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Introduction
Over the last decade, nonlinear signals obtained from nonlinear 
optical (NLO) microscopy techniques have emerged as very 
useful tools for cancer detection.1–4 NLO microscopy has a 
special feature when compared with equivalent linear imaging 
techniques, it offers label-free deep optical sectioning capabil-
ities.5,6 Several biological NLO microscopy techniques have 
been developed including two-photon excited fluorescence 
(TPEF), second harmonic generation (SHG), third harmonic 
generation (THG), and coherent anti-Stokes Raman scatter-
ing (CARS). All these methods have been applied in laser 
scanning microscopes and are based on the nonlinear interac-
tions between light and excitable molecules.7,8

TPEF approach provides high-resolution images of 
molecular autofluorescence signals in living tissues and has 
proven to be useful for label-free morphological imaging in 
deep regions of the tissues.9,10 SHG microscopy is highly sen-
sitive to the presence of biological structures with noncentro-
symmetric molecular organization and has been successfully 

used to observe structural protein arrays, such as collagen.11–13 
THG signal is only generated when a medium is optically 
heterogeneous within the focal volume scale and can be used 
both to reveal the presence of lipid bodies and to highlight the 
nuclei inside the thickness of a tissue.14,15 Moreover, CARS 
microscopy provides high-resolution images of the vibrational 
states of molecules such as symmetric and asymmetric CH-
stretching vibration (ie, the main component in lipids).16,17 
The combination of these techniques has turned out valuable 
for early detection of precancerous changes.18,19 Thus, TPEF 
and THG can be used to image a variety of well-documented 
morphologic and architectural alterations, including increased 
nuclear size, increased nucleus/cytoplasm ratio, and loss of 
normal epithelial architecture. Combined TPEF—SHG 
microscopies have been applied to the alteration studies both 
in epithelial cells and the supporting stroma.20 In particu-
lar, SHG has been useful to monitor tumor progression and 
carcinogenesis, providing information about complex inter-
actions between neoplastic cells, extracellular matrix, and 
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epithelial—stromal communication.21 The image processing of 
this set of NLO microscopy approaches could make it possible 
to reveal the relationship between signals of epithelial cells 
and the collagen matrix with early epithelial carcinogenesis.

The present paper reviews the most relevant processing 
methods used to improve the accuracy of multimodal non-
linear images (mainly TPEF and SHG) in the detection of 
epithelial cancer. Methods such the ratio between TPEF and 
SHG signals (second harmonic to autofluorescence ageing 
index of dermis, SAAID), tumor-associated collagen signa-
tures (TACS), fast Fourier transform (FFT) analysis, and gray 
level co-occurrence matrix (GLCM)-based methods are pre-
sented as possible diagnostic tools for early cancer detection.

Contrast of Nonlinear Optical Microscopy
A description of the physical properties, characteristics, and 
principal contrast mechanisms of each method are summa-
rized in Table 1. TPEF is a third-order NLO resonant pro-
cess, where two photons excite an electron from the ground 
state. It is an inelastic process where photon energy is released 
at the sample. Two-photon absorption occurs only when the 
energy of the incident photons falls into the two-photon 
excitation (TPE) band, which is specific for each fluores-
cent marker. The fact that TPE depends on the square of 
the incident light, provides its confocal characteristics, that 
is, it is a process taking place only at a focal point volume. 
SHG is a second-order elastic NLO process and THG and 
CARS, on the other hand, are coherent third-order elastic 
NLO processes (Table 1). Given that two/three photons gen-
erate another photon with two/three times the energy of the 
incident photons, there is no energy released to the medium 
indicating that non in-focus cell photo-damage should be 
expected from these processes.

