFU of

each strain for a total inoculum of 1x108 CFU. The inoculum was diluted and plated onto LB

agar plates with appropriate antibiotics to differentiate strains and calculate the input ratio.

Mice were euthanized by CO2 asphyxiation at a given timepoint, tissues were removed and
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homogenized in sterile PBS, then diluted and plated onto LB agar plates with different antibi-

otics to distinguish Salmonella strains. Total Salmonella CFUs were determined from strepto-

mycin plates, while the D23580 proportion was calculated from streptomycin and

chloramphenicol plates. In the isogenic D23580 competition, the addition of kanamycin iden-

tified the proportion of D23580-KanR colonies from the total D23580 population. The output

ratio in tissues was divided by the input ratio of the inoculum to compute the competitive

index.

Statistical analysis

Data were analyzed with GraphPad Prism 8 (GraphPad Software, LLC). Statistical tests were

performed as indicated in the figure legends.

Supporting information

S1 Fig. CFU counts corresponding to Competitive Index (CI) values of cecal tissue samples

plotted in Fig 5. Fig S1A-D correspond to Fig 5A–5D, respectively. Connecting lines show

paired values of CFU per gram from the cecum of an individual mouse.

(TIF)

S2 Fig. CFU counts corresponding to Competitive Index (CI) values of spleen and cecal tis-

sue samples plotted in Fig 6. Fig S2A-B correspond to Fig 6A and 6B, respectively. Connect-

ing lines show paired values of CFU per gram from the spleen or cecum of an individual

mouse.

(TIF)

S3 Fig. macAB does not assist in vitro peroxide resistance in the ST19 strain 4/74. (A) Sur-

vival of 4/74 macAB null mutant after peroxide treatment. 4/74, 4/74 macAB null and 4/74

rpoS::Kan were grown in LB Miller overnight with appropriate antibiotics, normalized to

OD600 = 1 before 1:100 dilution into fresh LB with or without 1mM H2O2, growing at 37˚C

while rotating. Cells were removed hourly and serial dilutions plated to calculate percent sur-

vival in reference to CFUs at t = 0. (B) Transcriptional induction after peroxide exposure. 4/74

parent and the 4/74 macAB::pCE36 lacZY transcriptional fusion were normalized to

OD600 = 1 after overnight culture in LB, followed by 1:100 dilution into fresh LB medium and

growth while shaking at 37˚C. At OD600 = 0.5 (~2 hours of growth), mid-exponential cells

were pelleted and resuspended in the same volume of fresh LB with or without 0.5mM H2O2.

Cells were removed every 30 minutes and assayed for β-galactosidase production as described

in Materials and Methods.

(TIF)

S4 Fig. 5’-UTRmacA
Lin2.1 SNP does not alter transcriptional response of macAB to low Mg2

+. Two clones of 4/74 macAB::pCE36 transcriptional fusion strains with the 5’-UTRmacA
Lin2.1

SNP preceding macA were grown to mid-exponential phase in N minimal medium pH 7.4

with high Mg2+ (10mM) then shifted to the same or low Mg2+ (10μM) media and grown for 90

minutes. β-galactosidase activity was measured using a kinetic Miller assay as described in

Materials and Methods. The 5’-UTRmacA
Lin2.1 SNP was incorporated by λ red recombination

using the primer pair 1288b, 1289 to amplify the KmR cassette from pKD4. Transcriptional

fusions generated with pCE36 include an internal, independent ribosome binding site for

translation of lacZY from the transcript.

(TIF)
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