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    Introduction 
 Cytoplasmic tyrosine kinases of the Src family (Src family pro-

tein tyrosine kinases [SFK]) play important roles in signal 

transduction induced by a large number of extracellular stimuli 

including growth factors, integrins, and cytokines ( Martin, 2001 ). 

For example, they control cellular responses induced by PDGF 

such as mitogenesis, survival, and cytoskeleton rearrangement. 

In contrast to several mitogens, PDGF-induced SFK activation 

does not have an impact on the Ras – MAPK pathway but, rather, 

controls  c-myc  expression that is needed for cell cycle progres-

sion ( Bromann et al., 2004 ). Several Src substrates promoting 

mitogenic signaling have been characterized, including Shc, 

Stat3, Vav2, and Abl ( Bromann et al., 2004 ). Rac has been fur-

ther identifi ed as an important element of Abl signaling, and we 

have shown that Src-induced  c-myc  expression and cell cycle 

progression need Rac/Jun N-terminal kinase and Rac – NADPH 

oxidase signaling pathways ( Boureux et al., 2005 ). Intriguingly, 

requirement of SFK is also dependent on functional p53 ( Broome 

and Courtneidge, 2000 ;  Furstoss et al., 2002 ). Although not 

completely understood, data from  Niu et al. (2005)  suggest that 

Stat3 mediates p53 down-regulation, an event which is required 

for late G1 progression. Nevertheless, additional regulatory 

mechanisms might be envisaged. 

 How Src induces signaling specifi city is not clearly estab-

lished. Although phosphorylation of appropriate substrates 

may be part of the mechanism, spatial regulation could also 

be implicated. Indeed, SFK localization at focal adhesions is 

crucial for cell adhesion and migration ( Frame, 2004 ), and ac-

cumulation in plasma membrane lipid rafts is apparently important 

for T and B cell receptor activation ( Janes et al., 1999 ). Lipid 

rafts are somewhat controversial structures, defi ned as micro-

domains enriched in cholesterol and sphingolipids which con-

centrate and regulate signaling proteins at the plasma membrane 

( Horejsi, 2005 ). In nonlymphoid cells, this function may be 

partially  ensured by caveolae. These membrane invaginations 
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plasma membrane, whereas Csk is strictly cytosolic. Thus, in vivo 

activity requires membrane-associated Csk binders that allow 

its recruitment to subcellular compartments where SFK reside. 

For example, paxillin recruits Csk to the focal adhesions that 

may regulate SFK adhesive and migratory functions (  Baumeister 

et al., 2005 ), whereas Dok-1 induces Csk translocation to the 

plasma membrane for mitogenic regulation ( Zhao et al., 2006 ). 

This regulation is governed by a Csk-SH2 pTyr-dependent 

mechanism, and phosphorylation of Csk-binding proteins is 

triggered by SFK, which defi nes a negative-feedback regula-

tory loop. 

 Recently, a novel group of signaling proteins has emerged 

that may also be involved in SFK signaling and its regulation 

during immunoreceptor stimulation. This family, called TRAPs 

(transmembrane adaptor proteins), currently comprises seven 

members, the founder being LAT (the linker of activation of 

T cells;  Horejsi et al., 2004 ). They all contain a short extracellu-

lar single transmembrane and a long intracellular domain with 

tyrosine motifs that potentially interact with SH2 domains of 

other signaling proteins. For example, LAT comprises four Tyr 

that, when phosphorylated by ZAP70 (a downstream effector of 

the SFK Lck and Fyn), create binding sites for PLC �  and Grb2, 

which are both required for effi cient T cell activation. Another 

member of this family, PAG (phosphoprotein associated with 

glycosphingolipid-enriched microdomains;  Brdicka et al., 2000 ), 

also called Cbp (Csk-binding protein;  Kawabuchi et al., 2000 ), 

is ubiquitously expressed, unlike other members of the family 

whose expression is mostly restricted to hematopoietic tissues. 

PAG contains 10 Tyr residues in the cytoplasmic domain, 9 

of which are SFK phosphorylation sites, 2 poly-Pro motifs for 

 interaction with SH3-containing proteins, and 2 potential pal-

mitoylation sites implicated in lipid rafts localization ( Horejsi 

et al., 2004 ). It may allow Csk recruitment in these structures 

through interaction of Csk-SH2 with pTyr317. Thus, PAG may 

defi ne an additional negative regulatory loop toward SFK in mem-

brane domains such as caveolae ( Shima et al., 2003 ). In this 

 paper, we have addressed the role of PAG in the regulation of 

SFK mitogenic signaling. We show that this adaptor, indepen-

dently of binding to Csk, regulates PDGFR partitioning at the 

plasma membrane through the ganglioside GM1. 

 Results 
 PAG negatively regulates Src mitogenic 
signaling 
 We fi rst addressed the role of Csk in the PDGF-induced Src 

 mitogenic signal transduction pathway. To this end, we trans-

fected NIH 3T3 cells with a Csk-expressing construct. After se-

rum starvation, we stimulated the transfected cells with PDGF 

for cell cycle reentry and monitored de novo DNA synthesis 

by BrdU incorporation into the nuclei. PDGF stimulation in-

duced a 50% BrdU incorporation in control cells, which was 

 inhibited by Csk overexpression ( Fig. 1 A ). [ID]FIG1[/ID]  DNA synthesis was 

restored by coexpression of the transcription factor Myc or 

the active RacV12 mutant of the Rho family of small GTPases, 

two elements of the Src pathway ( Bromann et al., 2004 ;  Boureux 

et al., 2005 ). In contrast, the active RasL61 mutant could not 

are composed of cholesterol, sphingolipids, structural proteins 

of the caveolin family, and signaling molecules. They play cru-

cial roles in signal transduction induced by growth factors ( Pike, 

2005 ). In fi broblasts, they are highly abundant, regulate the 

 localization of PDGF receptors (PDGFR), and contain probably 

 > 25% of the SFK present in these cells ( Veracini et al., 2006 ). 

We have recently reported that these domains regulate SFK 

 mitogenic signaling through SFK – PDGFR complex formation. 

In contrast, caveolae do not control PDGF-induced SFK signal-

ing leading to F-actin assembly for dorsal ruffl es formation 

 ( Veracini et al., 2006 ). Therefore, proteins that regulate tyrosine 

kinases in such membrane domains may play important roles in 

signaling specifi city. 