TPEF provides images with good signal/noise ratio of 
molecular autofluorescence signals in living tissues by stimu-
lating native fluorophores as NADH, flavins, elastin, and 
others, demonstrating the capabilities of this technique for 
label-free morphological imaging.22,23 SHG imaging mode 
can probe molecular organization both at the micro- as well as 
the nano-scale level. SHG cancelation occurs whenever emit-
ters are aligned in opposing directions within the focal volume 
of the laser. A situation occurs in isotropic media and in those 
media with cubic symmetry. In biological materials, where 
SHG emitters are well organized in noncentrosymmetric 
microcrystalline structures, the SHG from different emitters 
adds coherency, resulting in very intense SHG. Remarkable 
examples are collagen, acto-myosin complexes in muscle, 
and microtubular-based structures in living cells.24–26 THG 
has been used to monitor embryo development, cardiomyo-
cytes, erythrocytes, epithelial, neuron, and striated muscle 
cells.27–30

It can be attested that TPEF images from epithelium 
can be used to identify morphofunctional changes suffered by 
epithelial cells. SHG is an excellent approach to visualize the 

collagen network of extracellular tissue, whereas THG can 
clearly display the nuclei size and morphology during cancer 
process. The processing stage of these images provides essen-
tial information for pathological diagnosis.31

Processing Nonlinear Images
Different processing methods can be used to obtain the rela-
tionship between signals of epithelial cells and the collagen 
matrix in the carcinogenesis process. Some of the methods 
that are currently used and others potentially implementable 
with free software, such as ImageJ (NIH, Bethesda, Maryland, 
US) are described below.

TPEF and SHG are very useful techniques to analyze 
the stroma because the two main components (collagen and 
elastin) can be imaged both by SHG and TPEF microscopy, 
respectively. Several methods, mainly using images of SHG 
from collagen fibers, are used to obtain information about 
the organization, orientation, and distribution of these fiber 
components. This analysis can be done by classifying methods 
at molecular and supramolecular levels. In the first case, the 
SHG polarization anisotropy32 and forward/backward meth-
ods33 are the most powerful in collagen structural organiza-
tion determination at molecular level. However, this work will 
only show the methods oriented to analyze the supramolecular 
or tissue architectures scales since they are more accurate for 
cancer studies.

Ratio between Collagen and Elastic Tissue (SAAID)
The SAAID value is a measure of the ratio between colla-
gen and elastic tissue. As the stroma is composed primarily 
of collagen and elastic fibers, it allows the use of nonlinear 
optical signals to discriminate between altered connective tis-
sue regions in the surrounding tumor area.34–36 Specifically, 
collagen fibers are strong second harmonic signal generators, 
whereas elastic fibers only are autofluorescent emitters. This 
parameter can be applied when TPEF and SHG micros-
copy are simultaneously used. The SAAID index is defined 
as: SAAID =  (ISGH −  ITPEF)/(ISHG +  ITPEF), where I equals 
the intensity of each signal and SHG/TPEF are the above 
preselected threshold intensities. For example, to obtain this 
index, we have used the collagen—elastic tissue ratio map in 
the whole image of ovarian tissue (Fig. 1A and B). TPEF and 
SHG images were accessed using ImageJ and transformed to 
8 bit image (0–255 gray levels) type. To separate each signal 
from shot noise and the detector dark current during subse-
quent analysis, the data were thresholded between 15 and 255 
values. The whole stroma region was selected as one ROI for 
each image. It has been demonstrated that collagen content 
was increased within the tumor stroma. The quantification 
of these observations is showed by the SAAID bar graph 
(Fig. 1C). The corresponding SAAID of adenocarcinoma type 
exhibits statistically significant (P , 0.05, t-test) higher val-
ues (−0.38 ± 0.03) compared to normal stroma (−0.63 ± 0.06) 
because of the high SHG (collagen) signal and low TPEF 
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signal in this region. Another example of the SAAID index 
was the evaluation of basal cell carcinoma (BCC)—the most 
frequent skin cancer in Caucasian populations. Cicchi and 
co-workers have shown that this index differs between BCC 
(−0.87 ±  0.02), tumor—stroma interface (0.12 ±  0.08), and 
normal dermis (−0.6 ± 0.05) in all the investigated samples.35 
These researchers have verified morphological modifications 
inside the tumor—stroma interface (regions containing only 
collagen). The corresponding SAAID value of this region was 
positive because of the high collagen SHG contribution and 
the reduced TPF signal.

