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ABSTRACT

Select changes in microRNA (miRNA) expression
correlate with estrogen receptor a (ERa) expression
in breast tumors. miR-21 is higher in ERa positive
than negative tumors, but no one has examined
how estradiol (E2) regulates miR-21 in breast
cancer cells. Here we report that E2 inhibits miR-
21 expression in MCF-7 human breast cancer cells.
The E2-induced reduction in miR-21 was inhibited by
4-hydroxytamoxifen (4-OHT), ICI 182 780 (Faslodex),
and siRNA ERa indicating that the suppression is
ERa-mediated. ERa and ERb agonists PPT and
DPN inhibited and 4-OHT increased miR-21 expres-
sion. E2 increased luciferase activity from reporters
containing the miR-21 recognition elements from
the 3’-UTRs of miR-21 target genes, corroborating
that E2 represses miR-21 expression resulting in a
loss of target gene suppression. The E2-mediated
decrease in miR-21 correlated with increased pro-
tein expression of endogenous miR-21-targets
Pdcd4, PTEN and Bcl-2. siRNA knockdown of ERa
blocked the E2-induced increase in Pdcd4, PTEN
and Bcl-2. Transfection of MCF-7 cells with anti-
sense (AS) to miR-21 mimicked the E2-induced
increase in Pdcd4, PTEN and Bcl-2. These results
are the first to demonstrate that E2 represses
the expression of an oncogenic miRNA, miR-21, by
activating estrogen receptor in MCF-7 cells.

INTRODUCTION

Although the precise sequence of events leading to
breast tumors are not understood, lifetime exposure to
estrogens is widely accepted as a major risk factor for
the development of breast cancer. Estrogens promote
cell replication by binding to the estrogen receptors

a and b (ERa and ERb). Ligand-activated ER acts
genomically by binding directly to estrogen response
elements (EREs) or by a ‘tethering mechanism’, e.g. by
interacting with AP-1 (1) or Sp1 (2). These interactions
recruit coregulators to initiate chromatin remodeling
resulting in increased gene transcription (3). ER can
also suppress target gene transcription, although the
mechanisms involved are unresolved (4). In addition
to its ER-mediated, genomic activity, E2 also has
‘non-genomic’ or ‘membrane-initiated’ effects, i.e. inde-
pendent of ER-mediated transcription, that occur within
minutes after estradiol (E2), or other ER ligand,
administration (5,6).

Inhibition of estrogen action is used as the adjuvant
therapy of choice to treat both pre- and post-menopausal
women with breast cancer. The anti-estrogen/Selective ER
Modulator (SERM) tamoxifen (TAM) is the ‘gold stan-
dard’ of treatment of women with ER positive tumors (7).
TAM is a SERM because it has mixed agonist/antagonist
activity in a cell- and gene-specific manner whereas
Faslodex (Fulvestrant, ICI 182 780) has pure antiestrogen
activity (8). Ablation of endogenous estrogen production
using aromatase inhibitors (AIs, e.g. anastrozole, letrozole
and exemestane) has an efficacy greater than TAM in pre-
venting disease recurrence in post-menopausal breast
cancer patients (9). Together, these data demonstrate the
importance of endogenous estrogens in promoting breast
cancer recurrence.

MicroRNAs (miRNAs) are a class of naturally occur-
ring, small, non-coding RNA molecules distinct from
small interfering RNAs (siRNAs) (10–12). miRNA genes
are mostly transcribed by RNA polymerase II, processed
by Drosha into short hairpin RNAs that are exported
from the nucleus, and processed by Dicer to form
mature 21–25 nucleotide miRNAs which are transferred
to Argonaute proteins in RISC. miRNAs bind to the
30-untranslated region (30 UTR) of target mRNAs and
either block the translation of the message or target the
mRNA transcript to be degraded (13). miRNAs may also
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increase translation of select mRNAs in a cell cycle-
dependent manner (14).

The human genome contains >700 miRNAs (15) and
miRNAs are expressed in a tissue-specific manner (16).
Each miRNA targets �200 transcripts directly or indir-
ectly (17). Aberrant patterns of miRNA expression have
been reported in human breast cancer (16–40). A number
of genes involved in breast cancer progression have been
identified by in silico analysis to be targets of miRNAs
that are deregulated in breast cancer (41) and some, e.g.
AIB1 have been experimentally proven (42). We recently
reported that miR-21 downregulates the translation of
human PDCD4, a tumor suppressor in MCF-7 cells
(43). Although miR-21 was identified as an ‘oncomiR’,
was the most significantly up-regulated miRNA in breast
tumor biopsies (37), and was significantly higher in
ERa+ than ERa– breast tumors (40), no one has exam-
ined whether E2 or SERMs regulate miR-21 expression in
human breast cancer cells.

In this study, we tested the hypothesis that miR-21, an
‘oncomiR’, is regulated by E2 in MCF-7 breast cancer
cells. Although E2 increases proliferation of MCF-7
cells, we found that E2 inhibits miR-21 expression.
Experiments were performed to test the effect of E2 on
targets of miR-21. In silico analysis identified miR-21
seed elements in six target genes and these miRNA recog-
nition elements (MREs) were cloned into the 30UTR
of a Renilla reporter for subsequent transcriptional evalu-
ation and examination of the effect of antisense to miR-21
on Renilla luciferase. Antisense to miR-21 was used to
confirm the importance of miR-21-MRE interaction in
response to E2. Importantly, the E2-mediated decrease in
miR-21 correlated with increased expression of miR-
21-targets PDCD4, PTEN and Bcl-2 at the protein level.
These results identify miR-21 as an E2-ER- regulated
miRNA in MCF-7 cells.

