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Background: By the beginning of December 2020, some vaccines against COVID-19 already presented
efficacy and security, which qualify them to be used in mass vaccination campaigns. Thus, setting up
strategies of vaccination became crucial to control the COVID-19 pandemic.
Methods: We use daily COVID-19 reports from Chicago and New York City (NYC) from 01-Mar2020 to 28-
Nov-2020 to estimate the parameters of an SEIR-like epidemiological model that accounts for different
severity levels. To achieve data adherent predictions, we let the model parameters to be time-
dependent. The model is used to forecast different vaccination scenarios, where the campaign starts at
different dates, from 01-Oct-2020 to 01-Apr-2021. To generate realistic scenarios, disease control strate-
gies are implemented whenever the number of predicted daily hospitalizations reaches a preset thresh-
old.
Results: The model reproduces the empirical data with remarkable accuracy. Delaying the vaccination
severely affects the mortality, hospitalization, and recovery projections. In Chicago, the disease spread
was under control, reducing the mortality increment as the start of the vaccination was postponed. In
NYC, the number of cases was increasing, thus, the estimated model predicted a much larger impact,
despite the implementation of contention measures.
The earlier the vaccination campaign begins, the larger is its potential impact in reducing the COVID-19

cases, as well as in the hospitalizations and deaths. Moreover, the rate at which cases, hospitalizations
and deaths increase with the delay in the vaccination beginning strongly depends on the shape of the
incidence of infection in each city.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Previous pandemics have demonstrated that, as a general rule,
pharmaceutical interventions are less important than non-
pharmaceutical intervention in controlling the infection, however,
there is a possibility that this will not be the case with the vaccines
against COVID-19 [1–3].

Some few months after the emergence of SARS-CoV-2 in China,
several academic laboratories and pharmaceutical industries
around the world started the development of more than 100 types
of different vaccines, short-circuiting in less than one year the
usual time frame of new vaccines development and testing of
around ten years [3,4].

There is, therefore, an enormous variety of COVID-19 vaccines
being developed. As of November 2020, there were 48 vaccines
in clinical trials and 146 candidate vaccines in pre-clinical evalua-
tion [5]. Of these, 12 vaccines were in the pipeline, of which ten
were in Phase 3 of clinical trials (four have already completed this
phase) and two were in Phase 2 [5]. In the US, three vaccines com-
pleted Phase 3 trials, namely, Moderna, Pfizer, and AstraZeneca,
and two were still in Phase 3 [5].

In order to have a significant impact on the course of the pan-
demic, however, safe and effective vaccines have to emerge in less
time it would take the affected populations to reach natural herd

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2021.08.098&domain=pdf
https://doi.org/10.1016/j.vaccine.2021.08.098
mailto:v.albani@ufsc.br
mailto:jennyls@impa.br
mailto:eduardo.massad@fgv.br
mailto:jorge.zubelli@ku.ac.ae
https://doi.org/10.1016/j.vaccine.2021.08.098
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine


Vinicius V.L. Albani, J. Loria, E. Massad et al. Vaccine 39 (2021) 6088–6094
immunity [3]. Therefore, an unprecedented time-schedule to roll
out any effective vaccine is urgently needed.

In December 2020, the Centers for Disease Control and Preven-
tion (CDC) proposed the Phase 1 allocation schedule of vaccination,
covering an estimated 264 million people in about 25 weeks from
thebeginningof vaccination. Phase1awould cover 21millionhealth
personnel and threemillionnursing residents. Phase 1bwould cover
87million essentialworkers, 100million personswith riskymedical
conditions and 53 million adults older than 65 years of
age [6]. This ambitious rolling out plan, however, is way behind
schedule. By 7-Jan-2021, only about five million people have been
vaccinated [7].

