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Abstract: Tolerance to acid is of dual importance for the food-borne pathogen Listeria monocytogenes:
acids are used as a preservative, and gastric acid is one of the first defenses within the host. There are
considerable differences in the acid tolerance of strains. Here we present the transcriptomic response
of acid-tolerant field strains of L. monocytogenes to HCl at pH 3.0. RNAseq revealed significant
differential expression of genes involved in phosphotransferase systems, oxidative phosphorylation,
cell morphology, motility, and biofilm formation. Genes in the acetoin biosynthesis pathway were
upregulated, suggesting that L. monocytogenes shifts to metabolizing pyruvate to acetoin under organic
acid stress. We also identified the formation of cell aggregates in microcolonies as a potential relief
strategy. A motif search within the first 150 bp upstream of differentially expressed genes identified
a novel potential regulatory sequence that may have a function in the regulation of virulence gene
expression. Our data support a model where an excess of intracellular H+ ions is counteracted
by pumping H+ out of the cytosol via cytochrome C under reduced activity of the ATP synthase.
The observed morphological changes suggest that acid stress may cause cells to aggregate in biofilm
microcolonies to create a more favorable microenvironment. Additionally, HCl stress in the host
stomach may serve as (i) a signal to downregulate highly immunogenic flagella, and (ii) as an indicator
for the imminent contact with host cells which triggers early stage virulence genes.

Keywords: Listeria monocytogenes; acid stress; HCl; tolerance; RNAseq; cytochrome C; catabolite
repression; biofilm; flagella

1. Introduction

Most human cases of listeriosis are caused by the ingestion food contaminated with Listeria
monocytogenes. The disease often has a mild course in healthy individuals, while the elderly, young
children, pregnant women and immunocompromised people may suffer life-threatening invasive
forms of listeriosis like sepsis, meningitis, or abortions [1].

During the transition along the food production chain and into the human host, L. monocytogenes is
able to survive food safety measures and host defense mechanisms. Low pH is of special interest in this
context because of its dual role as a food preservative and as a first line of defense in the gastrointestinal
tract of the human host.

L. monocytogenes, a low-CG Gram positive organism, has a remarkable tolerance against low pH
conditions [2]. This is especially relevant in food in which acid serves as a preservative, but also
because strains with a higher acid tolerance might survive the low pH in the human stomach at an
increased rate and therefore pose a higher risk for infection. Therefore, the potential hazard associated
with a given strain of L. monocytogenes found in the food environment is affected by its degree of
acid tolerance.
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In general, L. monocytogenes cells faced with the challenge of an increased concentration of H+

ions have the options of (i) consuming H+ ions, e.g., through decarboxylation reactions, (ii) exporting
H+ ions through pumps, and (iii) repairing the damage resulting from low pH, for instance mediated
by heat shock proteins. All these mechanisms have been described for L. monocytogenes [2,3], making
the acid response of L. monocytogenes a complex, highly orchestrated process that involves various
components. Many genes involved in stress response in L. monocytogenes are regulated by the alternative
sigma factor B (SigB) [4] and indeed sigB mutants are highly acid sensitive [5–7]. The glutamate amino
acid decarboxylase Gad is an example for SigB-regulated acid response [8–10]. Gad catalyzes the
formation of γ-aminobutyric acid (GABA) from glutamate in a reaction that consumes protons [11].
Other known responses to acid shock in L. monocytogenes include the SOS response regulated by
RecA [12,13], the LisRK two-component system [14], the agmatine deiminase system [15], proton
consumption by acetoin production [2], and, in exponential growing cells, using the F0/F1-ATP synthase
in reverse to pump protons from the cytosol to the extracellular space under the expense of ATP [16].

Most work on acid tolerance in L. monocytogenes was performed using laboratory strains that
have been passaged in research institutions for years [17], and few studies exist that compare the
acid tolerance between different strains [18–21]. We have previously shown large differences in acid
tolerance between field strains of L. monocytogenes isolated from the food and host environment [22].
Interestingly, the acid phenotype was largely strain specific and not consistently associated with
lineage, serotype or clonal complex. Here, we set out to determine the mechanism by which three
highly acid-tolerant field strains achieve survival under acid shock at pH 3.0 with HCL, mimicking
the acidic conditions encountered during the transition from the food environment to infection of
the human host. The global transcriptional response under acid stress was compared to non-stress
conditions. The strains used in this study were isolated from patients or food products and are thus
directly related to real-life settings.

2. Results and Discussion

2.1. General Response of 3 Strains to Acid Stress

L. monocytogenes in early stationary phase was exposed to non-lethal acid stress with HCl at pH
3.0 for one hour, as previously described [22], and differentially expressed genes were determined
in comparison to non-acid exposed controls. While the three acid-resistant strains used here ceased
growing under these conditions, a large proportion of cells survived (−0.5–1 log CFU/mL, compared to
−4–7 log CFU/mL in acid-sensitive strains) [22]. The number of genes that were significantly up- or
downregulated were similar for LL195 (394/347 up and down regulated, respectively) and N12-0605
(380/227), but higher for N13-1507 (764/689). The core acid regulon of differentially expressed genes
consisted of 150 upregulated genes and 169 downregulated genes (Figure 1, Table S1). From these
gene counts, two major conclusions were drawn: (i) A considerable proportion of 319 differentially
expressed genes was shared across all strains, and (ii) the acid regulon of strain N13-1507 was larger
than that of LL195 and N12-0605. This difference in regulon size is likely an effect of the different
genetic background of strain N13-1507 (CC6) compared to LL195 and N12-0605 (CC1). An overview
of gene ontology terms associated with the up- and downregulated genes can be found in Table S2.
Our further analysis focused primarily on differentially expressed genes that were shared across at
least two strains in order to characterize the core acid regulon under HCl stress.

2.2. Components of the Acid Response in L. monocytogenes were Differentially Expressed after Acid Stress

A number of the genes that were differentially expressed after acid stress correspond to genes
previously described as involved in the acid response of L. monocytogenes, namely the activation of the
general stress response transcriptional regulator SigB, the Gad system, parts of the SOS response and
the agmatine deiminase system [5–10,12,13,15].
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Figure 1. The number of genes that were up- and downregulated per strain in response to HCl acid
shock at pH 3.