 Src activity is subjected to a strict control based on intra-

molecular interactions of its SH2 domain with pTyr527 (phos-

phorylated Tyr527; referred to the avian Src) and of the SH3 

domain with a linker domain between the SH2 and the catalytic 

core that keep the kinase in a closed and inactive conformation 

( Boggon and Eck, 2004 ). Phosphorylation of Tyr527 at the 

C terminus by the cytoplasmic tyrosine kinase Csk is crucial for 

SFK inactivation. Indeed,  Csk  inactivation in mice causes aber-

rant SFK activity and lethality during embryogenesis ( Imamoto 

and Soriano, 1993 ;  Nada et al., 1993 ). However, how Csk phos-

phorylates SFK in vivo is only partially understood. Although 

Src is a very good substrate in vitro, it does not interact effi -

ciently with Csk in vivo because of the fact that Src is at the 

 Figure 1.    PAG inhibits PDGF-induced Src mitogenic signaling.  (A) Csk 
overexpression inhibits PDGF-induced Src mitogenic signaling. Quiescent 
NIH 3T3 seeded on coverslips and transfected, or not, with the indicated 
constructs were stimulated, or not, with 25 ng/ml PDGF in the presence 
of BrdU for 18 h. (B) PAG inhibits PDGF-induced Src mitogenic signaling. 
Quiescent NIH 3T3 seeded onto coverslips and transfected, or not, with 
the indicated constructs were treated as in A. (C) PAG does not inhibit 
mitogenesis in p53-defi cient cells. p53 +/+  and p53  � / �   MEF transfected, 
or not, with a PAG-encoding construct were stimulated, or not, with PDGF 
in the presence of BrdU. (D) PAG does not affect SrcY527F-driven DNA 
synthesis. Quiescent NIH 3T3 cells transfected with the indicated con-
structs were incubated with BrdU for 18 h. Cells were then fi xed and 
processed for immunofl uorescence. The percentage of transfected cells 
that incorporated BrdU was calculated as described in Material and 
methods. Results are expressed as the mean  ±  SD of three to fi ve in-
dependent experiments.   
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expressed the adenovirus E1B (early 1B) 55K protein, which 

inhibits p53 transactivation ( Yew and Berk, 1992 ). These fi nd-

ings are consistent with the notion that PAG might inhibit the 

Src mitogenic pathway. Interestingly, PAG did not affect the 

 capacity of oncogenic SrcY527F per se to induce DNA synthe-

sis ( Fig. 1 D ), indicating that it may regulate signaling upstream 

of SFK, probably via a PDGF-induced SFK activation. 

 PAG mitogenic inhibition is independent 
of its interaction with Csk 
 We next asked whether PAG function was mediated by its associ-

ation with Csk. Surprisingly, we found that the PAG Y317F, a 

mutant which did not interact with Csk ( Brdicka et al., 2000 ; 

 Kawabuchi et al., 2000 ), could still inhibit mitogenesis ( Fig. 2 B , 

left). [ID]FIG2[/ID]  To confi rm this observation, we coexpressed PAG with an 

inactive form of Csk, Csk-K  �  . By associating with PAG, Csk-K  �   

was expected to prevent recruitment of endogenous Csk to mem-

brane domains and, therefore, to overcome PAG inhibitory effect. 

As this was not the case, we concluded that the PAG antimito-

genic effect is independent of its interaction with Csk. PAG con-

tains nine additional Tyr residues that, when phosphorylated, 

create binding sites for other SH2-containing signaling proteins, 

including RasGAP and the adaptor Sam68 ( Smida et al., 2007 ). 

Hence, we investigated whether one of these Tyr residues played 

a role in PAG antimitogenic effect. However, we found that all 

mutants in which a single Tyr residue was replaced by Phe were 

still inhibitory (unpublished data). We also tested the activity of 

overcome the G1 block induced by Csk, confi rming the Ras-

 independent nature of the Src pathway ( Bromann et al., 2004 ). 

We concluded that Csk can regulate the PDGF-induced Src mito-

genic function. 

 Our previous study suggested that Src mitogenic signaling 

was initiated in caveolae ( Veracini et al., 2006 ). To confi rm this 

data, we analyzed mitogenesis in cells with reduced level of ca-

veolin. Although caveolin-1 knockdown promoted DNA syn-

thesis by itself in 25% of NIH 3T3 cells, it signifi cantly reduced 

PDGF mitogenic response in comparison to control cells, confi rm-

ing the role of caveolin in this signaling pathway (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200705102/DC1). 

The residual mitogenic response could be attributed to the 

moderate effi cacy of our siRNA to reduce plasma membrane 

caveolin-1 levels in cells cultured at high density ( Galbiati et al., 

1998 ) as required for effi cient induction of quiescence. Never-

theless, we do not exclude the involvement of additional mem-

brane domains in this cellular response. We were next interested 

in the adaptors that target Csk to these domains, particularly 

PAG. PAG overexpression strongly inhibited DNA synthesis in-

duced by PDGF ( Fig. 1 B ). As for Csk, active RacV12 and Myc 

rescued the PDGFR signaling that was blocked by PAG. Myc 

effect was specifi c as it was not observed by expressing Fos. 

Moreover, although PAG inhibited the mitogenic response in-

duced by PDGF in p53 +/+  mouse embryonic fi broblasts (MEF), 

this inhibitory effect was not observed in p53  � / �   MEF ( Fig. 1 C ). 

A comparable result was described in NIH 3T3 cells that co-

 Figure 2.    PAG mitogenic inhibition is indepen-
dent of Csk but requires PAG palmitoylation 
sites.  (A) Schematic of the PAG constructs 
used. The extracellular (extra), transmembrane 
(TM), and cytoplasmic domains are indicated 
as well as the Csk (Y317) binding site and the 
GFP fused to PAG sequences. (B) PAG mito-
genic inhibition does not require binding to 
Csk. Quiescent NIH 3T3 cells were transfected 
with the indicated constructs and stimulated, 
or not, with PDGF in the presence of BrdU. 
(C, left) Comparison of the levels of PAG and 
PAGY317F. (C, right) PAG-N does not bind to 
Csk unlike PAG-C. Protein levels were assessed 
by Western blotting with the indicated anti-
bodies from whole cell lysates (WCL) of HEK 
293 cells expressing the shown constructs. Csk – 
PAG complex formation was assessed by co-
immunoprecipitation with an anti-Csk antibody. 
Molecular masses are indicated in kilodaltons. 
(D) Schematic of the PAG-N constructs used. 
Palmitoylation sites are indicated. (E) Levels of 
PAG-N and PAG-NCC/AA in whole cell  lysates 
(top) and in CEF (bottom). HEK 293 cells trans-
fected with the indicated constructs were lysed 
with Triton X-100 and homogenized with a 
Dounce, followed by sucrose gradient fraction-
ation. Fractions were then directly analyzed 
by Western blotting with anti-GFP and anti-
caveolin antibodies, as indicated. The respec-
tive proteins as well as the fractions ’  numbers 
are shown. Molecular masses are indicated 
in kilodaltons. (F) PAG-N mitogenic inhibition 
requires the palmitoylation sites. Quiescent NIH 
3T3 cells transfected with the indicated con-

structs were stimulated, or not, with PDGF in the presence of BrdU. Cells were then fi xed and processed for immunofl uorescence. The percentage of trans-
fected (or infected) cells that incorporated BrdU was calculated as described in Material and methods. Results are expressed as the mean  ±  SD of three to 
fi ve independent experiments.   
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A Triton X-100 cell lysate was fractionated through a sucrose 