TACS
This parameter is frequently used to determine the collagen 
fibers orientation at the tumor—stroma boundary. At pres-
ent, there are three well characterized TACS. They are repro-
ducible during defined stages of tumor progression: TACS-1 
(presence of dense collagen localized around small tumors dur-
ing early disease), TACS-2 (collagen fibers arranged parallel 

to the tumor boundary—around 0°), and TACS-3 (collagen 
fibers disposed perpendicularly to the tumor boundary—
around 90°, when the disease becomes invasive).

The collagen fiber angle calculation (relative to the tumor 
boundary) is required to identify the epithelial zone hav-
ing abnormal appearance. After this manual selection, fiber 
angle could be measured using the angle tool option from the 
ImageJ toolbar. This tool measures the angle defined by three 
points. The first point is a random landmark along the fibril; 
the second one is the fibril closest to the epithelium (edge) of 
the tumor; and the third one, any point that, when connected 
to the first, draws a line parallel to the epithelium.

Using this parameter, for example, to analyze collagen 
transformation in ovarian cancer, the collagen fiber angle rela-
tive to the epithelium has been quantified. SHG images have 
been used along with collagen orientation, instead of the SHG 
signal (Fig.  1D and E). The TACS-2 straightness degree 
(taut) of collagen fibers became streched around the epithe-
lium (Fig.  1D); and TACS-3, identifying radially aligned 

Table 1. Principal characteristics of nonlinear techniques.

Techniques Jablonski diagram Number of  
photons

Contrast mechanics Information

TPEF 2 Electronics levels of the molecules Autofluorescence of some biological  
substances (NADH, FAD, etc.)

SHG 2 Nonlinear properties of the medium Non centrosymmetric molecules with  
spatial organization (Collagen,  
Elastin, etc.)

THG 3 Nonlinear properties of the medium Interfaces, optical inhomogeneities,  
(Cell edges, lipids)

CARS 3 Vibrational levels of the molecules Chemical information (lipids, DNA)

Abbreviations: TPEF, two-photon excited fluorescence; SHG, second harmonic generation; THG, third harmonic generation; CARS, coherent anti-Stokes Raman 
scattering; W, frequency; Ω, vibrational level; NADH, Nicotinamide adenine dinucleotide reduced; FAD, Flavin adenine dinucleotide.
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collagen fibers, that may provide the scaffolding of local inva-
sion (Fig.  1E), have been found. In normal ovarian tissue, 
collagen fibers were mainly distributed around 0° (see white 
arrows). Approximately 75% of these fibers are parallel to the 
epithelium (angle #20°). In contrast, serous adenocarcinoma 
exhibits incipient regions of local invasion (TACS-3) with a 
set of realigned fibers, most of which are disposed around 90° 
(see white arrows) with respect to epithelium (Fig. 1F).

Provenzano and co-workers have also used ImageJ to 
quantify the collagen fiber angle relative to the tumor.37 In 
this work, after the tumor boundary definition, the angle rela-
tive to its tangent was measured at every 10 µm. For TACS-2, 
they measured several regions in six independent tumors, and 
graphed them as a frequency distribution resulting in a dis-
tribution of fibers around 0°. Finally, for TACS-3 they mea-
sured 71 regions in six independent tumors. These data were 
graphed as a histogram of frequency distribution, where most 
of them were close to 90°.