MATERIALS AND METHODS

Cells and treatments

MCF-7 cells were purchased from ATCC and maintained
as previously described (44). 17b-estradiol (E2),
4-hydroxytamoxifen (4-OHT), Actinomycin D (ActD, a
transcriptional inhibitor) and cycloheximide (CHX, a pro-
tein synthesis inhibitor) were purchased from Sigma;
ICI 182 780 (ICI), 4,40,400-(4-propyl-[1H]-pyrazole-1,3,
5-triyl)trisphenol (PPT, an ERa-selective agonist) and
2,3-bis(4-hydroxyphenyl)-propionitrile (DPN, an ERb-
selective agonist) were purchased from Tocris. Prior to
ligand treatment, the medium was replaced with phenol
red-free IMEM supplemented with 5% dextran charcoal-
stripped FBS (DCC-FBS) for 48 h (serum-starved). Where
indicated, MCF-7 cells were pre-treated with 10 mg/ml
ActD or 10 mg/ml CHX, for 1 h before ligand treatment.
Cells were treated with ethanol (EtOH, the vehicle con-
trol) 0.01% final volume, 10 nM E2, 100 nM 4-OHT,
10 nM PPT, or 10 nM DPN, alone or in combination
with 100 nM ICI for 6 h. For the indicated experiments,
cells were pretreated with 100 nM ICI for 6 h prior to
EtOH or E2 treatment.

miRNAmicroarray

RNA was isolated from MCF-7 cells treated with EtOH
or 10 nM E2 for 6 h using the mirVana miRNA Isolation
Kit from Ambion (Austin, TX) and was sent to LC
Sciences (Houston, TX) (http://lcsciences.com/) where
the RNA samples were labeled either with Cy3 or Cy5
and were hybridized with two identical, dual-color
miRNA microarray chips (MRA-1001, LC Sciences).
The array contains probes to detect mature miRNA
sequences as well as pre-miRNAs in the Sanger miRNA
registry (http://microrna.sanger.ac.uk/sequences/). Each
human miRNA on the chip contains seven redundancies
for each sequence to increase sensitivity. Microarray ana-
lysis was performed by LCS including background sub-
traction and data normalization to the statistical median
of all detectable transcripts. Two lists of differentially
expressed transcripts (based on a P-value< 0.01) from
two chips were merged into one list and a statistical cor-
relation between the two sets of data was calculated.

Constructs of miRNA-recognition elements (MREs)

For MRE sequences, synthetic DNA oligonucleotides
(�35 bp) containing the MRE sequence (Supplementary
Table 1) and �5 bp adjacent sequences from each end
were annealed and ligated into the NotI/XhoI sites located
in the 30UTR region of the pRL-TK Renilla luciferase
reporter from Promega. Full-length (FL) 30-UTRs of
PDCD4 and RASA1 were amplified by PCR and inserted
into the phRL-TK vector, similarly. All constructs were
confirmed by DNA sequencing.

Quantitative real-time PCR (Q-PCR) analysis of miRNA
and mRNA expression

miRNA-enriched total RNA was extracted from MCF-7
cells using the mirVana miRNA isolation kit (Ambion).
Quantification of miRNAs was performed using TaqMan
MicroRNA Assays (Applied Biosystems). U6 RNA was
used for normalization of miRNA expression. For analy-
sis of PTEN, PDCD4, BCL2 and TMEM49 mRNA
expression, RNA was extracted using Trizol and quantita-
tion was performed using TaqMan primers and probes
from ABI using 18S for normalization. Analysis and
fold change were determined using the comparative
threshold cycle (Ct) method. The change in miRNA or
mRNA expression was calculated as fold-change, i.e.
relative to EtOH-treated (control).

Western blot

Cells were treated as indicated in individual figure and
whole cell extracts (WCE) were prepared in modified
RIPA buffer as described (22). Western analysis was per-
formed and quantitated as described (19). Membranes
were probed with ERa antibodies AER320 from
NeoMarkers or HC-20 from Santa Cruz Biotechnology,
ERb antibody H150 (Santa Cruz Biotechnology), polyclo-
nal PDCD4 antibody from Genetex, monoclonal PTEN
antibody from Cell Signaling, or monoclonal Bcl-2 anti-
body from Assay Designs. Membranes were stripped
and re-probed for b-actin (Sigma).
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Transient transfection