We quantify the delay impact in vaccination deployment under
different scenarios using publicly available data. This is done by
implementing an extended version of Susceptible-Exposed-Infec
tive-Recovered-like (SEIR) models accounting for the different
levels of disease severity, asymptomatic infection, age range, and
regime changes in disease spread, as in [8–10]. Such implementa-
tion is complemented by a novel data-driven approach to calibrate
the various crucial parameters that regulate the model. This
approach, in turn, builds up on an earlier work by some of the
authors [9,11] and integrates the data acquisition with the scenario
generation. The model captures well the time evolution of the out-
break leading to the forecast of realistic scenarios. It is tested with
publicly available data from Chicago and New York City (NYC) con-
firming adherence to historical data. We observe that according to
the disease-spread control level, the impact of postponing a mass
vaccination campaign is considerable. Reopening strategies after
lockdown are also accounted for in our study.

It is worth mentioning that the politicization of the vaccination
in many countries, the polemic around safety and efficacy of the
candidate vaccines and the anti-vaccination groups campaigning
against the vaccine are all contributing to hesitancy [12] and an
inevitable delay in vaccination in many places around the world
(not to mention the technical hurdles to roll out billions of doses
necessary to control the SARS-CoV-2 pandemic). All these issues
make the estimation of the number of cases and deaths caused
by vaccination delay important.
Fig. 1. Schematic representation of the epidemiological model of Eqs. (1)–(9). The
dashed-line arrows indicate that the V compartment is virtual, meaning that the
individuals just pass through it.
2. Materials and methods

This section presents the epidemiological model as well as the
estimation techniques used to calibrate the model parameters
from observed cases of COVID-19.

2.1. The epidemiological SEIR-like model

The proposed epidemiological model accounts for the distribu-
tion of the population into n age ranges. For the ith age range, the
corresponding group of individuals is further classified into nine
compartments, namely, susceptible (S), vaccinated (V), exposed
(E), asymptomatic and infective (IA), mildly infective (IM), severely
infective or hospitalized in wards (IS), critically infective or admit-
ted to an intensive care unit (ICU) (IC), recovered (R), and deceased
(D). All infective individuals that are symptomatic but do not need
to be hospitalized are considered mildly infective. By severely
infective we mean those individuals that were admitted to a regu-
lar hospital bed. Those individuals that were admitted to ICU are
considered as critically infective. Only susceptible individuals are
considered vaccinated, which means that if someone is vaccinated
after being exposed, then he or she will pass to the asymptomatic
or mildly infective compartments. Before presenting the model, let
us introduce the vector notation, i.e.,

S ¼ ½S1; � � � ; Sn�T
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where Siði ¼ 1; � � � ;nÞ represents the susceptible individuals in the
ith age range. E, V, IA, IM , IS, IC , R, and D are defined similarly. Also
consider the tensor product between two n-dimensional vectors,
defined as

X� Y ¼ ½x1y1; � � � ; xnyn�T

Thus, the movement between the model compartments is
determined by the following system of ordinary differential
equations:

_S ¼ �S� bAIA þ bMIM þ bSIS þ bCICð Þ � m� S ð1Þ

_V ¼ m� S ð2Þ

_E ¼ S� bAIA þ bMIM þ bSIS þ bCICð Þ � rE ð3Þ

_IA ¼ 1� pð ÞrE� cR;A � IA ð4Þ

_IM ¼ prE� cR;M þ aS

� �
� IM ð5Þ

_IS ¼ aS � IM � cR;S þ aC

� �
� IS ð6Þ

_IC ¼ aC � IS � cR;C þ dD
� �

� IC ð7Þ

_R ¼ cR;A � IA þ c
R;M

� IM þ cR;S � IS þ cR;C � IC ð8Þ

_D ¼ dD � IC ð9Þ
The schematic representation of the model can be found in

Fig. 1.
The time-dependent transmission parameters for asymp-

tomatic, mildly, severely, and critically infective individuals are
denoted, respectively, by bA, bM , bS, and bC . The rate of vaccination
is m, which is given by the product of the daily rate of vaccination of
susceptible individuals by the effectiveness of the used vaccine.
The meantime from contagion to become infective is the inverse
of the parameter r. The recovery rate of mildly, severely, critical,
and asymptomatic infective individuals are denoted by cR;M , cR;S,
cR;C , and cR;A, respectively. The rates of hospitalization and ICU
admission are denoted by aS and aC , respectively. According to
the World Health Organization, only people in severe conditions
generally die by COVID-19, thus, the corresponding death rate is
dD [13].