gradient and CEF were isolated in the light fractions (2 – 4) as 

shown by the bulk of caveolin ( Veracini et al., 2006 ). As shown 

in  Fig. 2 E , PAG-N was localized in CEF. Mutation of the lipid 

acylation sites Cys39 and Cys42 into Ala (PAG-N CC/AA) was 

sufficient to abrogate this localization. Interestingly, these 

 mutations also impaired the capacity of PAG-N to inhibit mito-

genesis ( Fig. 2 F ), suggesting that targeting to caveolae and/or 

other membrane domains is required for PAG-N function. We then 

asked whether PAG-N could also regulate growth factor sig-

naling outside membrane microdomains. First, we examined 

the effect of PAG-N on PDGF-induced dorsal ruffl e formation, 

which is known to be independent of caveolae ( Veracini et al., 

2006 ). We observed that 30% of control NIH 3T3 cells exhib-

ited at least one dorsal ruffl e 5 min after PDGF stimulation 

( Fig. 3 A ) and that this response was not affected by over-

expression of PAG-N. We then analyzed the mitogenic response 

induced by EGF in NIH 3T3 cells. Although the dominant-neg-

ative Cav-3DGV inhibited PDGF mitogenic response ( Veracini 

et al., 2006 ), it did not affect the one induced by EGF ( Fig. 3 B ). 

This indicated that, in NIH 3T3 cells, EGF does not require 

 caveolae and/or cholesterol-enriched membrane domains for 

mitogenesis. Interestingly, PAG-N also had no effect on EGF 

cellular response, whereas it still inhibited the one elicited by 

PDGF ( Fig. 3 C ). We concluded that PAG-N function is tightly 

linked to the signaling processes dependent on membrane do-

mains such as caveolae. 

 PAG-N displaces PDGFR from caveolae, 
leading to the prevention of Src mitogenic 
signaling 
 We next addressed the molecular mechanism by which PAG-N 

inhibits SFK mitogenic function in greater detail. Because PAG-N 

may affect signaling upstream of SFK, we hypothesized that 

it could inhibit SFK-PDGFR coupling in caveolae. This idea 

was fi rst evaluated in CEF of HEK 293 cells expressing human 

PDGFR  � , with or without PAG-N. Surprisingly, PAG-N re-

duced PDGFR level in CEF by 50%, whereas SFK concentra-

tion remained unchanged ( Fig. 4 A , left). [ID]FIG4 [/ID]  Moreover, PAG-N 

did not affect the total level of the receptor ( Fig. 4 A , right), 

thus excluding any protein degradation mechanism. The speci-

fi city of this inhibition was also illustrated by the inability of 

PAG-N CC/AA to displace the receptor from CEF. We con-

fi rmed these observations by electron microscopy using immuno-

gold labeling of PDGFR in caveolae of NIH 3T3 cells infected 

with mock or PAG-N retroviruses. Indeed, although 50% of 

 caveolae were positive for PDGFR immunolabeling in control 

cells,  < 10% were positive in PAG-N – expressing cells ( Fig. 4 B ). 

In contrast, PAG-N did not affect the caveolar immunogold 

labeling of caveolin, thus confi rming the specifi city of this ef-

fect ( Fig. 4 C ). We concluded that PAG-N specifi cally excludes 

PDGFR from caveolae. 

 We then addressed the biological consequence of PDGFR 

caveolar depletion on Src mitogenic signaling. Although PDGFR 

association with SFK was observed in CEF from PDGF-stimulated 

control cells, complex formation was largely reduced in cells 

infected with PAG-N ( Fig. 5 A ). [ID]FIG5 [/ID]  PAG-N also increased the 

the PAG-N mutant fused to the GFP, which comprises only the 

fi rst 97 aa encompassing the extracellular/transmembrane do-

mains, and a short cytoplasmic sequence without any obvious 

binding motifs for signaling proteins. Remarkably, PAG-N was 

suffi cient to mimic the antimitogenic effect of full length PAG. 

Moreover, coexpression of PAG-N with Myc or RacV12 restored 

the mitogenic response of these cells upon PDGF stimulation 

( Fig. 2 B , right). Conversely, expression of PAG-C [98 – 433] 

fused to GFP, which could still associate with Csk, did not affect 

mitogenesis ( Fig. 2, B  [right]  and C  [middle and right]). We ob-

tained similar data when PAG-N was transduced by retroviral in-

fection, which induced moderate protein expression and, thus, 

excluded a nonspecifi c inhibitory effect caused by high protein 

expression ( Fig. 3 C ). [ID]FIG3[/ID]  In conclusion, PAG-N is suffi cient to in-

hibit Src mitogenic signaling. 

 PAG-N does not have an impact on growth 
factor signaling outside caveolae 
 We next investigated how membrane partitioning of PAG-N 

 affects its activity. To this aim we used caveolae-enriched frac-

tions (CEF) purifi ed from HEK 293 cells expressing PAG-N. 

 Figure 3.    PAG-N does not regulate growth factor signaling outside caveolae.  
(A) PAG-N does not affect PDGF-induced dorsal ruffl es ’  formation. (A, left) 
An example of circular dorsal ruffl e formation assessed by actin staining 
in NIH 3T3 cells infected with the indicated retroviruses, stimulated or not 
with PDGF for 10 min. (A, right) Statistical analysis of dorsal ruffl e forma-
tion in cells infected with the shown retroviruses, treated, or not, with 5  μ M 
SU6656 for 30 min and stimulated with PDGF for 10 min. (B) EGF-induced 
mitogenic response is not regulated by caveolae in NIH 3T3 cells. Quies-
cent cells transfected with Cav3-DGV were stimulated with 25 ng/ml PDGF 
or 100 ng/ml EGF in the presence of BrdU. (C) PAG-N does not affect 
EGF-induced DNA synthesis. The percentage of transfected (or infected) 
cells that incorporated BrdU or that formed dorsal ruffl es was calculated 
as described in Material and methods. Results are expressed as the mean  ±  
SD of three to fi ve independent experiments. **, P  <  0.01 (using Stu-
dent ’ s  t  test).   
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PAG-N – expressing cells. This was confi rmed by electron micros-

copy, which showed that 70% of mature caveolae were con-

nected to the surface of cells expressing PAG-N as compared 

with 25% in mock-infected cells (Fig. S2, available at http://

www.jcb.org/cgi/content/full/jcb.200705102/DC1). This fi nding 

suggested that PAG-N modulates caveolae properties and/or 

endocytosis. In addition to caveolin, lipid constituents, such as 

cholesterol and ganglioside GM1, also play important roles in 

caveolae functions ( Sharma et al., 2004 ). Remarkably, we ob-

served a large accumulation of GM1 at the surface of cells ex-

pressing PAG-N ( Fig. 6 A ). [ID]FIG6[/ID]  This accumulation was dependent 

on the membrane domain localization of the adaptor, as the 

 mutant PAG-N CC/AA did not modify GM1 membrane level. 