MCF-7 cells were plated in 24-well plates at a density
of 1.5� 104 cells/well in phenol red-free OPTI-MEM I
reduced serum medium (GIBCO/Invitrogen) supplemen-
ted with 10% DCC-FBS. Transient transfection was per-
formed using FuGene6 (Roche). For experiments in
Figures 2 and 3A, each well received 10 ng of pGL3-pro-
luciferase reporter (Promega) as a control and 10 ng of
pRL-TK, Renilla luciferase reporter (Promega) containing
the indicated MRE or 30-UTR of miR-21 target genes. For
some experiments, cells were also co-transfected with 20-O-
Me-anti-miR-21 [antisense (AS)-miR-21] and the control
used was the negative control #1 from Ambion: a random-
sequence 20-O-Me modified RNA molecule that has been
extensively tested in many human cell lines and tissues and
validated to not produce any identifiable effect on known
miRNA function (23). For Figure 3A, MCF-7 cells were
transfected with 250 ng of pmiR-21s-luc or pmiR-21as-luc
reporters described in (45) and 5 ng pRL-TK (control).
Twenty-four hours after transfection, triplicate wells
were treated with EtOH (vehicle control), E2, 4-OHT or
ICI 182 780 as indicated in the figure legend. The cells
were harvested 30 h post-treatment using Promega’s
Passive Lysis buffer. Luciferase and Renilla luciferase
activities were determined using Promega’s Dual
Luciferase assay. For Figure 2, Renilla luciferase was nor-
malized by Firefly luciferase to correct for transfection
efficiency. For Figure 3A, Firefly luciferase was normal-
ized to Renilla luciferase. Fold induction was determined
by dividing the averaged normalized values from each
treatment by the EtOH value for each transfection condi-
tion within that experiment. Values were averaged from
multiple experiments as indicated in the figure legends.

AS-control and AS-miR-21 transfection

MCF-7 cells were transfected with AS- duplexes and
control-nonspecific siRNA obtained from Ambion using
Lipofectamine RNAiMAX from Invitrogen according
to the manufacturer’s protocol. Twenty-four hours post-
transfection, the medium was replaced with phenol red-
free IMEM with 5% DCC for 48 h and the cells were
treated with ethanol (EtOH) vehicle control, 10 nM E2,
10 nM PPT or 10 nM DPN for 24 h prior. Total RNA
was isolated for Q-PCR analysis and WCEs were prepared
and stored for 24 h at �808C until western blot analysis.
Each experiment was repeated for a total of three biolog-
ical replicates. Western blots were quantified as above and
the ratio of each protein/b-actin in the AS-control in
EtOH-treated samples was set to 1 in each experiment.

ERa and ERb knockdown by siRNA

MCF-7 cells were transfected with siRNA duplexes and
control-nonspecific siRNA obtained from New England
Biolabs (44). Forty-eight hours post-transfection, the
cells were treated with 10 nM E2, 10 nM PPT or 10 nM
DPN for 6 h for mRNA analysis, or 24 h for protein ana-
lysis. Total RNA was isolated for Q-PCR analysis and
WCEs were prepared and stored for 24 h at �808C until
western blot analysis.

Statistics

Statistical analyses were performed using Student’s t-test
or one-way ANOVA followed by Student–Newman–
Keuls or Dunnett’s post-hoc tests using GraphPad Prism
(San Diego, CA).

RESULTS

E2 regulates miR-21 expression inMCF-7 breast
cancer cells

Estrogens promote breast tumor development by increas-
ing transcription of protooncogenes and growth factors
(46) and by negatively modulating the expression or func-
tional activity of tumor suppressors (47). To determine the
identity of primary E2-regulated miRNAs in estrogen-
responsive human breast cancer cells, ERa-positive
MCF-7 human breast cancer cells were treated with
10 nM E2 or EtOH (vehicle control) for 6 h. Among the
E2-down-regulated miRNAs, we selected miR-21 for fur-
ther evaluation because miR-21 is an oncomiR and its
expression is higher in ERa positive versus negative
tumors (40). Furthermore, no one has examined if E2 reg-
ulates miR-21 expression in breast cancer cells. Q-PCR
using the TaqMan primer/probe sets from ABI indicated
a �60% reduction in mature miR-21 by E2 (Figure 1). To
determine the mechanism by which E2 reduces miR-21,
MCF-7 cells were pre-incubated with 100 nM ICI 182
780 (ICI, Faslodex), a pure antagonist of ER genomic
action (48,49), or 100 nM 4-OHT, the active metabolite
of the antiestrogen tamoxifen, and then treated with E2.
The effect of 4-OHT or ICI alone was also examined. If E2

represses miR-21 expression by binding ER, then ICI
should block the decrease. Because 4-OHT has mixed
ER agonist/antagonist activity in a gene- and cell-specific
manner, its effect on miR-21 expression could either
mimic or oppose the E2 effect, reflecting its selective
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Figure 1. E2 inhibits miR-21 expression. Summary of Q-PCR data on
(mature) miR-21 expression. MCF-7 cells were treated with EtOH,
10 nM E2, 10 nM PPT (ERa-selective), or 10 nM DPN (ERb-selective)
for 6 h. as indicated by the different fills. Where indicated MCF-7 cells
were pretreated with 100 nM ICI 182 780 [ICI, an ER antagonist termed a
‘selective ER disrupter’ (SERD)] or 100 nM 4-OHT for 6 h and then etha-
nol or 10 nM E2 was added for an additional 6 h. Values are fold increase
compared to EtOH for each miRNA and were calculated as described in
‘Materials and Methods’ section. Values are the average of three to eight
separate experiments� SEM. �Significantly different from the EtOH
control, P< 0.05. ��Significantly different from E2, P< 0.05.
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ER modulator (SERM) agonist/antagonist activity. ICI
reduced ERa protein by �30–50% in MCF-7 cells
(Supplementary Figure 1), but had no effect on basal
miR-21 expression (Figure 1). 4-OHT increased miR-21,
indicating that 4-OHT opposes E2-induced miR-21 repres-
sion through ER binding. Since both 4-OHT and ICI
relieved E2 suppression of miR-21, this reduction is
ER-mediated.