The unknown parameters are bA, bM , bS, and bC , as well as the
initial number of mildly and asymptomatic infective individuals,
that shall be estimated from the daily numbers of infections. In
order to reduce the number of unknowns, we assume that



Vinicius V.L. Albani, J. Loria, E. Massad et al. Vaccine 39 (2021) 6088–6094
bS ¼ abM; bC ¼ bbMand bA ¼ cbM ð10Þ
with a ¼ 0:1, b ¼ 0:01, and c ¼ 0:58, which means that the infection
rate of hospitalized, in ICU and asymptomatic individuals are 10%,
1% and 58%, respectively, of the transmission rate of those ones in
the mildly infective compartment [9,14]. The mean time between
infection and becoming infective is set to 5.1 [15]. The proportion
of exposed individuals becoming mildly infective is p, which is set
to 0.83 [14]. The recovery rates of mildly, severely, and critically
infective individuals are simply set as one minus the rates of hospi-
talization, ICU admission, and death, respectively. All the asymp-
tomatic individuals will recover in 14 days, so, cR;A ¼ 14�1. The
rate of ICU admission is set as aC ¼ 0:4 [16]. The hospitalization
and death rates are time-dependent and defined as follows:

aSðtÞ ¼ HðtÞ
Iðt � 1Þ and dD tð Þ ¼ DðtÞ

aCHðt � 1Þ ð11Þ

where I, H, and D represent the time series of seven-day moving
averages of daily numbers of infections, hospitalizations, and
deaths, respectively.

If the number of age ranges n is larger than one, the entries of
the matrix bM are defined as:

bM½ �ii ¼ bi tð Þbi; bM½ �ij ¼
pj

2
bi tð Þbi þ bj tð Þbj

� �
; i–j i; j ¼ 1; � � � ; nð Þ

where biðtÞði ¼ 1; :::;nÞ are time-dependent scalar coefficients, and
bi, as well as piði ¼ 1; :::;nÞ are time-independent [9]. biðtÞ repre-
sents the time-dependent part of the transmission coefficient for
the ith age range, whereas bi is the time-independent part. They,
respectively, capture the short-term and the long-term pattern of
the disease spread. The parameter pi represents the probability of
any individual from the jth age range to interact with an individual
from the (iþ j� 1)th age range. In this case, we set p1 ¼ 1. Under
these assumptions, the number of unknown parameters in bM , for
each t, is 2n, instead of n2 � n.

2.2. Estimation techniques

As aforementioned, the set of unknown parameters is com-
posed by the initial number of individuals at the mildly infective

individuals IMð0Þ ¼ I1Mð0Þ; � � � ; InMð0Þ
� �T

, the time-dependent com-

ponents of the matrix bM , b
!ðtÞ ¼ b1ðtÞ; � � � ; bnðtÞ½ �T , and the time-

independent components of bM , b ¼ b1; � � � ; bn½ �T and
p ¼ 1; p2; � � � ; pn½ �T . Let Ii ¼ fIiðt1Þ; :::;IiðtNÞg represent the time
series of seven-day moving averaged version of daily reports of
COVID-19 infections for the ith age range. The estimation proce-
dure is performed in two steps. In the first one, the time-
independent parameters, IMð0Þ and b, are estimated and, in the sec-

ond one, b
!ðtÞ is calibrated.