The activation of SigB was evident in the increased transcription of lmo2230 (L. monocytogenes EGDe
nomenclature) after acid stress in strains LL195 and N13-150. lmo2230 encodes an arsenate reductase
that is under direct SigB control and has previously been used as a reporter for SigB activity [23–25].

Another SigB-regulated gene whose product is involved in the acid response of L. monocytogenes
is the glutamate amino acid decarboxylase gad [26]. Amino acid decarboxylases consume protons and
their activation helps alleviate intracellular acid stress. Transcripts for gad were increased in LL195
and N13-1507 after acid exposure. Other amino acid decarboxylases like the glycine decarboxylases
encoded by gcvPB and gcvPA were upregulated in all three strains, and the arginine decarboxylase
encoded by yaaO was upregulated in LL195 and N13-1507.

The SOS response is an inducible pathway involved in DNA repair [27], and L. monocytogenes
with a deficient SOS response system (recA mutants) show impaired survival under acid stress [13].
The gene coding for the main transcriptional activator of the SOS response, recA [13], was not induced
by acid stress. However, yneA is part of the L. monocytogenes SOS response [13] and was upregulated in
all three strains.

In addition to the above-mentioned mechanisms, L. monocytogenes have been shown to use the
agmatine deiminase system to alleviate acid stress [28]. Agmatine catabolism produces ATP and
releases NH3, which helps raise the intracellular pH. In our dataset, the agmatine deiminase encoded
by aguA1 was upregulated in N13-1507 after acid stress.

2.3. Genes Involved in Cell Division and Gene Expression were Downregulated after Acid Stress

After comparing the transcriptional response to known acid responses, we used KEGG [29],
gene ontology (GO) enrichment [30] and manual analysis to identify novel components of the acid
response in these three L. monocytogenes field strains (Table S2).

Genes whose products are involved in genome replication and partition (dnaG, smc) and genes
coding for cell envelope components (fabG, dat, tarL, tagB, tagF, and dltCD) were downregulated in all
three strains in the post-acid dataset, which is in agreement with the observed growth arrest. GO term
analysis showed that the GO terms “gene expression” (GO:0010467), “ribonucleoside triphosphate
biosynthetic process” (GO:0009201), several terms associated with tRNA aminoacylation (GO:0006399,
GO:0006418, GO:0043039), “aminoacyl-tRNA ligase activity” (GO:0004812), “translation” (GO:0006412),
and several terms associated with ribosomal components (GO:0003735, GO:0015934, GO:0015935)
were enriched among the downregulated genes in all three strains, which again corresponds with the
growth arrest and points toward an overall decreased metabolic activity of the cells. For instance,
transcripts for the rpoA RNA polymerase subunit were downregulated in all three strains post acid
stress. Reduced translation was apparent in the downregulation of 26 ribosomal proteins, 14 tRNA
ligases, the translation initiation factors infA and infC, and the elongation factor fusA in all three strains.
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2.4. Changes in Metabolism after Acid Stress

All strains showed profound changes in carbon metabolism after acid stress. Among the top
upregulated genes, a cluster of phosphotransferase systems (PTSs) was evident. A Fisher’s exact test
confirmed that PTS were significantly upregulated in all three strains (p < 0.0001 in LL195 and N13-1507,
p = 0.028 in N12-0605). Specifically, the EIIA components of fructose, mannose, galacitol, lactose,
and glycerol PTSs were upregulated after acid stress in all strains. Additionally, the transcriptional
regulator of a cellobiose PTS, licR, and all components of the glycerol catabolism pathway (glpF, golD,
dhaKLM) were upregulated in all three strains in the post-acid dataset.

Upregulation of PTS systems and the glycerol catabolism pathway has been observed in other
organisms, for instance in the low-G+C Gram positive Lactococcus lactis, where exposure to pH 5.1
resulted in a significant upregulation of a cellobiose PTS [31]. This may indicate an increased demand of
alternative carbon sources by the cells. The experiments were performed in BHI with an initial glucose
content of 2 g/L and glucose starvation is an unlikely cause for this apparent need for alternative carbon
sources. The upregulation of PTS under acid stress therefore indicates a release of the carbon catabolite
repression (CCR) under acid stress. CCR is mediated by a global transcriptional regulator: The
catabolite control protein A (CcpA), which is activated by HPr phosphorylated at serine 46 (HPr-ser46).
Phosphorylation of HPr is catalyzed by the HPr kinase/phosphatase (HprK/P), which is a sensor of the
energy state within the cell (reviewed in [32]). A study in B. subtilis [33] correlated HprK/P activity
with pH and showed that lowering the reaction pH lead to a shift towards phosphatase activity in
HprK/P. As a consequence, HPr-ser46 was not phosphorylated, and hence CcpA did no longer repress
the catabolite promoters. Because CCR is highly conserved in firmicutes [34] a similar mechanism may
be responsible for the observed de-repression of the CCR in L. monocytogenes.

In addition, the fumarate reductase flavoprotein subunit, which is part of the citric acid cycle,
was downregulated after acid stress in all strains.

2.5. Shift in Pyruvate Fermentation

L. monocytogenes can ferment pyruvate to lactate in the presence of abundant NADH. In the
absence of NADH, fermentation shifts to the reaction from pyruvate to acetoin via 2-acetolactate in
reactions that use one proton each [35]. The reaction from pyruvate to 2-acetolactate is catalyzed by the
acetolactate synthase encoded by ilvB, ilvH, and alsS, the reaction from 2-acetolactate to R-acetoin by
alpha-acetolactate decarboxylase encoded by alsD. Of these, alsD was upregulated after acid stress in
all three strains. alsS was upregulated in N13-1507 and LL195, and ilvB was upregulated in N13-1507.
This shift to producing acetoin may alleviate acid stress by consuming protons and by not using the
alternative pathway of fermenting pyruvate to lactic acid [36,37]. AlsS and alsD were also upregulated
after exposure of L. monocytogenes EGDe [38] and H7858 [39] to organic acids.