Although ERa expression is higher than ERb in MCF-7
cells, both ER subtypes are expressed (44). To examine the
contributions of ERa and ERb to the E2-induced reduc-
tion in miR-21, MCF-7 cells were treated with 10 nM PPT
or 10 nM DPN, concentrations at which each is an ERa-
or ERb- selective agonist, respectively (50). PPT and
DPN, like E2, reduced miR-21 (Figure 1). E2 did not
regulate miR-21 expression in ERa+/ERb+ T47D cells
(Supplementary Figure 2), indicating cell-line-specific dif-
ferences, similar to previous reports that E2 responses
differ between MCF-7 and T47D cells (51–54). Together,
these data indicate that both ERa and ERb contribute
to miR-21 repression by E2.

Effect of E2 on miR-21 target gene reporter activity
inMCF-7 cells

The biological activity of miRNAs is primarily mediated
by interaction with matching recognition sequences in
the 30 UTRs of target genes and reducing translation.
A �33-bp region from the 30UTR centering on the puta-
tive miR-21 miRNA regulatory element (miRNA recogni-
tion elements (MREs), also called a ‘seed element’, 50-AT
AAGCTA-30), and minimally 4 bp flanking this sequence
from the six genes listed in Supplementary Table 1 were
cloned into the 30UTR of pRL-TK Renilla reporter plas-
mid. The pRL-TK-MRE or pRL-TK parental plasmids
were transiently transfected into MCF-7 cells with
pGL3-pro-luciferase as a control and cells were treated
with EtOH or E2 (Figure 2A and B). If E2 reduces miR-
21, we would expect an increase in the expression of
Renilla but not Firefly luciferase activity since repression
would be relieved. Figure 2C shows that E2 specifically
increased the expression of the Renilla luciferase protein
from the pRL-TK- transforming growth factor b 1
(TGFB1), Programmed Cell Death 4 (PDCD4), RAS
p21 Protein Activator 1 (RASA1) and RAS Guanyl
Nucleotide-Releasing Protein 1 (RASGRP1) reporters in
MCF-7 cells, data consistent with miR-21 downregulation
by E2. In contrast, E2 did not alter luciferase expression
from the putative miR-21 MREs in Cerebral Cavernous
Malformations 1 (CCM1) or a member of the RAS onco-
gene family (RAB6C). Thus, the E2-mediated decrease in
miR-21 expression (Figure 1) resulted in lower amounts of
miR-21 available to bind the MRE sequences from the
TGFB1, PDCD4, RASA1 and RASGRP1 genes, in turn
reducing the targeting of these reporter transcripts for
degradation/translational inhibition and thus increasing
the amount of Renilla protein and luciferase activity. In
contrast, the lack of change in Renilla activity from CCM1
and RAB6C indicates that the MREs in these genes do not
appear to be targets of E2-induced reduction of miR-21
expression in MCF-7 cells under our assay conditions.

Effect of antisense to miR-21 target gene reporter activity
inMCF-7 cells

If the E2-induced increase in Renilla luciferase from the
MREs of the TGFB1, PDCD4, RASA1 and RASGRP1
genes seen in Figure 2C is due to reduced levels of endo-
genous miR-21, then transfection of MCF-7 cells with
antisense (AS)-miR-21 should have the same effect on
luciferase activity. MCF-7 cells were transiently trans-
fected with 20-O-Me-anti-miR-21 (AS-miR-21)
(Figure 2D). A 92% knockdown of miR-21 expression
was achieved (Figure 5A). AS-miR-21 resulted in a signif-
icant increase in Renilla activity from pRL-TK reporters
bearing the miR-21 MREs from the TGFB1, PDCD4,
RASA1 and RASGRP1 genes. In contrast, AS-miR-21
did not affect luciferase activity from the putative miR-
21 MREs in CCM1 or RAB6C (Figure 2D). These data
are in agreement with the E2 responses (Figure 2C),
although E2 induced higher activity from the RASA1
reporter compared to the ASmiR-21. Overall, these
data indicate that these MREs are bone fide targets of
miR-21 regulation.

MRE and FL 3’-UTRs activities ofPDCD4 andRASA1
in reporter assays inMCF-7 cells

Since sequences flanking the MRE affect miRNA binding
and activity (55), it is important to compare the effect of
E2 and AS-miR-21 in reporters bearing the MRE versus
the FL 30UTR of PDCD4 and RASA1 genes (Figure 2E).
E2 induced greater luciferase activity from the FL than the
PDCD4 MRE. AS-miR-21 increased reporter
activity more from the MRE than the FL PDCD4.
The AS-miR-21-induced increase in basal luciferase
activity was comparable for the MRE and FL RASA1
reporters. AS-mR-21 transfection reduced the fold
E2-induction for the MRE and FL PDCD4 and RASA1
reporters. The miR-21 knockdown data are consistent
with E2-ER downregulation of miR-21 increasing reporter
activity.