FFT Analysis
FFT has proven to be a good method to assign the degree of 
image organization.38 Thereby, the FFT of a set of aligned 

fibers will have higher values along the orthogonal path to 
the direction track of the fibers and its intensity plot seems to 
have an ellipsoid shape. If the fibers are perfectly aligned, the 
ellipse will collapse to a line. For randomly oriented fibers, the 
intensity plot of the corresponding FFT image looks like a 
circle. Therefore, the anisotropy of the image can be calculated 
performing an elliptic fit on the thresholded FFT images and 
then, to calculate the ratio between its short and long axes, 
ie, its aspect ratio (AR).39 A sample will be more anisotropic 
as the AR approaches zero, whereas it will be more isotropic 
when the AR is closer to one.

To perform anisotropy calculations, squared ROI in the 
SHG images will usually be selected, with the only require-
ment being that they must be placed upon the collagen net-
work around the epithelium, since this is the region responsible 
for the stroma invasion. The square ROI is required by the 
FFT procedure of ImageJ, based on an implementation of  
the 2D fast Hartley transform.40 FFT can be carried out with 
the FFT commands under the Process function of the ImageJ 
menu. The anisotropy of the ovary SHG image of the stromal 
region has been estimated using this methodology (Fig. 1G 
and H). Three ROIs of 150 ×  150 pixels side squared have 
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Figure 1. Depicting several applications of different methods to analyze NLO signals. The panel shows representative TPEF (green) and SHG (red) images 
of (A, D, G, J) normal and (B, E, H, K) cancer  ovary. From the TPEF + SHG combination (first column), it is possible to calculate (C) the SAAID ratio. 
From the SGH image (remaining columns) and using regions near the epithelial/stromal interface (yellow line), it is possible to calculate: (F) TACS (measuring 
the collagen fiber angle relative to the epithelium); (I) FFT transforms (and fit to ellipse to estimate the anisotropy); and (L) GLCM (correlation value). 
Abbreviations: Ep, epithelium; St, stroma; TPEF, two-photon excited fluorescence; SHG, second harmonic generation; SAAID, second harmonic to 
autofluorescence ageing index of dermis; TACS, tumor associate collagen signature; FFT, fast Fourier transform; GLCM, gray level co-occurrence matrix; 
white arrows, collagen fibers; white squares, regions of interest, ROI.
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been used to ensure that the collagen network in the vicinity 
of the epithelium is registered. Figure 1I shows the AR value 
averaged on all the examined samples. In serous type tumors, 
we have found that the AR index was significantly increased 
(P , 0.05, t-test) from normal (0.62 ± 0.04) to adenocarci-
noma samples (0.78 ± 0.03).

Similarly, Williams and co-authors have analyzed auto-
matically the alignment properties of ovarian samples by 
computing FFTs of the projected images and the fitting of 
Gaussian ellipses to the resulting Fourier components.41 FFTs 
from normal and carcinomatous peritoneum image stacks 
have revealed a significant increase in asymmetry (P , 0.05) 
of the tumor fibrils with respect to normal ones (0.47 ± 0.06, 
n = 4 vs 0.89 ± 0.02, n = 4). In brief, the results confirm the 
fact that, normal ovaries are more organized tissues compared 
to adenocarcinoma.

Another way to measure the AR of the FFT profile is 
calculating the covariance matrix between rows and columns 
of the FFT image. Then, after applying the eigenvector extrac-
tion of the covariance matrix, the square root ratio of the two 
eigenvalues, corresponding to the two calculated eigenvectors 
is used as a measure of the AR.42

GLCM Analysis
The GLCM analysis method allows the classification of dif-
ferent tissues based on the evaluation of geometrical collagen 
arrangement. It provides information on the spatial relation-
ships between pixel brightness values in a given image. The 
GLCM is constructed by counting the number of occurrences 
of a gray level adjacent to another gray level, at a specified pixel 
distance “d ” and dividing each counting by the total counting 
number to obtain a probability. The result is a matrix with rows 
and columns representing gray levels and elements containing 
the probability Pd[i,j] of the gray level co-occurrence between 
pixels. The matrix is usually averaged in opposite and differ-
ent orientations (0–180°, 45–225°, 90–270°, and 135–315°)  
unless the one-dimensional feature dominates over all pos-
sible ones, in which case, the 0–180° average is sufficient. A 
detailed explanation on how this matrix is created from the 
original image can be found in Ref.42–44