2.6. Genes Involved in Cell Wall Biology and Biofilm Formation were Differentially Expressed after Acid Stress

The GO terms “membrane” (GO:0016020), “cell wall” (GO:0005618) and “plasma membrane”
(GO:0005886) were enriched among the genes that were downregulated after acid stress in all
three strains, consistent with growth arrest. In contrast, more than ten GO terms associated
with the cell envelope (i.e., GO:0005887, GO:0016021, GO:0020002, GO:0031224, GO:0031226,
GO:0032977, GO:0033644, GO:0044218, GO:0044279, GO:0044425 GO:0051205, GO:0051668, GO:0061024,
GO:0016998) were enriched in the set of upregulated genes after acid stress in at least one strain.
This suggests profound remodeling of the cell envelope in response to acid stress. In addition, several
genes coding for proteins involved in cell wall functions, such as the SOS response member yneA,
the cell shape factor ylmH and the membrane insertion factor yidD were upregulated in all strains,
while the membrane insertion factor yidC was upregulated in N13-1507.
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Comparative microscopy of Gram-stained L. monocytogenes cells before and after acid stress
suggested that L. monocytogenes elongated and aggregated with acid stress (Figure S1), and an image
stream analysis confirmed that individual cells were larger after acid stress (p < 0.001) (Figure 2a).
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Figure 2. Morphological changes after HCl acid stress. (a) Flow cytometric analysis of cell size with
and without acid. Each dataset represents 10’000 cells. (b) Image stream analysis of L. monocytogenes
cells without (left) and with (right) acid stress. For each dataset, 10,000 cells were imaged. The figure
contains representative images (left column: brightfield; right column: DAPI) from among the largest
entities within each dataset.

Cell elongation under different stress conditions has been shown for a variety of organisms
and stress conditions; e.g., in Salmonella Enteritidis after cold stress [40], in L. monocytogenes after
salt stress [41] and in L. monocytogenes, Bacillus and Clostridium species after acid stress [42]. In L.
monocytogenes and B. subtilis, induction of yneA by the SOS response resulted in elongated cells [13,43],
possibly by the accumulation of YneA at the cell center which prevented septum formation [43].
YlmH has been described in B. subtilis as a “factor involved in shape determination” [44,45] and the
ylm cluster of genes has been speculated to be involved in cell division [46]. Hence it is conceivable
that the combined effect of increased transcription of ylmH and yneA may have caused the observed
cell elongation after acid stress.

The image stream analysis also revealed an increase in aggregates of cells in the post acid stress
samples compared to the controls (Figure 2b). LuxS and yneA were upregulated under acid stress in
all three strains. The products of these genes are involved in early and late stage biofilm formation,
respectively [47–49]. AgrD, another early stage biofilm gene [50], was upregulated in N12-0605 and
N13-1507 after acid exposure. Biofilm formation and secretion of extracellular matrix may offer an
explanation for the observed increase of cell clumping after acid exposure, since the matrix may cause
cells to stick together in biofilm microcolonies.

Remarkably, the biofilm dispersion locus A (bldA) (responsible for dispersion of cells from mature
biofilm by lowering their adherence in Pseudomonas aeruginosa [51]) was downregulated in LL195 and
N13-1507 after acid stress.

Taken together, our data support a model where the formation of biofilm microcolonies is used
as a strategy to combat acid stress by creating a slightly more favorable microenvironment in the
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immediate vicinity of cells. L. monocytogenes showed more efficient adherence to stainless steel when
grown in medium adjusted to pH 6.0 compared to pH 7.3 [52], while pre-exposure to acidic conditions
did not affect the biofilm formation ability at neutral pH [53].

Our study describes, to the best of our knowledge, for the first time the formation of aggregates of
L. monocytogenes stationary phase cells after acid stress.

2.7. Genes Involved in Cellular Respiration were Differentially Expressed after Acid Stress

Expulsion of protons from the cytoplasm is an effective strategy to relieve acid stress [2]. During
aerobic respiration, the electron transport chain mediates the translocation of protons across the
cell wall. This generates a proton gradient that is subsequently used to drive the ATP synthase.
GO term enrichment analysis showed that several components of this system were overrepresented
among the upregulated genes (“electron transport chain” GO:0022900, “respiratory electron transport
chain” GO:0022904, “ATP synthesis coupled electron transport” GO:0042773). The cytochrome
BC complex uses redox reactions between quinone/quinol to power the electron transport chain,
with molybdopterins acting as cofactors in the quinone/quinol cycling [54,55]. Genes coding for quinol
oxidase subunits three and four (qoxC and qoxD) were upregulated in all three strains, while genes
coding for quinol oxidase subunits one and two (qoxB and qoxA) were upregulated in LL195 and
N13-1507. Molybdopterin moaB was upregulated in all three strains after acid exposure, while moeA,
mobB, moaEI and moaD were upregulated in LL195 and N13-1507. Cytochromes depend on insertases
for their correct insertion into cell membranes [56]. In line with this, yidD has been upregulated in all
three strains after acid stress. yidD codes for a membrane protein insertion efficiency factor, and YidD
in concert with YidC have been shown to be involved in the insertion of cytochrome oxidases as well
as the F0c subunit of the ATPase into the membrane in Escherichia coli [57].

These results suggest that L. monocytogenes is using the electron transport chain to pump protons
out of the cytosol to relieve acid stress. An analogous mechanism has been speculated for Bacillus
cereus and Bacillus subtilis under acid stress [37,58]. In contrast, L. monocytogenes exponential phase
cells, but not stationary phase cells, use the ATP synthase in reverse to pump protons out of the cytosol
under the use of ATP [16].

The proton gradient created through respiration is used by the ATP synthase to drive ATP synthesis.
GO term analysis showed that genes encoding subunits of the ATP synthase were downregulated
after acid stress (“proton-transporting ATP synthase complex” GO:0045259, “plasma membrane
proton-transporting ATP synthase complex” GO:0045260, “proton-transporting ATP synthase complex,
catalytic core F(1)” GO:0045261, “plasma membrane proton-transporting ATP synthase complex,
catalytic core F(1)” GO:0045262). Specifically, atpC, atpH, atpD2, atpG, and yscN were downregulated in
all three strains after acid stress, and all additional genes that belong to the ATP synthase complex (atpC,
atpA2, atpE, atpC, atpI, atpF) were downregulated in at least one strain after acid stress. The efficiency
of the respiratory chain to pump protons out of the cytosol, as proposed above, would to a degree
be abolished if the ATP synthase is then used to import H+ ions into the cell again. The observed
downregulation of transcripts coding for the ATP synthase can therefore be seen as a strategy to
increase the efficiency of stress relieve generated by the upregulation of proton pumps in the respiratory
chain. Interestingly, high pH stress in E. coli results in F1F0 ATP synthase upregulation, suggesting
that the ATP synthase was used to import H+ [59]. Arguably, downregulating the ATP synthase
would result in decreased ATP production solely via glycolysis. However, we found no evidence of
upregulation of alternative pathways for ATP synthesis. This may explain the observed growth arrest
and reduced metabolism.