Regulation of primary (pri)-miR-21 promoter activity by E2,
4-OHT and ICI 182,780 inMCF-7 cells

miR-21 is located in the 10th intron of the TMEM49 gene
(56). To test whether E2 regulates miR-21 gene expression
through the ��1 kb 50flanking region previously reported
to function as a promoter for miR-21 (45), transient trans-
fection assays were performed using two constructs:
pmiR-21s-luc and pmiR-21as-luc, corresponding to the
sense (s) and antisense (as) orientations of this �1 kb
region cloned in front of the Firefly luciferase gene (45)
(Figure 3A). The activity from the pmiR-21as-luc reporter
was �2% of that of the pmiR-21s-luc construct, indicating
orientation-dependent promoter activity. If E2 represses
miR-21 expression by an interaction of ER with the 50

promoter, we should detect a decrease in luciferase repor-
ter activity. E2 reduced luciferase activity �25% whereas
4-OHT increased pmiR-21 activity by �25% (Figure 3A).
ICI abrogated the inhibition by E2, indicating that ER is
responsible for reduction in reporter activity. E2 did not
alter TMEM49 transcription (Figure 3B). To our
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knowledge, this is the first examination of the effect of E2

on TMEM49 transcription. These data are consistent with
the independent regulation of TMEM49 and miR-21 in
HL-60 cells (56). Overall, these data agree with the direc-
tion, although not magnitude, of changes in endogenous
miR-21 expression in response to E2, 4-OHT and ICI in
MCF-7 cells (Figure 1) and indicate that the �1 kb pro-
moter of miR-21 mediates in part, the observed reduction
in miR-21 expression by E2.

Actinomycin D (ActD) and cycloheximide (CHX) block
E2-mediated miR-21 expression

To determine whether the E2-mediated reduction
in miR-21 expression is a direct effect of ER at the
genomic level or requires synthesis of a secondary
estrogen-responsive protein, MCF-7 cells were pretreated
with the transcriptional inhibitor ActD or the pro-
tein synthesis inhibitor CHX prior to EtOH or E2
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transient transfection assays in MCF-7 cells. MCF-7 cells were transiently transfected with pGL3-pro-luciferase and pRL-TK parental or pRL-TK
containing putative miR-21 MREs from target genes (Supplementary Table 1) cloned in the 30UTR as described in ‘Materials and methods’ section.
Expected results are indicated without E2 (A) and when cells are treated with E2 (B). (C) MCF-7 cells were transfected as indicated and treated with
EtOH or 10 nM E2 for 24 h. Renilla luciferase was normalized by firefly luciferase to correct for transfection efficiency. Values are the average � SEM
of triplicate determinations. �Significantly different from EtOH control, P< 0.01. (D) MCF-7 cells were transfected with 20-O-Me-antisense-miR-21
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were normalized against the control AS-EtOH value. aSignificantly different from EtOH control, P< 0.01. bSignificantly different from control AS
transfected values, P< 0.01.
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treatment (Figure 3C). Pretreatment with ActD and CHX
blocked E2-mediated miR-21 repression, indicating that
E2-repression is mediated by both transcriptional (primary
genomic) and secondary mechanisms.