The GLCM analysis can be carried out by different 
methods; they are commonly classified as contrast methods, 
orderliness methods, and statistical methods. Contrast meth-
ods can be employed in order to give quantitative information 
on the intensity fluctuations in the image. Among the contrast 
methods, homogeneity is the weighted sum of the GLCM 
pixel values. The weights are values that nonlinearly decrease 
as the distance from the GLCM matrix diagonal increases. 
Homogeneity gives information on the similarity of a pixel 
value in combination with its neighboring pixel to all the other 
pairs of neighboring pixels in the image. Orderliness meth-
ods are particularly applicable to images containing fibrillar 
structures such as SHG images of collagen, and they can be 
employed in order to give a quantitative measurement on the 

mutual orientation of collagen fiber bundles. For example, 
energy is the root squared sum of the GLCM pixel values. 
Considering that this parameter gives higher weight to the hot 
spots of the GLCM matrix, energy is a measure of orderliness 
of the image. Statistical methods are based on the statistical 
analysis of pixel value dependence, and they can be used for 
determining repetition of a certain pattern within an image. 
Among them, the correlation method probably represents 
the most powerful approach to be applied to SHG images of 
collagen.

Mathematically, the parameters are defined as:
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For d = 0, then i = j, and therefore correlation and homogeneity 
take the value 1, and energy is any number between 0 and 1. 
The texture analyses can be performed with ImageJ GLCM-
Texture plugin, which was described by Walker and collabo-
rators.45 Also other parameters such contrast, entropy, inertia, 
and variance could be estimated from the GLCM approach.

This work includes a characterization of tissues by esti-
mating the typical dimensions in which collagen maintains its 
organization. For example, the correlation of the image itself 
with a pixel separation translated from 1 to 12 or 18 pixels 
(Fig. 1J and L) was used. The feature was averaged at angles 
θ =  0, 90, 180, and 270° to take into account the fact that 
these images do not have a specific spatial orientation. The 
distance where correlation falls to 1/2, expressed in microns 
was measured. To perform the calculations, three ROI 
(100 × 100 pixel side squared) in the SHG images near the 
epithelium were selected. Correlation and entropy were mea-
sured using GLCM-Texture plugin from ImageJ, which was 
previously described by Walker and collaborators.45 Figure 1L 
shows that the correlation of normal fibrils falls off sharply 
with distance, indicating distinct, linear fibrils, whereas cor-
relation for the fibrils in adenocarcinomas remained elevated 
for larger distances, implying less defined fibrillar structure. 
Consistent with qualitative appearances, the correlation was 
found to remain higher in malignant tissues with Corr50, the 
pixel distance where the correlation dropped below 50% of 
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the initial value; significantly greater in adenocarcinomas (3.4 
pixels) compared with normal ovarian (1.7 pixels) (Fig.  1L; 
P , 0.05, t-test) tissue. In same ROI, the entropy values were 
6.26 ± 0.31 and 7.40 ± 0.58 in normal and adenocarcinoma tis-
sues, respectively. This means that normal tissues exhibit lesser 
complexity or higher organization than malignant ones.

Zhuo and co-workers have shown similar results working 
with human epithelial tumors.46 They have estimated the cor-
relation for distances ranging from 1 to 60 pixels (0.4–4.0 µm) 
in the horizontal direction of each region of interest. Their 
studies have shown that normal fibrils correlations fell off 
sharply with distance, whereas the precancerous and cancer-
ous fibrils correlations remained elevated as distance increases, 
indicating linear fibrils in the first case, and less defined fibril-
lar structure in pathological conditions. Quantitatively, the 
collagen fibrils structure in normal ECM was 10 pixels, in 
precancerous ones was 28 pixels, and in cancerous one was  
50 pixels. This reflects the fact that there is a link between the 
epithelial carcinogenesis process and progressive loss in the fine 
fibril structure. For a better understanding of the application 
possibilities, method comparisons are presented in Table 2.