Also, the increased activity of the respiratory chain regenerates more NAD from NADH. Hence,
NAD regeneration reactions such as lactate formation from pyruvate are not needed. This enables the
observed activation of the proton consuming pathway from pyruvate to acetoin.
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Taken together, these results show for the first time that L. monocytogenes stationary phase cells
under HCl stress increase the expression of proton pumps in the respiratory chain, while at the same
time reducing the activity of the ATP synthase, resulting in a net loss of H+ from the cells.

2.8. Cell Motility Related Genes were Downregulated after Acid Stress

All three strains used in this study were motile at 37 ◦C (Figure S2). The GO term “cell
motility” (GO:0048870) and eight GO terms associated with different parts of the flagella (GO:0001539,
GO:0009288, GO:0009420, GO:0009424, GO:0009425, GO:0030694, GO:0044461, GO:0055040) were
enriched among genes that were downregulated after acid stress. Accordingly, genes involved in
cellular motility, e.g., flagellar synthesis genes (flaA, fliEFGM, flgB, flgC, flgEGKL, motB and lmo0707)
and genes involved in chemotaxis (cheARVY, and pomA) were downregulated in all three strains after
acid stress.

Repression of flagella is in line with the previously described repression of flaA or the gene sets
“cellular processes: chemotaxis and motility” repressed after long term exposure to pH 5.5 [60,61].

Flagella are strong immunogens [62] and consume considerable amounts of energy [63]—hence it
makes evolutionary sense for a pathogen to tightly control their expression. Motile L. monocytogenes
10403S outcompeted otherwise isogenic, non-motile ∆flaA mutants in vivo [64], and exposure to bile in
the duodenum induced the expression of motility genes in L. monocytogenes 10403S and H7858 [65].

Combined with these other studies, our data support the hypothesis that flagella are suppressed
during exposure to acid mimicking the first stages of infection, i.e., the exposure to HCl in the stomach
(this study). Upon entry into the duodenum, flagella are expressed to facilitate the physical contact
with host cells [64], possibly by using bile as a signal for imminent host cell contact [65].

2.9. Early-Stage Virulence Genes were Upregulated after Acid Stress

In a next step, the response of virulence genes to acid was studied. Transcripts for the positive
regulatory factor A (prfA) were upregulated in post-acid stress for N13-1507 and LL195. PrfA is the
main transcriptional regulator of virulence genes in L. monocytogenes [66]. Further, genes that belong
to the PrfA regulon, inlA and hly, were highly induced in all three strains after acid stress. hly codes
for the pore-forming toxin listeriolysin O [67], while inlA encodes an internalin that is important for
cell adhesion and host cell invasion [68]. Both the products of inlA and hly are involved in early steps
of host cell invasion. In contrast, virulence genes involved in later steps of host cell invasion such as
plcA, actA, mpl, and plcB were not induced by acid stress. Additionally, in order to be in its active
form, PrfA needs glutathione as a cofactor, and both PrfA itself and glutathione need to be reduced
by thioredoxins and glutathione reductases [69,70]. Remarkably, three thioredoxins (trxA, trx1 and
lmo2152) and trxB (thioredoxin reductase) were upregulated in all three strains. Taken together, our
data indicate that the exposure of L. monocytogenes to HCl during the gastric passage could lead to an
induction of parts of the PrfA regulon, specifically InlA which is used to attach to host cells and LLO
which is needed to escape the phagocytic vacuole. PrfA itself is regulated by a positive feedback loop
and it is positively co-regulated by SigB [71]. The increased amounts of active SigB as well as activated
PrfA after acid stress may jointly have led to increased prfA transcription, which is also evident in other
studies that found prfA itself or PrfA-dependent genes upregulated after exposure of L. monocytogenes
to organic and inorganic acids [39,60,61,72,73].

2.10. Promoter Analysis of Differentially Expressed Genes

A motif search within the first 150 bp upstream of differentially expressed genes identified
the involvement of two potential regulatory sequences in the regulation of the acid stress response
(Figure 3a). The genome sequences of all strains were then screened for these motifs to identify
potential co-regulation of genes by novel regulatory mechanisms.
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Motif 14_0047 is a palindromic sequence that is homologous to the consensus binding sequence
for the transcriptional regulator of ferric uptake Fur in B. subtilis [74]. It was identified in six
instances in LL195 and five in N12-0605 and N13-1507, respectively (Table 1). Consistent with the
homology to the B. subtilis Fur box, motif 14_0047 was found in front of several genes that are
annotated with functions related to iron transport and management. In LL195, these were genes
coding for the Iron(3+)-hydroxamate-binding protein yxeB, the iron transporter feoB, and the Fe-S
protein maturation auxiliary factor sufT, of which feoB was upregulated after acid stress. Additionally,
motif 14_0047 was found in front of an O-acetyl-ADP ribose homologous to lmo2759, which was
also upregulated in the post-acid dataset. In N12-0605 and N13-1507, motif 14_0047 was found in
front of the Fe(3+)-citrate-binding protein yfmC and sufT, both of which were upregulated after acid
stress. Interestingly, upregulation of the iron transporter FeoB was also observed after exposure of
L. monocytogenes to organic acids [39], and Corynebacterium glutamicum induced the iron-starvation
response at pH 6.0 [75] and pH 5.7 [76] compared to neutral conditions.

Complex media such as tryptic soy broth and BHI sequester iron at low pH [76]. Therefore, the
observed induction of iron transporters is likely not a direct effect of the acid response, but rather of
the iron starvation induced by performing acid stress at low pH in BHI.