A moderate but signifi cant accumulation of cholesterol was also 

association of SFK with caveolin, which is thought to partici-

pate in its catalytic inactivation ( Li et al., 1996 ). Reduction of 

SFK – PDGFR complex formation was also suggested by a de-

crease of PDGF-induced SFK activation as well as 

phosphorylation of the Src mitogenic substrates Stat3, Tyr705, 

Shc, Tyr239, and Tyr240 ( Bromann et al., 2004 ) in cells ex-

pressing PAG-N ( Fig. 5, B and C ). Conversely, activation of 

ERK1 and 2 upon PDGF stimulation was not modifi ed ( Fig. 5 D ), 

indicating that PAG-N does not inhibit all signaling pathways 

emanated from the activated receptor but only the caveolae-

regulated signaling. 

 PAG-N displaces PDGFR from caveolae 
via GM1 
 We then investigated how PAG-N depletes PDGFR from caveo-

lae. Because PAG-N does not interact physically with PDGFR 

(unpublished data), we reasoned that it may affect caveolae 

properties necessary for PDGFR localization. Indeed, we ob-

served a drastic redistribution of caveolin at the periphery of 

 Figure 4.    PAG-N excludes PDGFR from caveolae.  (A) PAG-N reduces the 
level of PDGFR in CEF of HEK 293 cells expressing PDGFR. Cells were 
transfected with the indicated constructs and lysed with 1% Triton X-100 
lysis buffer followed by sucrose gradient fractionation. Levels of PDGFR, 
caveolin, and SFK in CEF are shown. Levels of PDGFR and PAG mutants in 
a whole cell lysate (WCL) are also shown. Molecular masses are indicated 
in kilodaltons. (B) An example (arrows indicated PDGFR-labeled caveolae; 
left) and statistical analysis (mean  ±  SD; right) of PDGFR immunogold label-
ing in caveolae of NIH 3T3 cells infected with the indicated constructs are 
shown. (C) PAG-N does not affect caveolin localization in caveolae. An 
example (arrows indicate caveolin-labeled caveolae; left) and statistical 
analysis (mean  ±  SD; right) of caveolin immunogold labeling in caveolae 
of NIH 3T3 cells infected as indicated are shown. **, P  <  0.01 (using 
Student ’ s  t  test).   

 Figure 5.    PAG-N inhibits SFK mitogenic signaling.  (A) PDGFR – SFK com-
plex formation is reduced in CEF of NIH 3T3 cells infected with PAG-N. 
Quiescent cells infected with the indicated retroviruses were stimulated with 
PDGF for 10 min. SFK association with caveolin and active PDGFR in CEF 
were evaluated by Western blotting of immunoprecipitated kinases with the 
indicated antibodies. Level of immunoprecipitated SFK is also shown. (B) Src 
mitogenic signaling is affected by PAG-N. SFK activity was measured by 
Western blotting with anti-pY416 antibody (left) or by in vitro kinase assay 
using denatured enolase (right) from immunoprecipitated kinases of the 
indicated cells stimulated or not with PDGF. Quantifi cation (mean  ±  SD) of 
SFK activity was expressed as the ratio between active SFK and total SFK 
levels. (C) PAG-N inhibits phosphorylation of SFK mitogenic substrates. 
Levels of Stat3 and Shc phosphorylated on Tyr705 (left) or on Tyr239 and 
Tyr240 (right) are shown for cells infected with the indicated retroviruses. 
(D) PAG-N does not affect PDGF-induced Erk1-2 activation. Lysates of the 
indicated cells stimulated, or not, with PDGF for the indicated times were 
subjected to Western blotting with anti – phospho-Erk and anti-Erk – specifi c 
antibodies. Molecular masses are indicated in kilodaltons. *, P  <  0.05 
(using Student ’ s  t  test).   
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observed at the surface of cells stably expressing PAG-N in 

comparison to mock-infected cells (unpublished data), confi rm-

ing that PAG-N alters caveolae constituents. We then analyzed 

the effect of such modifi cations in membrane lipid constituents 

on PDGFR membrane partitioning. Previous reports suggested 

 Figure 6.    PAG-N displaces PDGFR from caveolae and inhibits Src mito-
genic signaling via GM1.  (A) PAG-N increases GM1 content at the cell 
surface. Representative example of quiescent NIH 3T3 cells transfected 
with the indicated constructs and stained for GM1 at the cell surface with 
CTxB – Alexa 594. Arrows indicate the GM1 staining of transfected cells. 
(B) Exogenous GM1 reduces PDGFR level in CEF. HEK 293 cells express-
ing PDGFR were treated at 4 ° C with 10  μ M GM1 for 30 min and then frac-
tionated through a sucrose gradient. Levels of PDGFR and caveolin in CEF 
are shown as well as the level of PDGFR in whole cell lysates. Molecular 
masses are indicated in kilodaltons. (C) PAG-N depletes caveolar PDGFR 
via GM1. Representative example (left) and statistical analysis (right) of 
NIH 3T3 cells treated with GM1 or ethanol (vehicle) and then subjected to 
PDGFR immunogold labeling. Arrows highlight PDGFR-positive caveolae. 
(D) GM1 regulates PDGF-induced Src mitogenic signaling. Quiescent NIH 
3T3 cells transfected with the indicated constructs were incubated, or not, 
with 10  μ M GM1 at 4 ° C for 30 min and stimulated with PDGF at 37 ° C 
for 18 h in the presence of BrdU. Cells were then fi xed and processed for 
immunofl uorescence. The percentage of transfected cells that incorporated 
BrdU was calculated as described in Material and methods. Results 
are expressed as the mean  ±  SD of three to fi ve independent experiments. 
**, P  <  0.01 (using Student ’ s  t  test).   

that PDGF localization could be regulated by GM1 ( Mitsuda et al., 

2002 ). Therefore, we hypothesized that exclusion of PDGFR 

from caveolae by PAG-N was mediated by GM1. Indeed, exog-

enous GM1 reduced PDGFR accumulation in CEF from HEK 

293 cells expressing the human receptor ( Fig. 6 B ). This fi nding 

was further confi rmed by electron microscopy on NIH 3T3 

cells, where immunogold labeling of PDGFR in caveolae was 

reduced by 80% upon addition of exogenous GM1 ( Fig. 6 C ). 

We then asked whether GM1 could also influence PDGF-

 induced mitogenesis. Exogenous GM1 reduced PDGF mitogenic 

response by 70% ( Fig. 6 D ). This inhibition was reversed by ex-

pression of Myc or RacV12, two elements of the Src pathway 

( Bromann et al., 2004 ;  Boureux et al., 2005 ). In contrast, it was 

not modifi ed by expression of the constitutively active RasL61 

mutant or the transcription factor Fos, demonstrating that GM1 

inhibitory effect was independent of Ras. We concluded that an 

excess of GM1 at the plasma membrane delocalizes PDGFR from 

caveolae and inhibits PDGF mitogenic response via inhibition 

of an Src-dependent signaling pathway. 