Prospects of NLO Microscopy as a Useful Tool for 
the Prediction of Cancer Progression
One of many fields in which NLO microscopy has proven to 
be useful is cancer research.21 These techniques have recently 
emerged as a valuable tool for high-resolution, nondestructive, 
chronic imaging of living tumors. The combination of differ-
ent image analysis approaches described in this work may rep-
resent a powerful combination of tools to investigate collagen 
organization and remodeling of extracellular matrix in car-
cinogenesis processes. The main works developed over the last 
five years are summarized below. These works demonstrate 

the growing prospect of these methods. Additionally, some 
graphic examples of our experience in the identification of 
cancer progression are presented.

Provenzano et al. have shown the utility of TACS mea-
sured in breast cancer20,37 and Conklin et al. have found that an 
increased presence of collagen fibers aligned perpendicularly to 
the tumor boundary (TACS-3) was associated with decreased 
survival.1 These findings help to solidify a clinically relevant 
role for collagen and SHG as biomarkers with prognostic value 
for predicting breast cancer outcome. Nadiarnykh et al. have 
found that compared to normal tissue, malignant ovarian tis-
sue was characterized by denser and more ordered collagen,47 
as determined by quantitative analyses of SHG intensity 
(higher in cancer).48 Moreover, studies that have examined ex 
vivo human skin biopsies demonstrate that NLO microscopy 
approaches may allow to histo-pathologically characterize and 
discriminate normal vs. cancerous skin tissues.49–51 Perform-
ing multiple analyses of SHG and TPEF pixels in their NLO 
microscopy images, Zhuo et al. have found several significant 
differences in normal vs. neoplastic human esophageal stro-
ma.52 Using collagen density and GLCM-texture analysis, 
Hu et al. have characterized the morphological details of fresh 
pancreatic tissues and have demonstrated that it is possible to 
provide real-time histological evaluation of pancreatic can-
cer by the nonlinear optical methods.2 In colon tissues, the 
utility of TACS measured from SHG images53 was used to 
identify healthy colon mucosa, adenomatous polyp, and ade-
nocarcinoma. In uterus, Zhuo and co-workers using FFT and 
GLCM analysis have determined the link between collagen 
alteration and epithelial tumor progression.46

Different studies have shown that TPEF, SHG, and 
THG microscopy combined with precise informatics methods 
for image-evaluation can be used to detect structural changes 

Table 2. Summary of the different methods for the analysis of nonlinear images.

Methods Index/variable Values Meaning Calculation

SAAID Collagen/elastin ratio Positive (more collagen)  
Negative (more elastin)

Cancer tissues have high collagen  
concentration

Integrated density 
option  
in measure menu of  
ImageJ

TACS Fiber angle (relative  
to epithelium)

TACS-2 (θ ≅ 0°)
TACS-3 (θ ≅ 90°)

Normal tissues present TACS-2 while  
adenocarcinomas show TACS-3, which  
may be indicative of the invasive and  
metastatic growth potential

Angle tool of ImageJ

AR Fiber direction AR = 0 (anisotropic)
AR = 1 (isotropic)

Normal tissues fibers show isotropic  
behavior. While in adenocarcinomas  
the fibers are more anisotropic

FFT process of ImageJ

GLCM
CORRELATION  
(Fiber separation)
ENERGY

C ≅ 1 (displaced image = non  
displaced one, non-periodic  
fibers)
C θ ≅ 0 (displaced image ≠ non  
displaced one, periodic fibers)
[0, +1]