Motif 17_1507 was found in 15 instances in all three strains (Table 1). Notably, it was identified
upstream of plcA and thioredoxins (lmo2152). In the case of plcA, the motif included the PrfA-box
upstream of plcA (Figure 3b). Motif 17_1507 was also identified in front of glutathione reductases
(lmo1433), which are involved in the mitigation of oxidative stress [77]. The presence of this newly
identified motif 17_1507 in the promoter regions of thioredoxins and plcA is consistent with a role
in PrfA regulation. Motif 17_1507 upstream of plcA included the PrfA box, which is responsible for
positive autoregulation of PrfA via transcription of a bicistronic mRNA containing plcA and prfA [78].
Loss of the readthrough from the PrfA-box upstream of plcA leads to loss of virulence [79]. Whether
this motif has a regulatory function and whether the binding of a transcriptional regulator to this motif
has a positive or negative effect on transcription of downstream genes remains to be determined.

In conclusion, RNAseq of HCl-exposed, early stationary phase L. monocytogenes cells shows a
broad reshaping of the global transcriptional profile in response to acid shock with HCl at pH 3.
Compared to the controls, many downregulated genes suggested growth arrest, slower metabolism
and the reduction of motility in the post-acid dataset.

Our data support a model where L. monocytogenes combats the influx of H+ by using proton
pumps and proton-consuming processes such as amino acid decarboxylases, and by forming biofilm
microcolonies that could serve to establish a protective microclimate. During host invasion, the low pH
in the stomach may serve as a signal to induce the staggered expression of virulence genes, possibly
via activation of PrfA and a potential regulatory effect of the newly identified motif upstream of
virulence-associated genes.
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Table 1. Motifs identified within 150bp upstream of differentially expressed genes.

Motif 17_1507
Strain Motif sequence Strand 1 e-value Product up 2 Product down 2 FC up 3 FDR up 4 FC down 3 FDR down 4

LL195 GAAGAATATCCAAATGTGATT
AAAAATATAGTTACACCG reverse 9.16E-07 Cyclic-di-AMP

phosphodiesterase GdpP 50S ribosomal protein L9 −0.220 0.774 −0.229 0.700

LL195 CGCTTTACCTGCTTCGGCG
ATTGAATGTCAGTATGAGGC forward 2.19E-16 hypothetical protein hypothetical protein 0.969 0.057 0.769 0.143

LL195 GAGGCATTAACATTTGTTAA
CGACGATAAAGGGACAGCG reverse 1.81E-15 1-phosphatidylinositol

phosphodiesterase Listeriolysin O 0.802 0.107 3.013 0.000

LL195 CAAGAAATGGCGCTTTTCT
TCAACAAAAAAGAGAAAGCA reverse 1.18E-07 RNA polymerase sigma-H factor Protein translocase subunit SecE −0.650 0.227 0.679 0.281

LL195 GCAGAATACACCTATTTAGT
AGGAGATAAAGTGAATGCT reverse 1.48E-07 Internalin-A hypothetical protein 0.079 0.904 0.283 0.686

LL195 CAAGAATTAGCAAATGTAA
ACGACGTAGCAATGGATGAG reverse 6.03E-07 hypothetical protein Nitrite transporter NirC 0.414 0.462 0.355 0.668

LL195 CACTTTAATGATATTAACGA
AGAAGATGATTACTGGGGG forward 3.67E-07 hypothetical protein Glutathione reductase 1.576 0.001 1.218 0.028

LL195 ACAGAAATCAGCCACTTAATT
AGCGAAACAATGACAGAG reverse 7.55E-07 Putative TrmH family

tRNA/rRNA methyltransferase hypothetical protein 0.310 0.658 1.145 0.024

LL195 CTCTCTATCTTCAATGATTTT
TGCAAGCGCGATTTGTTC forward 8.88E-08 Glutathione amide reductase Ribonuclease J 2 1.661 0.026 −0.411 0.591

LL195 GAGTCACTCACCCGCTTAAA
AACAGATCACTGGAATGCG reverse 1.65E-07 putative cyclic di-GMP

phosphodiesterase PdeG Malolactic enzyme −0.527 0.348 −0.221 0.707

LL195 GCACCATTCGCACTCTTCAAC
ATCGATATCGTTAGAGCG reverse 2.93E-16 Ribonucleoside-diphosphate

reductase 2 subunit alpha hypothetical protein 1.620 0.013 0.141 0.842

LL195 CACTAATTCCCCCATTTATAA
AATAAAATCGGTAAAGCG reverse 2.78E-14 High-affinity heme uptake

system protein IsdE
Iron-regulated surface determinant
protein A 1.012 0.143 1.706 0.001

LL195 CGCTTGCTCTTTCTCATTG
ATTAATTGTTCATATTGCGC forward 2.58E-07 putative protein YhaN putative metallophosphoesterase YhaO −0.614 0.282 −0.139 0.825

LL195 CCATAAGCGACATTATCATAA
ATCGAAAACGGGAATGGG reverse 9.55E-07 Phosphate import ATP-binding

protein PstB 3
Phosphate import ATP-binding protein
PstB 3 0.767 0.360 0.468 0.447

LL195 CAGGCATTCAAACTTGCCAAC
AAATATACGAATAAAGCG reverse 1.93E-07 Heptaprenyl diphosphate

synthase component 2
3′,5′-cyclic adenosine monophosphate
phosphodiesterase CpdA −0.772 0.187 −1.617 0.005

N12-0605 GAACAAATCGCGCTTGCAAA
AATCATTGAAGATAGAGAG reverse 8.88E-08 Glutathione amide reductase hypothetical protein 0.248 0.864 0.324 0.739

N12-0605 CTCTGTCATTGTTTCGCTAA
TTAAGT GGCTGATTTCTGT forward 7.55E-07 Putative TrmH family

tRNA/rRNA methyltransferase Putative aminopeptidase YsdC 0.152 0.879 0.157 0.881

N12-0605 CCCCCAGTAATCATCTTCTT
CGTTAATATCATTAAAGTG reverse 3.67E-07 hypothetical protein hypothetical protein 0.998 0.121 0.093 0.921

N12-0605 CTCATCCATTGCTACGTCG
TTTACATTTGCTAATTCTTG forward 6.03E-07 hypothetical protein hypothetical protein 0.104 0.916 −0.116 0.940

N12-0605 AGCATTCACTTTATCTCCTA
CTAAATAGGTGTATTCTGC forward 1.48E-07 Internalin-A hypothetical protein −0.204 0.855 −0.950 0.264

N12-0605 CGCTGTCCCTTTATCGTCGTT
AACAAATGTTAATGCCTC forward 1.81E-15 Listeriolysin O 1-phosphatidylinositol phosphodiesterase 2.764 0.012 0.729 0.267
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Table 1. Cont.