 The ganglioside-specifi c sialidase 
Neu-3 mediates PAG-N – induced GM1 
antimitogenic effects 
 We next sought to try to understand how PAG-N induces cell 

surface GM1. The effect of PAG-N CC/AA suggested a role 

for membrane domain localization in this molecular process. 

Furthermore, we found that caveolin-1 knockdown also reduced 

the capacity of PAG-N to impact on GM1 ( Fig. 7, A and B ), 

suggesting that caveolin or caveolae integrity might be also 

required. [ID]FIG7 [/ID]  The ganglioside-specifi c sialidase Neu-3 allows the 

conversion of di- and trisialidated gangliosides to monosialidated 

glycolipids such as GM1. Interestingly, this enzyme is localized 

at the external leafl et of the plasma membrane and interacts with 

caveolin ( Wang et al., 2002 ;  Papini et al., 2004 ). We thus inves-

tigated whether Neu-3 was involved in PAG-N – induced GM1 

effects. Neu-3 knockdown strongly reduced GM1 cell surface 

accumulation elicited by PAG-N ( Fig. 7, A – C ). We confi rmed 

this result using 2-deoxy-2,3-didehydro- N -acetylneuraminic 

acid (DANA), which specifi cally inhibits cell surface – localized 

Neu-3 ( Da Silva et al., 2005 ). DANA treatment largely reversed 

both PAG-N – induced GM1 cell surface accumulation and PDGFR 

displacement from caveolae, confi rming Neu-3 knockdown ex-

periments ( Fig. 7, A, B, and D ). We then addressed the bio-

logical impact of Neu-3 activity on PAG-N antimitogenic effect. 

Neu-3 inhibition, either with DANA ( Fig. 7 E , left) or through 

Neu-3 siRNA transduction ( Fig. 7 E , right), largely reversed 

PAG-N mitogenic inhibition. Collectively, these data point to GM1 

as a mediator of PAG-N antimitogenic function. Moreover, these 

observations stress that Neu-3 controls PAG-N – induced GM1 

antimitogenic effects. 

 PAG antimitogenic function is also 
mediated by a Neu3 – GM1 pathway 
 We next asked whether full-length PAG could also inhibit PDGF 

mitogenic response through a similar mechanism. First, we found 

a similar GM1 accumulation at the cell surface of cells express-

ing PAG, which was abolished by the Neu-3 cell surface inhibitor 
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 Endogenous PAG regulates PDGF 
mitogenic activity via a GM1-dependent 
mechanism 
 Finally, we asked whether endogenous PAG had a similar role. 

To this end, mouse NIH 3T3 cells were stably transfected with 

a vector expressing a small hairpin RNA that reduced PAG 

level in CEF by 80%, as compared with mock-transfected cells 

( Fig. 9 A ). [ID]FIG9[/ID]  We observed that GM1 accumulation at the cell sur-

face was significantly reduced in PAG knocked-down cells 

( Fig. 9 B ). Remarkably, PDGFR caveolar distribution was sig-

nifi cantly increased in cells with reduced PAG, as revealed 

by the appearance of multi-labeled PDGFR beads in caveolae, 

whereas caveolin was not ( Fig. 9 C ). In accordance with our 

hypothesis, exogenous GM1 largely restored PDGFR mono-

labeling in caveolae. We then addressed the effect of endogenous 

PAG on mitogenesis. PAG down-regulation induced an increase 

DANA ( Fig. 8 A ). [ID]FIG8[/ID]  PAG also decreased PDGFR localization in 

caveolae, which was fully restored by lowering GM1 cell sur-

face level via Neu-3 inhibition with DANA ( Fig. 8 B ). Most im-

portantly, DANA restored PDGF mitogenic response in cells 

expressing PAG ( Fig. 8 C ). Thus, we concluded that PAG mito-

genic inhibition is ensured by its N terminus and implicates a 

Neu-3 – GM1 mechanism. 

 Figure 7.    The ganglioside sialidase Neu-3 mediates PAG-N – induced 
GM1 antimitogenic effects.  (A and B) PAG-N – induced GM1 cell surface 
accumulation requires caveolin and Neu-3 activity. An example (A) of cell 
surface GM1 level in PAG-N – expressing cells with knocked-down caveolin-1 
or Neu-3 is shown. PAG-N – expressing cells were transfected with the in-
dicated siRNA or treated with DANA, as indicated, and were stained 
with CTxB – Alexa 594. (B) Statistical analysis of the percentage of cells 
exhibiting specifi c staining (GM1-positive cells) is shown. (C) Knockdown 
of Neu-3 mRNA levels. Results are shown as the mean  ±  SD of three inde-
pendent experiments. (D) PDGFR immunogold labeling in PAG-N – expressing 
cells that were treated with 10  μ M DANA. A representative example (left) 
and the statistical analysis (right) are shown. Arrows highlight PDGFR-
positive caveolae. (E) PAG-N mitogenic inhibition is reversed by Neu-3 in-
activation. NIH 3T3 cells, infected, or not, with the indicated retroviruses, 
were transfected with the indicated siRNAs (right), serum starved for 30 h 
with or without 10  μ M DANA (left), and then stimulated or not with PDGF 
in the presence of BrdU. Cells were then fi xed and processed for immuno-
fl uorescence. The percentage of transfected cells that incorporated BrdU 
was calculated as described in Material and methods. Results are ex-
pressed as the mean  ±  SD of three to fi ve independent experiments. *, P  <  
0.05 (using Student ’ s  t  test).   

 Figure 8.    PAG antimitogenic function is also mediated by a Neu3 – GM1 
pathway.  (A) PAG induces cell surface GM1 accumulation mediated by 
Neu-3. A representative example of cell surface GM1 expression in NIH 
3T3 cells transfected with a full-length PAG construct (GFP) and treated or not 
with DANA as indicated. (B) PAG displaces PDGFR from caveolae. Shown 
are a representative example (left) and the statistical analysis (right) of 
PDGFR staining by immunogold with the anti-PRC antibody in caveolae 
of cells infected with a PAG-expressing retrovirus and treated, or not, with 
DANA. Arrows highlight PDGFR-positive caveolae. (C) PAG mitogenic in-
hibition requires Neu-3 activity. (C, left) NIH 3T3 cells infected with the 
indicated retroviruses were treated, or not, with 10  μ M DANA and then 
stimulated, or not, with PDGF in the presence of BrdU. Cells were then fi xed 
and processed for immunofl uorescence. The percentage of transfected cells 
that incorporated BrdU was calculated as described in Material and meth-
ods. Results are expressed as the mean  ±  SD of three independent experi-
ments. (C, right) The level of expressed PAG. Molecular mass is indicated 
in kilodaltons.   
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PAG. We also found that increased DNA synthesis after PAG 

down-regulation was inhibited by AG-1296, a PDGFR inhibitor 

( Kovalenko et al., 1997 ), but not by Iressa, a specifi c inhibitor 

of EGF receptors ( Fig. 9 F ;  Herbst et al., 2004 ). SFK and caveo-

lae were also implicated in this cellular response, as revealed 

by the inhibitory effect of the Src inhibitor SU6656 and the 

Cav3-DGV mutant, respectively. Accordingly, basal PDGFR 

and ERK activities were enhanced in these cells ( Fig. 9 G ). 