Normal tissues show more defined and  
periodic fibers
While adenocarcinomas tissues show  
more random and non-periodic fibers.
Energy is highest in images with uniform  
gray level or uniform gray level differences  
at the specified separation and lower for  
those with more variation in gray levels

GLCM plugin of ImageJ

Abbreviations: SAAID, second harmonic to autofluorescence ageing index of dermis; TACS, tumor-associated collagen signatures; AR, aspect ratio; θ, angle;  
C, correlation; FFT, fast Fourier transform; GLCM, gray level co-occurrence matrix.
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in the human breast31 and ovarian epithelial/stroma inter-
face.19,54,55 Significant differences in the distribution and orga-
nization of collagen fibers in the stroma component of these 
tumors have been found by using a set of scoring methods. 
Particularly, significant differences in the distribution and 
organization of collagen fibers in the stroma component of 
serous, mucinous, endometrioid, and mixed ovarian tumors as 
compared with normal ovary tissue have been found through 
the use of the alignment of collagen fibers (TACS), anisot-
ropy (FFT), and correlation (GLCM) (Fig.  2A–C). Using 
this methodology it was possible to discriminate between can-
cerous and healthy tissue, with clear cut distinctions between 
normal, benign, borderline, and malignant tumors of serous 
type55 (Fig.  2D–F). Moreover, merged TPEF  +  SHG sig-
nals to determine the collagen/elastin content ratio in stroma 
have been used (Fig. 3A). Collagen content exhibits gradual 
increases within the stroma with tumor progression, except 
for borderline tumors where the collagen content decreased 
compared to adenomas and adenocarcinomas. The corre-
sponding SAAID of both adenocarcinoma types exhibit sta-
tistically significant (P , 0.05, t-test) higher values compared 
to normal stroma because of the high SHG (collagen) and low 
TPEF signals in these regions (Fig. 3B). In the same work, 
another remarkable finding was the proper use of anisotropy 
measurements to discriminate between serous adenoma from 
mucinous adenoma and serous borderline from mucinous bor-
derline subtypes54 (Fig. 3C and D).

Evidently, the discovery of new biomarkers will be ben-
eficial to further refine the diagnostic tools. It has been found 
that, changes occurring in collagen deposition and arrange-
ment, in early tumor development and during their progres-
sion can be used as predictable tools of the disease status. The 
ovary findings in this work demonstrate that AR and correla-
tion analysis has the ability to predict the disease in human 
patients. Therefore, if more experiments are successful, SHG 
may eventually provide a more rapid, real-time substitute for 
traditional histopathological processing and analyses. Mortal-
ity rates are elevated because an efficient screening test does 
not exist presently. Approximately, 15% of ovarian cancers 
are found before metastasis has occurred. If ovarian cancer is 
found and treated before this process is triggered, the five-year 
survival rate will be around 94%.56 Thus, an early diagnostic 
test to detect premalignant changes would save many lives. In 
this sense, the unique attributes of NLO microscopy described 
here, render these methods as a promising imaging modality 
for disease diagnostics in the clinic. Also, the clinical utility 
of these optical methods could be improved by the continuous 
development and refinement of methods to obtain objective, 
quantitative information. These will be in the form of analysis 
algorithms such as Helmholtz analysis, wavelet analysis, and 
with numerical parameters relating to image frequency con-
tent and second-order gray level statistics. Further, a classifi-
cation scheme could be developed by using a support vector 
machine.

These type of studies provides the groundwork for further 
use of NLO techniques in combination with specific strate-
gies of analyses to diagnose cancer in clinic. Soon, it will be 
possible to use these techniques in real-time diagnosis such 
as intra-operative frozen section to diagnose ovary cancer, 
judge surgical margin, and differentiate benign and malignant 
lesions.

The integration of the NLO microscopy techniques plus 
informatics methods is one of the evolving areas in bioin-
formatics that promises to have a strong impact on the early 
detection of various diseases. It is shown here that differ-
ent scoring methods extracted from images obtained with 
NLO microscopy techniques are useful to detect pathological 
changes associated with cancer progression. A challenge to 
pathologists is to understand which tumors are likely to prog-
ress, especially in the case of very early carcinomas.