Motif 17_1507
Strain Motif sequence Strand 1 e-value Product up 2 Product down 2 FC up 3 FDR up 4 FC down 3 FDR down 4

N12-0605 GCCTCATACTGACATTCAAT
CGCCGAAGCAGGTAAAGCG reverse 2.19E-16 hypothetical protein hypothetical protein 0.639 0.420 0.753 0.289

N12-0605 CGGTGTAACTATATTTTTAA
TCACATTTGGATATTCTTC forward 9.16E-07 Cyclic-di-AMP

phosphodiesterase GdpP Accessory gene regulator A −0.356 0.721 −0.100 0.934

N12-0605 CGCTTTATTCGTATATTTGTT
GGCAAGTTTGAATGCCTG forward 1.93E-07 Heptaprenyl diphosphate

synthase component 2 hypothetical protein −0.704 0.298 −0.287 0.717

N12-0605 CGCTTTACCGATTTTATTTTA
TAAATGGGGGAATTAGTG forward 2.78E-14 Iron-regulated surface

determinant protein A
High-affinity heme uptake system protein
IsdE 2.261 0.003 1.593 0.089

N12-0605 CGCTCTAACGATATCGATGTTG
AAGAGTGC GAATGGTGC forward 2.93E-16 Ribonucleoside-diphosphate

reductase 2 subunit alpha
Ribonucleoside-diphosphate reductase
subunit beta 1.063 0.211 0.957 0.204

N12-0605 CAAGAAATGGCGCTTTTCTTC
AACAAAAAAGAGAAAGCA reverse 1.18E-07 RNA polymerase sigma-H factor Protein translocase subunit SecE −1.214 0.027 0.495 0.603

N12-0605 GCTGAAGTAGCACTTGAAAAA
GACGATATCGACTCTGCG reverse 8.24E-07 Beta-barrel assembly-enhancing

protease hypothetical protein 0.029 0.977 1.196 0.081

N12-0605 CGCATTCCAGTGATCTGTTT
TTAAGCGGGTGAGTGACTC forward 1.65E-07 putative cyclic di-GMP

phosphodiesterase PdeG hypothetical protein −0.688 0.296 −0.810 0.205

N12-0605 CCCATTCCCGTTTTCGATTTAT
GATAATGTCGCTTATGG forward 9.55E-07 Phosphate import ATP-binding

protein PstB 3
Phosphate-specific transport system
accessory protein PhoU −0.116 0.928 0.295 0.801

N13-1507 GAACAAATTGCGCTCGCAA
AAATCATTGAAGATAGAGAG reverse 8.60E-07 Glutathione amide reductase hypothetical protein 4.418 0.000 2.365 0.000

N13-1507 CTCTGTCATTGTTTCGCTAA
TTAAGTGGCTGATTTCTGT forward 7.55E-07 Putative TrmH family

tRNA/rRNA methyltransferase Putative aminopeptidase YsdC 0.314 0.290 0.011 0.981

N13-1507 CCCCCAGTAATCATCTTCTTC
GTTAATATCATTAAAGTG reverse 3.67E-07 hypothetical protein hypothetical protein 1.047 0.005 1.084 0.001

N13-1507 CTCATCCATTGCTACGTCGTT
TACATTTGCTAATTCTTG forward 6.03E-07 hypothetical protein hypothetical protein −0.024 0.963 2.358 0.000

N13-1507 AGCATTCACTTTATCTCCTA
CTAAATAGGTGTATTCTGC forward 1.48E-07 Internalin-A hypothetical protein 0.482 0.353 NA NA

N13-1507 CGCTGTCCCTTTATCGTCGTT
AACAAATGTTAATGCCTC forward 1.81E-15 Listeriolysin O 1-phosphatidylinositol phosphodiesterase 4.286 0.000 1.503 0.000

N13-1507 GCCTCATACTGACATTCAAT
CGCCGAAGCAGGTAAAGCG reverse 2.19E-16 hypothetical protein hypothetical protein 1.287 0.005 2.146 0.000

N13-1507 CGGTGTAACTATATTTTTAAT
CACATTTGGATATTCTTC forward 9.16E-07 Cyclic-di-AMP

phosphodiesterase GdpP Accessory gene regulator A −0.285 0.406 0.945 0.005

N13-1507 CGCTTTATTCGTATATTTGT
TGGCAAGTTTGAATGCCTG forward 1.93E-07 Heptaprenyl diphosphate

synthase component 2 hypothetical protein −1.672 0.000 −1.265 0.000

N13-1507 CGCTTTACCGATTTTATTTT
ATAAATGGGGGAATTAGTG forward 2.78E-14 Iron-regulated surface

determinant protein A
High-affinity heme uptake system protein
IsdE 1.624 0.001 2.351 0.001

N13-1507 CGCTCTAACGATATCGATG
TTGAAGAGTGCGAATGGTGC forward 2.93E-16 Ribonucleoside-diphosphate

reductase 2 subunit alpha

Ribonucleoside-diphosphate reductase
subunit beta (thioredoxin two genes
downstream)

1.508 0.000 1.653 0.000

N13-1507 TGCTTTCTCTTTTTTGTTGAAG
AAAAGCGCCATTTCTTG forward 1.18E-07 RNA polymerase sigma-H factor putative protein YacP −0.867 0.004 −0.786 0.026
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Table 1. Cont.