The estimated IMð0Þ and b are minimizers of the objective func-
tion below, which is closely related to the so-called posterior den-
sity of the model parameters, given the set of reports [17].

PðIMð0Þ;b;pjI1; � � � ;InÞ ¼ LðI1; � � � ;InjIMð0Þ;b;pÞ
þ aPrðIMð0Þ;b;pÞ ð12Þ

where a > 0 is a penalty parameter,

LðI1; � � � ;InjIMð0Þ;b;pÞ ¼
Xn

i¼1

XN

l¼1

½IiðtlÞlogðrEiðtlÞÞ � rEiðtlÞ

� logðIiðtlÞ!Þ�

is the data misfit function with logðIiðtlÞ!Þ approximated by the
Stirling’s formula
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logðIiðtlÞ!Þ � 1
2
logð2pIiðtlÞÞ þIiðtlÞlogðIiðtlÞÞ �IiðtlÞ

and

PrðIMð0Þ;b;pÞ ¼ kðIMð0Þ;b;pÞ � ðI0Mð0Þ;b0
;p0Þk2l2

is the penalty term, with ðI0Mð0Þ;b0
;p0Þ a set of a priori parameters.

The set of time-dependent components of bM , b
!ðtÞ is estimated

by minimizing the function below, for each tlðl ¼ 1; � � � ;NÞ:

Pð b!ðtlÞjI1ðtlÞ; :::;InðtlÞ; IMð0Þ;b;pÞ

¼
Xn

i¼1

IiðtlÞlogðrEiðtlÞÞ � rEiðtlÞ � logðIiðtlÞ!Þ
h i

þ ak b!ðtlÞ � b
!ðtl�1Þk

2

l2

The minimization of the objective functions above is performed
by a gradient-based technique [18]. Confidence intervals (CIs) are
generated by bootstrapping, based on a set of 200 samples [19].
3. Results

This section presents the comparison between model predic-
tions and reported data after calibration, as well as vaccination sce-
narios created with the calibrated model using data from Chicago
and NYC.
3.1. Estimation results

The parameters of the epidemiological model of Eqs. (1)–(9) are
estimated from seven-day moving average time-series of daily new
infections from Chicago and NYC. The time-series of daily reports
of COVID-19 infections, as well as related hospitalizations and
deaths for Chicago and NYC, are available from public resources
[20,21]. Recent census data containing the total population of the
considered cities and their distributions by age ranges were also
used [22].

During the model estimation, the time series were divided into
sets of consecutive 20 days. Besides the set corresponding to the
beginning of the COVID-19 outbreak in these cities, for each 20-

day dataset, b and b
!ðtÞ are estimated. We start by not distributing

the population into age ranges, which means that n is set to 1 in the
model of Eqs. (1)–(9). The time-dependent effective reproduction
number denoted by RðtÞ is evaluated through the next-
generation matrix technique [23,24].

Model prediction using estimated parameters of daily new
cases, hospitalizations and deaths, as well as the corresponding
reported numbers for Chicago and NYC for the period 01-Mar-
2020 to 28-Nov-2020 can be found in Figs. 2-3, respectively. The
corresponding effective reproduction numbers are also presented.

For both cities, the model predictions of daily new cases, hospi-
talizations and deaths (in Fig. 2, top left and right, as well as bot-
tom left panels, respectively) are adherent to the reports. It is
explained by the effectiveness of the calibration procedure, and
the use of the hospitalization and death rates defined in Eq. (11).
We decided to present the seven-day moving average of RðtÞ since
it is less fuzzy, allowing to see the qualitative trend of the spread
dynamics, such as the effectiveness of control measures. The peri-
ods when control measures effectively reduced the number of new
COVID-19 infections are illustrated by the graph of RðtÞ, where,
during such dates, its value remained below one (solid horizontal
line).