Hence, an increased PDGFR signaling mediated by its mem-

brane redistribution may be responsible for the promotion of 

DNA synthesis in cells with reduced PAG. Finally, we also 

wished to confi rm the Csk-independent nature of endogenous 

PAG activity. A 10-min PDGF stimulation induced Csk mem-

brane recruitment in 50% of cells, as revealed by Csk immuno-

staining at the plasma membrane (Fig. S3, A and B, available at 

in BrdU incorporation both in the presence and absence of 

growth factors ( Fig. 9 D ), indicating that endogenous PAG 

negatively regulates mitogenesis. Interestingly, increase in BrdU 

incorporation was abrogated by exogenous GM1, which is in 

agreement with the hypothesis of a PAG – GM1 signaling path-

way regulating mitogenesis. We then analyzed the molecular 

determinants involved in endogenous PAG biological activity 

by introducing human PAG mutants that were not targeted by 

the mouse shRNA sequence ( Fig. 9 E ). Human PAG restored 

DNA synthesis to the level observed in control cells, indicating 

that the biological effect was not caused by a side target of the 

shRNA. Similar results were obtained with PAG Y317F and 

PAG-N, which do not bind to Csk, unlike PAG-C. These data 

are consistent with the idea that the N-terminal sequence is re-

sponsible for the mitogenic inhibitory activity of endogenous 

 Figure 9.    Endogenous PAG regulates PDGF 
mitogenic activity by a GM1-dependent mech-
anism.  (A)  PAG  silencing in NIH 3T3 cells. 
Levels of PAG and caveolin in CEF from cells 
expressing the indicated shRNAs. (B) PAG 
knockdown reduces GM1 cell surface level. 
A representative example of cell surface GM1 
level in NIH 3T3 cells expressing the indicated 
shRNAs is shown. (C, left) PAG knockdown in-
creases PDGFR caveolar distribution, but this 
effect is reversed by GM1 addition. PDGFR 
and caveolin immunogold labeling in cells ex-
pressing PAG shRNA and treated, or not, with 
GM1. Arrows highlight caveolin or PDGFR-
labeled caveolae. (C, right) statistical analysis 
of the percentage of caveolae that were multi-
labeled with the anti-PDGFR antibody ( � PRC) in 
the indicated cells treated, or not, with GM1. 
(D) PAG knockdown increases DNA synthesis 
that is dependent on GM1 and PAG-N. NIH 
3T3 cells infected with the indicated retro-
viruses were treated with 10  μ M GM1 or vehicle 
during starvation and then stimulated, or not, 
with PDGF in the presence of BrdU. (E) PAG 
negative regulation of DNA synthesis induc-
tion requires PAG-N. NIH 3T3 cells, infected 
with the indicated retrovirus, were transfected 
with different human PAG coding vectors. (F) PAG 
negative regulation of DNA synthesis requires 
PDGFR. NIH 3T3 cells, infected with the indi-
cated viruses, were transfected with Cav3-
DGV or treated with the indicated reagents 
and then incubated with BrdU in the absence 
of PDGF for 18 h. Cells were then fi xed and 
processed for immunofl uorescence. The per-
centage of transfected cells that incorporated 
BrdU was calculated as described in Mate-
rial and methods. Results are expressed as 
the mean  ±  SD of three to fi ve independent 
experiments. (G) PDGFR and Erk activation in 
cells expressing the indicated shRNAs. Levels 
of phosphorylated and total PDGFR and Erk 
were assessed by Western blotting with the 
indicated antibodies. Molecular masses are 
indicated in kilodaltons.*, P  <  0.05; **, P  <  
0.01 (using Student ’ s  t  test).   
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and GM1 accumulation through separate mechanisms. A second 

hypothesis implies that PAG has an impact on GM1 biosynthesis. 

This notion is supported by the important role of the membrane 

domain – localized sialidase Neu-3 ( Wang et al., 2002 ;  Papini 

et al., 2004 ) on PAG activity. Thus, PAG may have an impact on 

Neu-3 by modulating its expression, localization, enzymatic 

 activity, and/or substrate availability. We also demonstrated 

that PAG functions require palmitoylation of the protein for its 

localization in membrane domains ( Uittenbogaard and Smart, 

2000 ). Surprisingly, these properties were not observed in any 

other member of the TRAP family we tested (i.e., LAT, SIT, 

TRIM, and NTAL; unpublished data), including the ones that 

also harbor palmitoylation sites (LAT and NTAL). Therefore, 

additional mechanisms must be required for full PAG activity. 

Accordingly, a detailed mutagenesis analysis identifi ed Phe 25, 

32, and 35 as important determinants of PAG-N functions, 

which defi ne a consensus sequence for binding to caveolin-1 

(X � XXXX � XX � , where  �  corresponds to Phe, Tyr, or Trp, 

and X to any other amino acid;  Couet et al., 1997 ;  Jiang et al., 

2006 ). However, the endogenous proteins were found to inter-

act weakly in cells (unpublished data), suggesting that this se-

quence might have additional roles. 

 Moreover, the present fi ndings raise the issue of the nature 

of the membrane-anchored Csk binders involved in the regula-

tion of Src mitogenic signaling.  Zhao et al. (2006)  clearly impli-

cated the adaptor protein Dok-1. Using Src phosphorylation on 

Tyr450, Dok-1 recruits Csk to the cell periphery for regulation 

of Src-induced  c-myc  expression and cell cycle progression. 

However, they did not investigate whether Dok-1 regulates sig-

naling in caveolae. Additional Csk-binding proteins could be 

involved in the regulation of SFK mitogenic signaling. One ob-

vious candidate may be caveolin-1 itself, when it is phosphory-

lated on Tyr14 by SFK ( Lee et al., 2000 ). 

 Finally, our study raises important questions about PAG 

signaling specifi city and PAG regulation. Our data show that 

PAG action is restricted to specifi c membrane domains. There-

fore, we could also expect that PAG impact on receptor signaling 

http://www.jcb.org/cgi/content/full/jcb.200705102/DC1).  PAG  

silencing had no effect on Csk relocalization and mitogenic ac-

tivity (Fig. S3 C), as expected. Nevertheless, the specifi c SFK 

inhibitor SU6656 strongly reduced Csk relocalization, confi rm-

ing the existence of a distinct SFK substrate for Csk membrane 

translocation and activity. 

 Discussion 
 PAG was originally identifi ed as a Csk-binding protein and 

a phosphoprotein associated with glycosphingolipid-enriched 

microdomains (i.e., membrane rafts). So far, PAG functions 

were mostly related to Csk activation ( Horejsi et al., 2004 ). 