Motif 17_1507
Strain Motif sequence Strand 1 e-value Product up 2 Product down 2 FC up 3 FDR up 4 FC down 3 FDR down 4

N13-1507 GCTGAAGTAGCACTTGAAAA
AGACGATATCGACTCTGCG reverse 8.24E-07 Beta-barrel assembly-enhancing

protease hypothetical protein −1.407 0.000 0.359 0.312

N13-1507 CGCATTCCAGTGATCTGTT
TTTAAGCGGGTGAGTGACTC forward 1.65E-07 putative cyclic di-GMP

phosphodiesterase PdeG hypothetical protein −0.353 0.309 −0.288 0.421

N13-1507 CCATAAGCGACATTATCAT
AAATCGAAAACGGGAATGGG reverse 9.55E-07 Phosphate import ATP-binding

protein PstB 3
Phosphate import ATP-binding protein
PstB 3 3.181 0.000 1.230 0.024

Motif 14_0047
Strain Motif sequence Strand 1 Score Product up 2 Product down 2 FC up 3 FDR up 4 FC down 3 FDR down 4

LL195 TGATAATAATTCTCA reverse 4.17E-08 Iron(3+)-hydroxamate-binding
protein YxeB

putative siderophore transport system
ATP-binding protein YusV 0.222 0.820 0.531 0.341

LL195 AGAAAATCATTTTCA forward 9.75E-07 Fe(2+) transporter FeoB hypothetical protein 1.829 0.008 1.534 0.002

LL195 TGAGAATGATTTTCA reverse 1.99E-08 Fe-S protein maturation auxiliary
factor SufT hypothetical protein 0.740 0.210 0.927 0.045

LL195 TGGTAGCCATTTTCA forward 5.38E-07 hypothetical protein putative protein YwqG −1.006 0.048 −0.165 0.774
LL195 TGAAAACAATTTTCA forward 3.78E-07 Phosphoglucomutase Aldose 1-epimerase −0.761 0.216 −0.624 0.289
LL195 TGGAAACAATTTTCA forward 6.42E-07 hypothetical protein hypothetical protein 0.893 0.209 0.812 0.239

LL195 TGAAAGTGATTTCCA reverse 1.09E-07 O-acetyl-ADP-ribose deacetylase Energy-dependent translational throttle
protein EttA 2.519 0.000 −1.055 0.176

LL195 TGAAAATGATTTTCA reverse 2.07E-09 Putative N-acetylmannosamine-
6-phosphate 2-epimerase

Ribosomal RNA small subunit
methyltransferase G 0.106 0.923 −0.749 0.137

N12-0605 TGAAAATCATTTTCA forward 2.07E-09
PTS system
glucitol/sorbitol-specific EIIA
component

Fe(3+)-citrate-binding protein YfmC 0.103 0.927 1.426 0.012

N12-0605 TGAAAATTGTTTCCA reverse 6.42E-07 hypothetical protein Protein SapB 0.037 0.977 0.099 0.940

N12-0605 TGAAAATCATTCTCA forward 1.99E-08 hypothetical protein Fe-S protein maturation auxiliary factor
SufT 0.710 0.281 1.343 0.037

N12-0605 TGAAAATTGTTTTCA reverse 3.78E-07 Phosphoglucomutase Nucleotide-binding protein YvcJ −0.854 0.223 0.424 0.569
N12-0605 TGAAAATGGCTACCA reverse 5.38E-07 hypothetical protein Putative ion-transport protein YfeO −0.542 0.500 −0.562 0.668

N13-1507 TGAAAATCATTTTCA forward 2.07E-09
PTS system
glucitol/sorbitol-specific EIIA
component

Fe(3+)-citrate-binding protein YfmC 1.276 0.019 1.784 0.000

N13-1507 TGAAAATTGTTTCCA reverse 6.42E-07 hypothetical protein Protein SapB 3.061 0.000 3.743 0.000

N13-1507 TGAAAATCATTCTCA forward 1.99E-08 hypothetical protein Fe-S protein maturation auxiliary factor
SufT 0.376 0.294 1.456 0.000

N13-1507 TGGTAGCCATTTTCA forward 5.38E-07 hypothetical protein putative protein YwqG −0.605 0.178 0.357 0.364
N13-1507 TGAAAACAATTTTCA forward 3.78E-07 Phosphoglucomutase Aldose 1-epimerase −1.563 0.000 −1.892 0.000

1 Orientation of the motif; 2 Gene product upstream/downstream of the motif; 3 Fold change of the gene upstream/downstream of the motif; 4 False discovery rate of the gene
upstream/downstream of the motif.
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3. Materials and Methods

3.1. Bacterial Strains

Three lineage I, serotype 4b, acid-resistant strains from Horlbog et al. [22] were included in this
study (Table 2). LL195 is a well characterized strain from an outbreak in Switzerland [80]. We included
a closely related CC1 strain isolated from a meat product in 2012 (N12-0605) and a CC6 strain isolated
from a human patient in 2013 (N13-1507). Both N12-0605 and N13-1507 were obtained from the Swiss
National Reference Centre for Enteropathogenic Bacteria and Listeria (NENT).

Table 2. Strains used in this study.

Strain ID Clonal Complex Serotype Isolation Source Acid Phenotype RNAseq Replicates

LL195 CC1 4b Outbreak strain Resistant 3

N12-0605 CC1 4b Meat product Resistant 3

N13-1507 CC6 4b Blood Resistant 2

3.2. Growth Conditions

L. monocytogenes were maintained as 15% glycerol stocks (Sigma-Aldrich, St. Louis, Missouri,
United States) at−80 ◦C. To obtain cultures, they were streaked onto BHI agar plates (Oxoid, Hampshire,
UK) and incubated at 37 ◦C for 16–18 h. A single colony was inoculated into 5 mL BHI and incubated at
37 ◦C for 16–18 h with shaking, sub cultured 1:100 into 5 mL of fresh BHI and grown for 6 h at 37 ◦C with
shaking to obtain an early stationary culture corresponding to OD590 1.0 plus one hour. Acid stress was
performed by adding 5 mL BHI adjusted to pH 1.6 with HCl (Fluka, Bucharest, Romania). This ratio
had been previously titrated to result in a final pH of 3. Our previous study showed that pH 3 is able
to differentiate between acid resistant and acid sensitive strains [22]. Controls were diluted 1:1 with
untreated BHI. During the acid stress, all tubes were incubated at 37 ◦C for one hour without shaking.
To avoid artefacts due to variations in the BHI composition, all liquid BHI used in this study originated
from the same batch of pre-prepared BHI.