Effect of E2, PPT and DPN on endogenous miR-21 target
genes inMCF-7 cells

Since E2 reduced miR-21 expression in MCF-7 cells
and increased the expression of miR-21 target reporter
gene activity, the effect of E2 on the mRNA and protein
levels of endogenous miR-21-target genes PDCD4, PTEN
and BCL2 was examined by Q-PCR (Figure 4A) and west-
ern blot (Figure 4B and C). To determine the relative con-
tribution of the two ER subtypes to these effects, MCF-7
cells were treated with 10 nM PPT or 10 nM DPN, con-
centrations at which each is an ERa- or ERb-selective
agonist, respectively (50). As expected based on the repor-
ter assay data for PDCD4 in Figure 2, E2 increased
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Figure 3. Regulation of miR-21 transcription in MCF-7 cells. (A)
Effects of E2, 4-OHT and ICI 182 780 (ICI) on the primary miR-21
(pri-miR-21) gene promoter in the sense (pmiR-21s-luc) or antisense
(as) pmiR-21as-luc orientation. MCF-7 cells were transfected with
pri-miR-21s-luc or pri-miR-21as-luc (hatched bars, values were very
low) (45) and Renilla luciferase as an internal control. Cells were trea-
ted with the indicated concentrations of E2, 4-OHT, or ICI for 24 h.
Dual luciferase assays were performed and luciferase values were
divided by Renilla values in the same sample. Values are the average
� SEM of triplicate determinations normalized to EtOH for the pmiR-
21s-luc construct. �Significantly different from EtOH control, P< 0.05.
��Significantly different from 4-OHT alone, P< 0.05. ���Significantly
different from 10 nM E2, P< 0.05. (B) E2 does not affect TMEM49
transcription in MCF-7 cells. miR-21 is encoded within the 10th
intron of the TMEM49 gene (56). MCF-7 cells were treated with
EtOH or 10 nM E2 for 6 h, total RNA was reverse transcribed and
Q–PCR was performed. TMEM49 was normalized to 18S. Values are
the average � SEM of triplicate determinations normalized to EtOH.
(C) The E2-induced decrease in miR-21 expression in MCF-7 cells is
mediated in a primary transcriptional/genomic and secondary estrogen-
target-dependent manner. MCF-7 cells were pre-treated with stripped
medium or stripped medium containing 10 mg/ml ActD or CHX for 1 h
before treatment with vehicle control (EtOH), or 10 nM E2 for 6 h as
described in ‘Materials and Methods’ section. miR-21 expression was
determined using Q-PCR as described in ‘Materials and Methods’ sec-
tion. The bar graph summarizes the fold change in miR-21 expression
relative to no pretreatment (No pretx)-EtOH-treated cells.
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Figure 4. Effect of ER ligands on endogenous miR21 target gene
mRNA and protein expression in MCF-7 cells. MCF-7 cells were
serum-starved for 48 h and then treated with EtOH, 10 nM E2, 10 nM
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described in ‘Materials and Methods’ section. Values are the average of
four separate determinations � SEM. (B) Western blot for the indi-
cated proteins. The membrane was stripped and reprobed for b-actin
for normalization as described in ‘Materials and Methods’ section. The
blot shown is representative of three separate biological replicates. (C)
Western data are presented as relative to non-treated (No TX) MCF-7
cells. The values in C are the mean � SEM of three separate experi-
ments. �Significantly different from the EtOH value for each protein,
P< 0.01.
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mRNA (Figure 4A) and protein (Figure 4B and C) levels
of PDCD4, results reflecting reduced miR-21 levels
(Figure 1), thus increased transcript stability. Similar
results were observed for BCL2. PPT also increased
PDCD4 and BCL2 mRNA and protein levels, whereas
DPN reduced PDCD4 and increased BCL2 mRNA
levels (Figure 4A) while increasing protein amounts
(Figure 4B). E2, PPT and DPN increased PTEN protein
but not RNA levels (Figure 4A and C), suggesting trans-
lational inhibition. Overall, these data indicate roles
for both ERa and ERb in mediating the effects of E2 on
miR-21 target gene expression, consistent with results
shown in Figure 1.

AS-miR-21 inhibits endogenous miR-21 target gene
protein expression inMCF-7 cells

To confirm the role of downregulation of miR-21 in the
increase in protein expression of Pdcd4, PTEN and Bcl-2,
MCF-7 cells were transfected with AS-control and
AS-miR-21 plasmids followed by treatment with EtOH,
E2, PPT and DPN for 24 h. If the ER-ligand-induced
reduction in miR-21 causes an increase in target protein
expression, then the AS-miR-21 should have the same
effect. AS-miR-21 reduced miR-21 by 92% (Figure 5A).
Specific knockdown of miR-21, and not miR-125a or
miR-30b, was confirmed by Q–PCR (Figure 5A). AS-
miR-21 significantly increased the basal Pdcd4, PTEN
and Bcl-2 protein expression (Figure 5B and C). AS-con-
trol did not affect the observed increase in each protein in
response to E2, PPT and DPN (compare Figures 4B, C
and 5B, C). These data indicate that these genes are targets
of repression by miR-21. No further increase in protein
expression was detected with E2 or PPT treatment, but
DPN significantly increased Pdcd4 and PTEN proteins
(Figure 5C).

Effect of ERa knock-down on E2-induced endogenous
miR-21 target gene expression inMCF-7 cells

To confirm the role of ERa in the observed decrease in
miR-21 and increase in miR-21-target gene expression in
response to E2 and PPT, MCF-7 cells were transfected
with siRNA targeting ERa or control siRNA for 48 h
and then treated with EtOH, 10 nM E2, PPT, or DPN
for 6 h. Transfection of MCF-7 cells with siRNA for
ERa reduced ERa mRNA expression by �62%
(Supplementary Figure 3) and ERa protein by 61%. In
contrast, ERb protein levels were unaffected (Figure 6A,
see also Supplementary Figure 4). siERa blocked the E2-
induced repression of miR-21 (Figure 6B). Concordantly,
knockdown of ERa reduced the E2-stimulated expression
of miR-21 target genes PDCD4, PTEN and BCL2
(Figure 6C). To confirm these findings at the protein
level, western blots were performed using antibodies
commercially available for Pdcd4, PTEN and Bcl-2
(Figure 6D). Results confirm that ERa knockdown
reduced the E2- and PPT-induced protein expression of
the miR-21 target genes PDCD4, PTEN and BCL2
to basal levels (Figure 6E). siERa also reduced DPN-
stimulated expression of Pdcd4, PTEN and Bcl-2 proteins

suggesting that at least part of the DPN response may be
ERa-mediated.