Recently, additional PAG-interacting proteins with signaling 

functions have been reported, including the E3 ligase SOCS1, 

which is important for SFK degradation ( Ingley et al., 2006 ), 

the negative Ras regulator RasGAP ( Smida et al., 2007 ), and 

SFK as well ( Oneyama et al., 2008 ;  Solheim et al., 2008 ;  Tauzin 

et al., 2008 ). In this paper, we have uncovered a novel property 

of this transmembrane protein, unrelated to its association with 

Csk or any other signaling protein yet implicating SFK regula-

tion. By controlling GM1 levels at the plasma membrane, PAG 

regulates PDGFR partitioning in caveolae and its association 

with SFK for mitogenic signaling. Recent data have shown 

that PAG can sequester and affect signaling of oncogenic SFK 

in membrane domains and this implicates a phosphotyrosine-

dependent mechanism ( Oneyama et al., 2008 ). This may not 

occur in PDGF-stimulated fibroblasts, probably because of 

the ineffi ciency of endogenous SFK to phosphorylate PAG in 

these conditions. 

 How GM1 regulates PDGFR levels in caveolae is not 

clearly established, but the simplest model would implicate a 

competition mechanism. In addition, one might speculate that 

there is repulsion between the GM1 carbohydrate moiety and 

an epitope in the extracellular domain of PDGFR, as was re-

cently found for the ganglioside GM3 and the insulin receptor 

( Kabayama et al., 2007 ). Thus, the balance between the two 

constituents would regulate PDGFR concentration in these mem-

brane domains. Additionally, GM1 may also regulate PDGFR 

catalytic activity, as suggested by  Mistuda et al. (2002) , and 

by the increased PDGFR activity observed in PAG-depleted 

cells with reduced GM1 level. Therefore, by regulating GM1 

level at the plasma membrane, PAG may have an impact on 

PDGFR mitogenic signaling via both receptor membrane par-

titioning and catalytic activity ( Fig. 10 ). [ID]FIG10[/ID]  

 One important issue raised by these observations is to under-

stand how PAG regulates GM1 accumulation. A fi rst hypothesis 

implies that, by associating with GM1, it allows lipid delivery 

to the cell surface, as was recently described for syntaxin-6, a 

t-SNARE (target membrane – soluble N-ethylmaleimide attach-

ment protein receptor) involved in membrane fusion events along 

the secretory pathway ( Choudhury et al., 2006 ). Indeed, syn-

taxin-6 controls the level of GM1 in caveolae and we observed 

that its overexpression also inhibits PDGF-induced Src mito-

genic signaling (unpublished data). However, syntaxin-6 func-

tions were not affected by PAG down-regulation (unpublished 

data), suggesting that these two proteins regulate mitogenesis 

 Figure 10.    A model for how PAG regulates PDGFR-induced DNA synthesis.  
Under normal conditions, PDGF-induced receptor activation triggers its as-
sociation with SFK in caveolae, leading to Src mitogenic signaling, which 
is required for induction of DNA synthesis. An increase in PAG level in-
duces Neu-3 sialidase activity that leads to GM1 accumulation and PDGFR 
exclusion from caveolae. This, in turn, prevents Src mitogenic signaling 
and induction of DNA synthesis. Conversely, a reduction of PAG level low-
ers Neu-3 sialidase activity and GM1 cell surface accumulation, allowing 
an increase in PDGFR caveolar localization. This induces PDGFR activation 
and Src mitogenic signaling even in the absence of PDGF.   
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tions were performed with Lipofectamine Plus Reagent (Invitrogen) or jetPEI 
(Polyplus-transfection) according to the manufacturer ’ s instructions. For bio-
chemical analysis, cells were transfected 40 h before lysis. For DNA syn-
thesis experiments, cells seeded onto glass coverslips were serum starved 
in medium containing 0.25% serum supplemented with insulin-transferrin-
selenium buffer (Invitrogen) for 30 h and then stimulated, or not, with the 
indicated mitogens. 

 BrdU incorporation and immunofl uorescence 
 DNA synthesis in quiescent fi broblasts seeded onto glass coverslips was 
monitored by adding 0.1 mM BrdU to the medium for 18 h. For drug treat-
ments, cells were incubated with the indicated drug (or vehicle) 1 h before 
stimulation, except for DANA which was added during serum starvation. 
For GM1 experiments, cells were treated with 10  μ M GM1 for 30 min at 
4 ° C before stimulation. Cells were then fi xed and analyzed for BrdU 
incorporation and dorsal ruffl e formation as in  Veracini et al. (2006) . The 
percentage of transfected cells that incorporated BrdU was calculated by 
the following formula: % of BrdU-positive cells = [number of BrdU-positive 
transfected cells]/[number of transfected cells]  ×  100. The percentage of 
transfected cells that formed dorsal ruffl es was calculated by the following 
formula: % of cells with dorsal ruffl e = [number of ruffl es-positive trans-
fected cells]/[number of transfected cells]  ×  100. For each coverslip 
 � 150 – 200 cells were analyzed. Cell surface GM1 and cholesterol levels 
were visualized on PFA-fi xed cells by incubation with 0.1  μ g/ml CTxB – 
Alexa 594 and 5  μ g/ml fi lipin, respectively, in PBS – 10% FCS. Fluorescent 
labeling was observed with a motorized microscope (DMRA; Leica) using 
a 40 or 63 ×  plasmapochromatic oil immersion objective (1.32 NA) in 
Mowiol. Acquisition was performed with a camera (coolSNAP HQ; Photo-
metrics) driven by the MetaMorph 6.2r4 acquisition software (MDS Ana-
lytical Technologies). 

 Transmission electron microscopy (TEM) 
 TEM was performed on thin sections of epon-embedded cells. Monolayers 
of cells grown in 100-mm dishes were fi xed with 2.5% glutaraldehyde in 
0.1 M Na cacodylate buffer, pH 7.4, postfi xed in 1% OsO4 in the same 
buffer, dehydrated through graded series of ethanol, removed from the 
dish by propylene oxide, and pelleted, followed by epon embedding. Thin 
sections were stained with uranyl acetate and lead citrate and observed 
with a transmission electron microscope (1200 EX; Jeol). TEM was per-
formed on ultrathin cryosections and after immunogold labeling. Cells 
were fi xed with 4% PFA in 0.1 M phosphate buffer, pH 7.2, for 48 h at 
4 ° C. After fi xation, cells were scraped off, let to sediment for 30 min at RT, 
microfuged for 1 min, and then embedded in 5% gelatin in PBS for 30 min 
at 37 ° C. After cooling on ice and trimming, cell pellets were infused over-
night in 2.3 M sucrose, mounted on aluminum stubs, and frozen in liquid 
nitrogen. Ultrathin sections were cut with microtomes (UCT and EMFCS; 
Leica) and a Diamond knife, collected with 2.3 M sucrose, and mounted 
on Parlodion-coated copper or nickel grids. Sections were incubated with 
rabbit polyclonal anti-PDGFR and -caveolin antibodies diluted 1:200 in 
PBS – 10% FCS for 30 min, and then with protein A gold conjugates diluted 
1:70 in PBS – 10% FCS for 30 min to 1 h. Sections were then embedded in 
methyl cellulose uranyl acetate before drying and observation with a trans-
mission electron microscope (EM10 CR; Carl Zeiss, Inc.). 