Fig. 2. Model predictions of infections, hospitalizations and deaths (solid lines), using data from Chicago. The bars represent the reports and the envelopes are 90% CIs. The
corresponding seven-day moving average of the time-dependent basic reproduction rate is depicted in the bottom right panel.

Fig. 3. Model predictions of infections, hospitalizations and deaths (solid lines), using data from NYC. The bars represent the reports and the envelopes are 90% CIs. The
corresponding seven-day moving average of the time-dependent basic reproduction rate is depicted in the bottom right panel.
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3.2. Vaccination scenarios

Let us consider that a vaccination campaign is implemented in
Chicago and NYC. The vaccine is 95% effective. Firstly, during the
campaign, on each day, 1% of the susceptible population is immu-
6091
nized, until the number of susceptible individuals is less than 40%.
This threshold was chosen based on an estimate of the proportion
of US citizens that accept to get a vaccine against COVID-19 [25].
The vaccination rate m is set such that m� S always equals 0.95
times 1% of the population size.
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In order to forecast scenarios, the time-dependent parameters
are extended to the forecast period by repeating the average of
the values estimated in the last ten days of the calibration period.
To avoid unrealistic numbers, whenever the predicted number of
daily hospitalizations reaches the value 300, the time-dependent
transmission coefficient bðtÞ is set to the average of the values esti-
mated in the period 07-Sept-2020 to 16-Sept-2020, when the dis-
ease spread was controlled. In this period, the effective
reproduction numbers in Figs. 2 and 3 were close to the value
one, indicating that the disease spread was under control.

The vaccination campaign is set in the period 01-Oct-2020 to
31-May-2021, starting on different dates, but finishing at 31-
May-2020. Table 1 and Table 2 show the accumulated numbers
of infections, hospitalizations and deaths corresponding to the dif-
ferent starting dates Table 2.

The evolution of the number of accumulated deaths with
respect to the starting date of the vaccination campaign can be
found in Fig. 4. The evolution of the increment in the death number
can be found in Fig. 5. The increasing number of deaths, as the
beginning of the campaign is postponed, also illustrate that vacci-
nation must start as soon as possible Fig. 5.

An example using a vaccination strategy that accounts for age
range can be found in the supplement. The corresponding conclu-
sions and results are similar to the ones above.
4. Discussion

In this paper, to generate vaccination scenarios, we propose an
SEIR-like model that accounts for the different levels of disease
severity, asymptomatic infection, age range, and regime changes
in disease spread as times goes by. The model parameters are cal-
ibrated from reports of daily COVID-19 infections, as well as pub-
lished reports. We end-up with a modeling tool that captures
well the time evolution of the outbreak, reproducing the empirical
data with remarkable accuracy, helping to forecast realistic scenar-
ios. Such features are illustrated using publicly available data from
Chicago and NYC.

Depending on, whether the disease spread is under control or
not, that is, whether the daily incidence curve of infection is
Table 1
Accumulated numbers of infections, hospitalizations and deaths in Chicago, when the vacc
using the estimated parameters.

Starting Date Cases Hospitalization

01-Oct-2020 55,628 (50,666–62,342) 2345 (2255–246
01-Nov-2020 115,236 (102,557–131,706) 4177 (3993–441
01-Dec-2020 144,489 (123,310–172,791) 4732 (4466–507
01-Jan-2021 159,687 (131,278–200,399) 4976 (4639–542
01-Feb-2021 167,904 (134,615–219,067) 5108 (4721–564
01-Mar-21 171,976 (135,916–230,405) 5173 (4757–577
01-Apr-2021 174,340 (136,523–238,305) 5211 (4775–585

Table 2
Accumulated numbers of infections, hospitalizations and deaths in NYC, when the vaccin
using the estimated parameters.