Effect of ERb knock-down on miR-21 expression in
MCF-7 cells

To examine ERb’s role in mediating E2-suppression of
miR-21 transcription, MCF-7 cells were transfected with
siRNA targeting ERb or control siRNA for 48 h and then
treated with EtOH or 10 nM E2 for 6 h. siERb reduced
ERb mRNA expression by �70% and protein by 64%
(Supplementary Figure 5A and B). Knockdown of ERb
reduced basal miR-21 by 73% and E2 treatment had no
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further effect (Figure 6F). siERb resulted in a commensu-
rate increase in basal PDCD4, PTEN and BCL2 mRNA
and a loss of E2, DPN and PPT-stimulated PDCD4
and BCL2 transcription (Supplementary Figure 5C and
Figure 4). With ERb knockdown, PPT and DPN
increased PTEN mRNA (Supplementary Figure 5C).

DISCUSSION

Since the oncomiR miR-21 was the most significantly
up-regulated miRNA in breast tumor biopsies compared
to normal breast tissue (37) and because estrogen stimu-
lates breast tumorigenesis, the goal of this study was to
determine if E2 regulates the expression of miR-21 in
MCF-7 cells as an established human breast cancer
model of estrogen responses. To our knowledge, this is
the first report that E2 downregulates miR-21 and thus
upregulates the protein expression of miR-21 target
genes PDCD4, PTEN and BCL2 in MCF-7 human
breast cancer cells. Furthermore, the ability of 4-OHT,

ICI and siERa to block the E2 repression of miR-21 and
the subsequent increase in Pdcd4, Pten and Bcl-2 proteins
provide a mechanism for the E2 effect, i.e. through ERa
activation. ERb appears to regulate basal miR-21 expres-
sion in MCF-7 cells since knockdown of ERb reduced
miR-21 expression. ERb represses/opposes ERa transcrip-
tional activity and E2-induced cell proliferation (57–61).
Stable transfection of MCF-7 cells with ERb inhibited
xenograft tumor growth, indicating that ERb is a tumor
suppressor (62). We observed that ERb knock down
reduced basal miR-21 and there was no further reduction
in miR-21 expression with E2 treatment. These data
appear to indicate a relief of repression of ERa’s inhibi-
tion of miR-21 transcription. Figure 7 shows a schematic
model illustrating ER regulation of miR-21 and miR-21
regulation of its targets. Our results showing that E2

reduces miR-21 expression in MCF-7 are in agreement
with recent reports that E2 down-regulated miR-21 in
endometrial stromal cells (63) and in the uterus of ovar-
iectomized mice (64).
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At the same time, given the established link between
estrogen and breast carcinogenesis (65,66), one might
expect E2 to upregulate miR-21 rather than inhibit miR-
21 as shown here. Likewise, the increase in miR-21 expres-
sion by 4-OHT appears to contradict its anticipated
anti-tumor role, but is consistent with 4-OHT’s gene-
specific SERM activity as indicated by its activity oppos-
ing E2’s inhibition of miR-21 expression. For complex
phenotypes including cell proliferation, genes and proteins
are up- and down- regulated by a variety of interacting
mechanisms that we are only beginning to understand
and integrate. Our data are supported by a recent report
showing that miR-21 expression was reduced in TAM-
resistant MCF-7 cells (67), a finding likely reflecting the
loss of ER-regulated responses in TAM-resistant cells. It is
well-established that E2 and 4-OHT regulate transcription
in a gene- and cell-specific manner (68–72) and the find-
ings reported here add miR-21 to the list of ER-regulated
genes. We conclude that our apparent ‘contradictory data’
of E2 down-regulating and 4-OHT increasing miR-21
expression add unexpected complexity to understanding
of E2 action in breast tumorigenesis.
The reduction of miR-21 expression in response to E2

appears to be mediated, in part, by the �1kb promoter.
However, because the reduction in transcription was only
�25% in the reporter assay compared to a �80% reduc-
tion by Q-PCR analysis of miR-21 expression, it is possi-
ble that additional regions are also important in regulating
miR-21 expression in response to E2. It has been estab-
lished that E2 increases ERa binding to chromosome
regions outside gene promoters (73,74). Analysis of the
miR-21 promoter using TRANSFAC (http://www.gene-
regulation.com/) identified a non-consensus ERE with
a 2-bp spacer: 50-AGCTGAgcTGACC-30 located 883-bp
upstream of the TATA-binding site. Previous studies
showed no binding of ERa to an ERE with a 2-bp
spacer in vitro (75). However, in addition to direct ERE
binding, ERa regulates gene transcription by tethering to
other transcription factors. Genes repressed by E2-ERa in
MCF-7 cells lack EREs and instead have binding sites for

Ikaros (IKZF1) and PAX homeobox factors, among
others (76), that are also located in the miR-21 promoter.
miR-21 is located in the 30UTR of TMEM49 located
at 17q23.1. Using data from Myles Brown’s online data-
base of genomic E2-ERa-binding sites in MCF-7 cells
from chromatin immunoprecipitation of ERa on-human
genome tiled microarray data (ChIP-on-chip) for human
chromosome 17 (73) http://research.dfci.harvard.edu/
brownlab/datasets/index.php?dir=ER_MCF7_whole_
human_genome/, we found that both E2-ERa and RNA
polymerase II binding overlap with the 71-bp miR-21 gene
(Supplementary Figure 6). AP-1 was shown to activate
miR-21 transcription by direct interaction with three bind-
ing sites in the miR-21 promoter in response to PMA
treatment of HL-60 cells (56). Although both ERa and
ERb interact with AP-1 to regulate gene expression, the
direction of regulation (up or down) varies depending on
the ligand, cell type, chromatin context and neighboring
transcription factor-binding events (77,78). Here we
showed that E2 did not alter TMEM49 transcription
which supports previous results that TMEM49 and miR-
21 are independently regulated (56). Further studies will
be required to analyze the precise mechanisms mediating
E2 repression of miR-21.