 Biochemistry 
 Cell lysis, immunoprecipitation, Western blotting, and in vitro kinase assays 
were performed as in  Veracini et al. (2006)  and results were quantifi ed us-
ing the ImageQuant TL software (Molecular Dynamics). For fractionation 
experiments, 10 8  cells were incubated with vehicle or 25 ng/ml PDGF for 
10 min at 37 ° C, rinsed with PBS, scraped in 1 mM of ice-cold PBS-containing 
vanadate, and pelleted. Pellets were then suspended in ice-cold 2 ×  lysis 
buffer containing 1% Triton X-100, 10 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 5 mM EDTA, 75 U/ml aprotinin, and 1 mM vanadate for 20 min. 
Cell suspensions were homogenized in a tight-fi tting Dounce homogenizer 
with 10 strokes and centrifuged for 5 min at 1,300  g  to remove nuclei and 
large cellular debris. Supernatants were fractionated through a 5 – 42.5% 
wt/vol sucrose gradient in 4-ml tubes. Nine fractions were collected from 
the top to the bottom of the gradient. In some experiments, fractions two 
through four were pooled and diluted fi vefold in 25 mM MOPS, pH 6.5, 
and 150 mM NaCl containing 1% Triton X-100 and centrifuged at 50,000  g  
at 4 ° C for 30 min. Pellets were then suspended in dissociation buffer 
containing 10 mM Tris, pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5 mM 
EGTA, 1 mM vanadate, 50 mM NaF, 75 U/ml aprotinin, 1% NP 40, and 
60 mM octylglucoside and incubated for 1 h on ice before SFK immuno-
precipitation with the anti-cst1 antibody. 

regulated by these membrane domains. For instance, NGF re-

ceptors have been reported to require GM1 for neurite out-

growth ( Mutoh et al., 1995 ), and PAG, which is highly expressed 

in the brain ( Kawabuchi et al., 2000 ), may also contribute to the 

ability of NGF to induce neurites. Additional work is certainly 

needed to defi ne the regulation of this novel PAG function. Reg-

ulation of protein expression could be part of the mechanism, 

as suggested by our gene silencing experiments. Another level 

of regulation may implicate deacylation on Cys39 and Cys42 

( Greaves and Chamberlain, 2007 ). By removing palmitoyl resi-

dues, PAG will be excluded from membrane domains and will 

not have an impact on GM1 at the cell surface. Although not 

predicted, phosphorylation at the N terminus could also infl u-

ence PAG antimitogenic function. Clearly, further investiga-

tions are required to unravel the molecular mechanism by which 

this GM1-mediated PAG function is regulated. 

 Materials and methods 
 DNA constructs, antibodies, and reagents 
 Constructs expressing PAG and PAGY317F have been described in 
 Brdicka et al., (2000) . PAG-N and PAG-C correspond to human PAG 
[1 – 97] and PAG [98 – 433] sequences that have been subcloned in frame 
into pEGFP-N2 and pEGFP-C2 vectors, respectively. PAG-N CC/AA (PAG-N 
C 39 C 42 /A 39 A 42 ) and PAG-N 3F/3A (PAG-N F 25 F 32 F 35 /A 25 A 32 A 35 ) mutants 
were generated using PAG-N as template and the Quick Change Site Di-
rected mutagenesis kit (Stratagene) and subcloned into the pBabe retro-
viral vector. Constructs expressing Myc, Fos, E1B, and SrcY527F have been 
described in  Furstoss et al., (2002)  and  Franco et al. (2006) , Rac V12 in 
 Boureux et al. (2005) , Csk in  B é nistant et al. (2001) , and Cav3 DGV and 
Cav1-GFP in  Veracini et al. (2006) . Construct encoding RasL61 was ob-
tained from P. Fort (Centre de Recherche en Biochimie Macromol é culare, 
Montpellier, France), PDGFR was obtained from A. Kazlauskas (Harvard 
Medical School, Boston, MA), and syntaxin6 was obtained from S.A. 
Tooze (London Research Institute, London, United Kingdom). The shRNA 
specifi c for mouse PAG (GTCCAAGTCCACTTCTGCC) was cloned into 
pSUPER vector. A pSuper construct expressing a siRNA against the un-
related human protein interferon receptor 1 was used as a control (gift 
from A. Blangy and G. Uz é , Centre de Recherche en Biochimie Macro-
mol é culare, Montpellier, France). siRNAs specifi c for mouse Caveolin-1 
(AAGCAAGTGTATGACGCGCAC), mouse Neu-3 (AAGGATTAACCTAG-
GCATCTA), and corresponding scramble siRNAs were obtained from QIA-
GEN. Neu-3 mRNA levels were measured by real-time quantitative PCR 
( Boureux et al., 2005 ) using the following primers: forward, 5 � -GCCC-
GTCTCTGCTTCCTTT-3 � ; and reverse, 5 � -CTTCCCGAGTGTAGCTGGATG-3 � . 
Anti-SFK (cst1), -PDGFR �  (PRC), and -myc epitope (9E10) antibodies were 
described in  Boureux et al. (2005)  and  Franco et al. (2006) . The anti-
pY 416 Src antibody was obtained from Invitrogen, anti – pan-caveolin from 
BD Biosciences, anti-ERKs (SC-94) and -Csk from Santa Cruz Biotechnol-
ogy, Inc., anti-pY 705 Stat3 from Cell Signaling Technology, anti-Stat3 from 
Millipore, anti – phospho-ERKs from New England Biolabs, Inc., and anti-
BrdU from Becton Dickinson. Anti-Flag antibody and fi lipin were obtained 
from Sigma-Aldrich, anti-4G10 and anti-tubulin were obtained from 
P. Mangeat and N. Morin, respectively (Centre de Recherche en Biochimie 
Macromol é culare, Montpellier, France). Antibodies coupled to Fluorescein 
isothiocyanate and Texas Red isothiocyanate were obtained from Sigma-
Aldrich, Rhodamine phalloidin and cholera toxin subunit B (CTxB) – Alexa 
Fluor 594 were obtained from Invitrogen, BrdU from Boehringer Ingelheim, 
PDGF-BB from Abcys, and EGF and DANA from Sigma-Aldrich. SU6656 
and AG-1296 were obtained from EMD, GM1 from Avanti Polar Lipids, 
and Iressa was a gift of F. Cruzalgui (Servier Laboratories, Paris, France). 
Protein A gold conjugates were obtained from the Cell Microscopy Center 
at Utrecht Medical School (Utrecht, The Netherlands). 

 Cell culture and transfections 
 NIH 3T3, p53 +/+  MEF, p53  � / �   MEF, and HEK 293 cells were cultured, 
transfected, and infected as described in  Franco et al. (2006)  and  Veracini 
et al. (2006) . HEK 293 cells stably expressing PDGFR �  were obtained by 
infection of retroviruses expressing the human receptor. Transient transfec-
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