Conclusion
The effort to develop new diagnosing methods that could 
better identify early lesions and consequently lead to an early 
diagnosis is a challenge and a stimulus for research in this area. 
The results of different works indicate that the combination of 
different image analysis approaches summarized here repre-
sent a combination of powerful tools to investigate epithelial 
cells transformation, collagen organization, and extracellular 
matrix remodeling in epithelial tumors.

The different NLO microscopy techniques, together 
with nonlinear signal processing methods discussed through-
out this review have superior depth penetration, sensitivity, 
and signal-to-noise ratio and have been proved to produce 
less photobleaching and photo-damage. This allows nonlinear 
signal to overcome many of the limitations of conventional 
microscopy. In combination with sophisticated animal models 
and computer-assisted data analysis, NLO microscopy tech-
niques and image processing methods are opening new doors 
to the study of tumor biology and facilitating the development 
of new strategies for early tumor diagnosis and treatment.
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Figure 2. (A) Representative bright field H&E and SHG images of tissues diagnosed as normal ovary, serous, mucinous, endometrioid, and mixed 
adenocarcinomas. FFT intensity images obtained after 2D-DFT of the only one ROI are shown below the SHG images. (B) Top right, AR results 
corresponding to ovarian samples averaged on all ROI examined. Each bar represents the mean ± SD of independent 2D-DFT. Asterisks (**) indicate 
P , 0.01 difference from normal samples. (C) Histograms showing the quantitative analysis of TACS collagen fibers - in normal samples are arranged 
around 0° (angle , 20°), while in tumors samples, the angles are around 90° (angle .70°). Nor: normal; Ser: serous; Muc: mucinous; End: endometrioid; 
Mix: mixed. (D) Representative SHG images of tissues diagnosed as (left to right) normal ovary, serous adenoma, serous borderline tumor, and serous 
adenocarcinoma. (E) Histogram exhibiting the AR quantitative outcome of the ovarian samples. They were averaged on all the examined ROI. Four ROI 
(120 × 120 pixel side squared) in each subtype of serous sample were selected. Each bar represents the mean ± SD of independent 2D-DFT. Significant 
differences from normal samples were indicated by (*) and (**): P , 0.05 and P , 0.01, respectively. (F) Correlation values in serous ovarian tumors 
versus distances pixels. The correlation for distances ranging from 1 to 18 pixels (0.35–6.0 µm) in three ROI of 101 × 101 pixels of interest for each biopsy 
was calculated. 
Abbreviations: Nor, normal; Ade, adenoma; Bor, borderline; Adenoc, adenocarcinoma; St, stroma; white squares, regions of interest, ROI; yellow line, 
epithelial/stromal interface.
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Figure 3. Collagen/elastin ratio quantification in the ovarian stroma. (A) Representative merges of TPEF (green) and SHG (red) cross-sectional images 
of ovarian tissues. (B) Histogram showing the outcome of the SAAID index from stroma regions – each bar represents the mean ± SD of independent 
measurements. Single asterisks indicate a significant increase as compared to the nontumor tissues (P , 0.05, t-test). (C) Representative SHG 
(red) + THG (magenta) from ovarian images. SHG images allow to obtain anisotropy, the results of the AR (each bar represents the mean ± SD of 
independent measurements) of ovarian samples averaged on all ROI examined. (D) ANOVA comparisons of pathological against normal tissues. Single 
dagger (†) or single asterisk (*) indicate significant differences (P , 0.05), whereas double dagger (††) or double asterisk (**) indicate very significant 
differences (P , 0.01). 
Abbreviations: Border, borderline; Adenocar, adenocarcinoma; Ep, epithelium; St, stroma; white squares, regions of interest, ROI; yellow line, epithelial/
stromal interface.
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