3.3. RNA Isolation

Strains LL195 and N12-0605 were sampled in biological triplicates whereas N13-1507 was
represented in duplicate due to flow cell and sequencing depth limitations. After one hour of acid
exposure, or the respective control condition in BHI without acid, all reactions were stopped by the
addition of 1 mL of 10% acid phenol-chlorophorm in ethanol (v/v) to the cultures, which were chilled to
4 ◦C immediately. To extract the total RNA, the cultures were pelleted at 20,000× g at 4 ◦C, resuspended
in 200 µL of 10 µM Tris-buffer (Sigma-Aldrich, Buchs, Switzerland) containing 20 mg/mL lysozyme
(Sigma-Aldrich) and 50 µL of 20 mg/mL proteinase K (Qiagen, Hilden, Germany) and subsequently
lysed for 30 min at 37 ◦C. Cell lysates were then mixed with 1 mL TRI-Reagent (Invitrogen by Thermo
Fischer Scientific, Carlsbad, California, United States) and bead-beaten for 2 × 60 s with cooling on
ice in between in beat-beating tubes containing 1.4 mm ceramic beads (MagNA lyser green tubes,
Roche, Basel, Switzerland). Subsequently the samples were centrifuged at 16,000 × g at 4 ◦C and the
supernatant was transferred to a new tube, where 500 µL of bromo-chloro-propane (BCP, ACROS
Organics, Geel, Belgium) were added. After 10 min incubation at room temperature the tubes were
centrifuged for 15 min at 16,000 × g at 4 ◦C and the top aqueous layer was transferred into a new
tube. Nucleic acids were precipitated overnight in 2.5 mL isopropanol at −80 ◦C. The following day,
nucleic acids were pelleted, washed with 5 mL 75% ethanol, resuspended in nuclease free water
and adjusted to 500 ng/µL using a nanodrop (Witec AG, Sursee, Switzerland). 3 µL Turbo DNAse
(Invitrogen by Thermo Fischer Scientific) and its buffer were added to digest the genomic DNA for
one hour at 37 ◦C, with the addition of another 3 µL Turbo DNAse after 30 min to ensure complete
digestion of genomic DNA. The DNAse treatment was followed by a phenol-chloroform (Fluka)
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extraction and RNA precipitation in EtOH with 1.6% (v/v) 3M sodium acetate at −80 ◦C overnight.
The RNA was pelleted and washed with 70% ethanol, dried and resuspended in 100 µL nuclease free
water. Total RNA quality was assessed by a nanodrop measurement and an Agilent 2100 Bioanalyzer
pico Chip.

3.4. rRNA Depletion

Ribosomal RNA was depleted with Ribo-Zero rRNA Removal Reagents (Bacteria)-Low Input and
the Magnetic Core Kit-Low Input (Illumina, San Diego, California, United States) according to the
manufacturer’s specifications, and purified using the Agencourt RNAClean XP Kit (Beckman Coulter
Inc., Brea, California, United States). A pico chip run on the bioanalyzer 2100 confirmed the depletion
of 16S and 23S rRNA.

3.5. Library Preparation and Sequencing

Library preparation was done with an Illumina TruSeq RNA stranded kit. All samples were
pooled and sequenced on one lane of a Novaseq (paired-end, 150bp per read) at the Functional
Genomics Centre Zürich. The data discussed in this publication have been deposited in NCBI’s
Gene Expression Omnibus [81] and are accessible through GEO Series accession number GSE135966
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135966)

3.6. RNAseq Analysis

All strains were previously sequenced in an unrelated project. Whole genome sequences are
available under the NCBI Reference Sequence: NC_019556.1 for LL195, NZ_QYGN00000000.1 for stain
N12-0605 and NZ_QYDR00000000.1 for stain N13-1507.

Sequenced RNA reads were aligned to their corresponding genomes using the BWA mem
algorithm [82] with the default settings. Samtools [83] was used to convert and sort the output
and featureCounts [84] summarized the aligned reads. Normalization and statistical calculation of
differentially expressed genes was done in R with the EdegR package as described previously [85,86].
Differential expression (DE) was analyzed for each strain separately between the acid exposed sample
and the control without acid. Genes or features with an FDR of <0.05 and a log2 fold change (logFC)
of >1 or <−1 (representing a more than 2-fold up or down regulation) were considered significantly
differentially expressed.

To identify regulatory elements a MEME search suing standard setting was performed [87,88]
using the region 150-bp upstream of the start codons of differentially expressed genes. MEME motifs
were filtered manually using the presence of a clear palindrome and the occurrence of a clear consensus
sequence in multiple sequences as inclusion criteria. In addition, the ribosomal binding site was
excluded. The subset was then subjected to a MAST analysis using the complete genomes of the 3
strains as input.

GO ontologies of genes were identified using eggNOG [89,90]. Relative enrichments were
calculated using exact Fischer test available the topGO package in R [91]. Homologous proteins
between the 3 strains were identified with a bi-directional best hit approach using the perl script
“get_homologous” [92] and with standard settings.

3.7. Morphological Analysis

First visual inspection was done by microscopy of Gram stained cells. Acid stressed and control
samples were fixed for 45 min using 1% (v/v) paraformaldehyde (PFA) in PBS directly after acid stress
and stained according to standard protocols.

For flow cytometry, cells were also fixed using 1% (v/v) PFA in PBS, incubated for 45 min and
DAPI (Sigma-Aldrich) was added to each sample at 1 µg/mL. The samples were then analyzed on
an Image Stream X Mark II imaging flow cytometer (Merck Millipore, Burlington, Massachusetts,
United States).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135966
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A tiered gating strategy was applied to gate for events in focus of the image stream and on
single cells. These gates showed very accurate single cells in the control samples. However, a large
quantity of aggregated cells were present in the samples after acid stress due to the intensive clumping.
Gating these out would have removed more than 90% of the sample. These aggregates were therefore
treated as a result rather than an artifact. Within the above-mentioned gates, Brightfield, darkfield and
intensity of DAPI fluorescence was recorded for each cell in samples after acid stress and in controls.
The Image Stream generated images of every event in flow which also enabled a manual validation of
single events.

Motility assays were performed starting with liquid overnight cultures grown at 37 ◦C. A sterile
10 µL pipet tip was dipped into the culture and used to spot a small amount of culture onto 0.05% BHI
soft agar plates. These were incubated for 24 h at 37 ◦C and photographed.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/7/10/455/s1.
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