Starting Date Cases Hospitalizations

01-Oct-2020 49,336 (40,942–59,625) 3314 (3036–3634)
01-Nov-20 133,301 (97,217–178,086) 8567 (7324–10,000)
01-Dec-2020 310,265 (177,628–453,783) 19,810 (14,957–25,6
01-Jan-21 543,672 (282,852–1,030,119) 34,682 (25,689–47,4
01-Feb-2021 908,557 (407,618–2,006,687) 57,915 (36,641–88,0
01-Mar-21 1,303,397 (504,256–3,029,771) 83,026 (46,905–133,
01-Apr-2021 1,731,320 (584,568–3,977,235) 110,098 (57,672–179
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increasing or decreasing, the impact of postponing the beginning
of a mass vaccination campaign is considerable. As expected, such
impact is more serious in regions where the incidence curve is
increasing than in cities where the infection is controlled.

We use different strategies and consider the implementation of
contention measures, as the daily reports of hospitalizations reach
a threshold. Reopening strategies after lockdown are also
accounted for in our study.

The model has some important limitation worth mentioning.
First, it assumes that 60% of susceptible are vaccinated with a
95% efficacy vaccine in a short period of time at a rate of 1% per
day. Although this scenario is logistically feasible, it is a daunting
task.

The current scenario of the pandemic, in which new variants of
SARS-CoV-2 are emerging in some countries, should be considered
in the simulation of future vaccinationmodels [26]. However, there
is not enough empirical evidence of the repercussion of these new
variants of the vaccine efficacy.

Finally, we should point out that the SARS-CoV-2, like any other
viruses, is evolving, with new strains showing increased transmis-
sibility. It should be expected, however, that its case fatality rate
(or virulence) should be decreasing with time. This is a general rule
in the evolution of pathogens which helps them to increase their
basic reproduction number [27]. If this is the case, then it is possi-
ble to predict that in few years, COVID-19 tends to be a mild dis-
ease as other coronaviruses, like OC-43 which probably caused
the so-called ‘‘Russian flu” in 1889 and nowadays is responsible
for about 10% of the common cold [28]. The future of vaccines
against SARS-CoV-2, therefore, will very much depend on the viru-
lence the virus will eventually evolve.
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Appendix A

A.1. One additional example

We now simulate vaccination campaigns, starting on different
dates, where people over 80 years old are immunized one month
earlier than individuals in other age ranges. In addition, people
under 18 years old are not vaccinated. Again, we assume 95% of
effectiveness of the vaccine and the rate of vaccination of the pop-
ulation in the ith age range is 1%.

Table 3 presents the accumulated numbers of COVID-19 cases,
hospitalizations and deaths, as well as of immunized individuals
during the period 01-Nov-2020 to 31-May-2021 for NYC. As the
starting date of the campaign is delayed, there is a remarkable
increase in the accumulated numbers.

The left panel in Fig. 6 shows the evolution of the accumulated
number of deaths as a function of the vaccination campaign start-
ing date. The right panel shows the increment in the number of
ation campaign starts at different dates. Such values are based on model predictions

Deaths Total Vaccinated

650 (578–731) 4,282,170 (4,200,732–4,377,917)
,497) 1194 (980–1460) 4,168,087 (4,081,642–4,259,118)
,976) 2033 (1506–2732) 4,005,264 (3,787,083–4,176,623)
,809) 3188 (2134–4626) 3,663,073 (3,343,475–3,831,779)
,925) 4472 (2777–6759) 3,014,098 (2,705,315–3,232,245)
5,271) 5769 (3403–8813) 2,175,741 (1,861,952–2,402,590)

https://github.com/JennySorio/Vaccination_Scenarios


Fig. 6. Right: Evolution of the model predicted accumulated deaths in NYC with respect to the starting date of the vaccination campaign. Left: increment in the accumulated
deaths by postponing the starting date of the vaccination campaign. The envelopes are 90% CIs.

Vinicius V.L. Albani, J. Loria, E. Massad et al. Vaccine 39 (2021) 6088–6094
deaths for each starting date, in comparison to starting vaccination
one month earlier.
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