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The emerging technology of massively

parallel DNA sequencing has had a major

impact on progress in genomics and

personalized medicine [1]. Most recently,

DNA sequencing of whole exomes (com-

plete coding regions of the human ge-

nome) has revealed the genetic basis of

many previously-not-localized Mendelian

traits [2]. In diseases where the underlying

genetic basis is more dilute and complex,

old challenges reappear in new clothes

[1,3].

Both the promise and the limitations of

these new technologies have been evident

in the untangling of the polygenic basis of

susceptibility to human breast cancer. The

identification of single-gene defects in

cancer susceptibility syndromes in the

1990s provided a deterministic model of

genetic susceptibility to cancer. Discovery

and genetic analysis of the hereditary

breast and ovarian cancer genes BRCA1

and BRCA2 offered a preview of person-

alized genomics, improving medical man-

agement of a common form of inherited

human neoplasia [4,5]. Supporting the

idea that new breast cancer genes (often

referred to collectively as BRCA3) could be

identified, analysis of the genetic variance

remaining after BRCA1 and BRCA2 mu-

tations had been excluded suggested that

most of the excess genetic risk was

concentrated in a small percentage of

persons [6]. Yet, genetic linkage studies

provided little encouragement for the

existence of BRCA3 [7]. While genome-

wide association studies (GWAS) uncov-

ered new pathways in cancer biology, the

GWAS results identified markers of very

modest effect size [8]. The realization that

a small proportion of excess genetic risk

can be accounted for by common variants

has resulted in a return to the study of

multiplex breast cancer kindreds and the

utilization of massively parallel DNA se-

quencing to uncover rare, disease-causing

mutations in hereditary breast cancer.

The article by Thompson et al. pub-

lished in this issue of PLOS Genetics [9],

along with a similar article published

recently in the American Journal of Human

Genetics [10], provide a glimpse of the early

applications of new sequencing technolo-

gies to the search for the ‘‘missing heri-

tability’’ in hereditary breast cancer. In

Thompson et al., the authors performed

exome sequencing of multiple breast cancer

cases from a small number of families (33

persons in 15 families) in whom BRCA1 and

BRCA2 mutations had been excluded,

and they focused on mutations that are

predicted to ablate the function of the gene

product, namely, mutations that cause

premature termination of translation or

that destroy splice-sites. After filtering out

the overtly deleterious mutations that are

polymorphic in the human population

(under the assumption that the risk-causing

variation in these breast cancer families

should be rare), each sequenced individual

harbored on average 35 overtly deleterious

mutations. Thus, additional filtering crite-

ria were needed to narrow the field: various

strategies are possible, and here the authors

focused on genes both hit by mutation in

multiple individuals and participating in

DNA repair through the homologous re-

combination pathway, a pathway that repairs

double-strand breaks with high fidelity. Pre-

vious candidate-gene DNA sequencing stud-

ies have implicated homologous recombina-

tion in breast cancer susceptibility [11–16],

and BRCA1 and BRCA2 themselves are

players in this pathway [17]. Remarkably,

two families carried overtly deleterious mu-

tations in the Fanconi anemia (FA) gene

FANCC and one family carried an overtly

deleterious mutation in the Bloom’s syn-

drome (BS) gene BLM.

FA and BS are rare, autosomal reces-

sive conditions that are characterized by

multiple developmental abnormalities (small

size and congenital defects of the dermal,

immune, skeletal, and reproductive systems),

striking DNA repair defects and genomic

instability in the somatic cells, and enormous

predisposition to the development of various

cancers (Figure 1) [18,19]. Bi-allelic muta-

tions in FANCC and BLM result in FA and

BS, respectively, whereas in Thompson et al.

heterozygous mutations in FANCC and

BLM were identified in a few breast cancer

families studied. The notion that heterozy-

gous mutations in DNA repair genes might

predispose carriers to incremental increases

in cancer susceptibility is a long-standing

and sometimes controversial hypothesis in

cancer genetics that has increasingly gained

traction. As noted above, heterozygous

mutations in FA genes have been associated

previously with increased breast cancer

risk, and, conversely, bi-allelic mutations in

breast cancer-associated genes BRCA2,

BRIP1, PALB2, and RAD51C have been

identified in persons with FA or FA–like

syndromes [20–23]. Although the concept of

increased cancer risk conferred by hetero-

zygous mutations now seems unassailable,

the evidence for specific associations be-

tween FANCC and BLM and breast cancer

risk is not yet convincing [24–28]. The

challenge of the ‘‘heterozygous-mutation’’

hypothesis is generally one of power.

Because the allele frequency of FANCC and

BLM mutations in most populations is very

low (,0.001), large numbers of individuals

are needed to test for differences in the

allele frequency between cases and controls.

Moreover, heterogeneity in the frequency of

mutations across different populations could
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complicate interpretation of associations

when populations are admixed and as

investigators combine results from different

populations to increase power. As an

example of frequency heterogeneity, FANCC

and BLM mutations are more frequent in

Ashkenazi Jews (,0.008), where a specific

allele is present in most cases of FA and BS

[29,30].

Selecting cases with strong family histo-

ry of cancer is an enrichment strategy that

can reduce the numbers of cases needed to

find associations [31]. In Thompson et al.,

the authors sequenced FANCC and BLM,

and in total they found FANCC mutations

in four probands out of 1,395 BRCA-

negative hereditary breast cancer families

from Australia and BLM mutations in two

probands out of 438 such families. No

mutation carriers were found in either

gene in 464 controls. No overtly deleteri-

ous FANC or BLM mutations have been

reported in 1,192 completely sequenced

persons in the 1000 genomes data [32].

On the other hand, in the NHLBI GO

Exome Sequencing Project (http://evs.gs.

washington.edu/EVS/), three FANCC and

four BLM mutation carriers had been

identified in 3,510 exomes. Persons from

the 1000 genomes and EVS do not

constitute a good control group; thus the

authors refrained from calculating p-val-

ues, 95% confidence intervals, and effect

sizes. Going forward it will be important to

compare consecutive breast cancer cases

and matched controls drawn from the

same population to provide robust data to

calculate these important parameters; it

may take tens of thousands of cases and

controls to quantify them! In addition, we

will need to combine studies of hereditary

breast cancer cases to increase power and

drive segregation analysis, to conduct

larger case-control studies in the Ashke-

nazi Jewish population where the in-

creased frequency of specific alleles

increases the power of the study group,

and to continue to quantify cancer risk in

the relatives of persons with FA and BS.

Thus, rare alleles identified by sequencing

of multiplex kindreds pose significant chal-

lenges for the estimation of effect sizes in

cancer susceptibility. In the end, the critical

questions that grip rare alleles are how much

increased risk do they confer and do they

account for the missing heritability? The

resolution of these questions is of paramount

importance to genetic epidemiologists study-

ing human populations as well as to clinicians

caring for families at risk for hereditary

breast cancer.
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