Both E2 and AS-miR-21 induced RASA1 reporter activ-
ity; however, the magnitude of luciferase induction was
higher with E2 than AS-miR-21. Although normalized
relative luciferase between EtOH versus controlAS trans-
fected cells is an unequal comparison, one possible expla-
nation for this difference is that E2 alters the expression of
other genes or pathways that selectively impact the
RASA1 reporter compared to the other reporters, e.g.
TGFB1 and PDCD4, that show similar luciferase activity.

Our data showing the downregulation of miR-21 by E2

correlated with upregulation of PDCD4 RNA and protein
(Figure 4B and C) are in agreement with a report that
blocking miR-21 using locked nucleic-acid-modified oligo-
nucleotides increased PDCD4 mRNA and protein in
MCF-7 cells (79). Furthermore, our results in the transient
transfection assays indicate that miR-21 regulates
PDCD4 by an MRE in the 30UTR. The conclusion that
E2-increases PDCD4 expression through inhibition of
miR-21 expression in MCF-7 cells is further supported
by data showing that AS-miR-21 inhibited E2-induced
Renilla luciferase activity from the PDCD4 MRE and
30-UTR in transfected MCF-7 (Figure 2B) and that
AS-miR-21 mimics E2-induction of Pdcd4 protein
(Figure 5C). Our ERa knockdown experiments indicate
that ERa is responsible for the E2-mediated inhibition of
miR-21 expression and regulation of PDCD4 as well as
other miR-21 target genes. The DPN- induced reduction
in PDCD4 mRNA aligns with a report that DPN-
activated ERb inhibits the transcription of PPT-activated
ERa target genes in human breast cancer cells (57).
The increase seen in Pdcd4 protein after 24 h of DPN
treatment may result from a secondary gene effect.

miR-21 functions as an oncogene and modulates
tumorigenicity through regulation of Bcl-2 in MCF-7
cells (38). Inhibition of miR-21 expression by AS-miR-
21 reduced Bcl-2 protein expression and increased
apoptosis in MCF-7 cells in vitro and in tumor xenografts
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Figure 7. ER regulates miR-21 expression and its downstream targets
in a ligand-dependent manner. E2-ER (ERa and/or ERb) inhibits miR-
21 expression resulting in a loss of repression (indicated by the Xs) of
Pdcd4, PTEN and Bcl-2 protein expression. E2-ERa directly increases
BCL2 transcription (arrow, +). 4-OHT and ICI block ER-induced
inhibition of miR-21 expression. E2-ER also regulates the expression
of other miRNAs and mRNAs that, in turn, regulate other cellular
pathways which impact the expression of PDCD4, PTEN and BCL2.
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in mice (38). Consistent with these findings, our data dem-
onstrate that both E2 and PPT decrease miR-21 and
increase BCL2 mRNA and protein expression in MCF-7
cells. BCL2 expression has long been considered a good
prognostic marker in breast cancer (80). DPN increased
BCL2 mRNA and protein expression; likely by ERa acti-
vation because E2 regulates BCL2 transcription in MCF-7
cells via ERa- Sp1 and AP1 interactions (81), we can not
conclude that the increase in BCL2 mRNA is due solely
to E2-mediated decreased miR-21. Further studies will be
needed to dissect the relative contributions of multiple
ERa-mediated pathways controlling BCL2 gene
expression.

PTEN is an important tumor suppressor (82) that has
been identified as a breast cancer susceptibility gene (83).
miR-21 regulates PTEN in human hepatocellular cancer
cells and tumors (35,84) but to our knowledge, no one has
examined miR-21 regulation of PTEN in breast cancer.
We found that E2, PPT and DPN increased PTEN protein
levels without affecting PTEN transcript levels (Figure 4),
indicating translational inhibition. Knockdown of ERa by
siRNA blocked the E2-mediated downregulation of miR-
21 and the E2-induced increase in PTEN, indicating that
this effect is mediated via ERa, and commensurate with
downregulation of miR-21. With ERb knockdown, PPT
and DPN increased PTEN mRNA; however, because E2,
PPT and DPN did not regulate PTEN mRNA in MCF-7
cells, it is likely that this increase is mediated by the loss
of the expression of another PTEN transcriptional
repressor with ERb knockdown. Our data contradict a
previous report showing no alteration of PTEN expres-
sion in MCF-7 cells treated with 100 nM E2 for 24 h
(85). This difference may be due to the lower, physiolog-
ically relevant E2 concentration and shorter treatment
time used here.

In summary, we report for the first time that miR-21 is
down-regulated in response to E2 in an ERa-dependent
manner and that ERb regulates basal miR-21 expression.
Furthermore, this inhibition correlates with up-regulation
of miR-21 targets: PDCD4, PTEN and Bcl-2. The identi-
fication of miR-21 as a miRNA regulated by ER may
open new avenues for potential therapeutic intervention
in breast cancer treatment.
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