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Universal drivers of cheese microbiomes
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SUMMARY

The culinary value, quality, and safety of cheese are largely driven by the resident
bacteria, but comparative analyses of the cheese microbiota across cheese types
are scarce. We present the first global synthesis of cheese microbiomes.
Following a systematic literature review of cheese microbiology research, we
collected 16S rRNA gene amplicon sequence data from 824 cheese samples span-
ning 58 cheese types and 16 countries. We found a consistent, positive relation-
ship between microbiome richness and pH, and a higher microbial richness in
cheeses derived from goat milk. In contrast, we found no relationship between
pasteurization, geographic location, or salinity and richness. Milk and cheese
type, geographic location, and pasteurization collectively explained 65% of the
variation in microbial community composition. Importantly, we identified four
universal cheese microbiome types, driven by distinct dominant taxa. Our study
reveals notable diversity patterns among the cheesemicrobiota, which are driven
by geography and local environmental variables.

INTRODUCTION

Cheese consumption and production are on the rise. The world cheese production reached 21 million

metric tons in 2014 and is expected to grow to a global market value of 106 billion U.S dollars by 2026.1

Generally, cheese is produced through the coagulation of milk protein (casein), which is separated from

themilk’s whey. Cheese varieties depend on the geographic region of production, the processing method,

and the components used, which include milk, a coagulating agent, and in some cases, microbial starter

cultures. The cheese microbiome is inextricably linked to the cheese matrix where it resides, driving the

complex biochemical changes that underlie the ripening process.2–6

The cheese microbiome is dominated by lactic acid bacteria (LAB), which are members of the order Lacto-

bacillales that produce lactic acid as an end product of carbohydrate fermentation.7,8 Depending on the

cheese type, specific microbes or consortia can be inoculated into milk or acquired from the environment

to begin the ripening process. These microbes are adapted to different abiotic stresses including changes

in pH, salinity, temperature, or moisture alongside biotic stresses such as competition and invasion resis-

tance both at the individual or community levels.9 During the ripening process, the cheese microbiota are

influenced by the quality of the rawmilk, the starter cultures added, and the ripening conditions.10,11 These

bacteria, and especially LAB, modulate cheese appearance, texture, aroma, nutrient composition, quality,

and shelf-life,12,13 while undesirable microorganisms may adversely affect cheese quality and safety.14

Much like the rest of microbiology, cheese microbiome research has undergone a revolution over the past

two decades, shifting from culture-dependent to culture-independent methods (i.e., sequencing) to iden-

tify microorganisms in cheese, providing a more complete view of the microbes involved in cheese

ripening.11,15 For example, LAB in starter cultures are generally culturable and abundant in the earlier

stages of cheese ripening, while non-starter LAB are dominant and essential to later stages of ripening

but are less easily cultured.10,16 In recent years, sequence-based research has been used to characterize

the microbiomes of a wide range of cheeses, spanning a variety of milk types, geographic locations, and

production styles.2,17–19 Due to the ease of comparability among sequence data, the increasing popularity

of sequencing-based approaches also facilitate synthesis research.18,20

Understanding how abiotic factors (geography, cheese pH, ripening conditions, milk type, and so forth)

drive microbial diversity across cheese types can offer insights into improving the ripening process, reveal

how domestication by different cultures results in different microbial consortia, and shed light on universal

patterns of ecological assembly in cheese microbiomes. To this end, we conducted the first systematic
iScience 26, 105744, January 20, 2023 ª 2022 The Author(s).
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review and synthesis of cheese microbiomes at a global scale. From the available literature, we selected

publicly available cheese microbiome 16S rRNA gene amplicon sequencing datasets and examined how

abiotic factors shape the cheese microbiome. In addition to identifying gaps in the current cheese micro-

biome research, this study provides the first global survey across cheese types, identifying the drivers of

their diversity.

RESULTS

Trends in cheese microbiome research

Over the period studied, we found no trends in the number of microbiology-oriented cheese studies pub-

lished over time (correlation test, p = 0.66) or in the proportion of those studies performing amplicon

sequencing (X2 = 2.3572, p = 0.12; Figures 1 and 2). Most studies (75%) focused on LAB rather than the

whole cheese microbiome (Table S1).

Across the 120 studies reviewed, 71.7% reportedly sampled cheeses directly at the point of production,

27.5% sampled commercially available cheeses, and 0.8% did not disclose the source of their samples (Fig-

ure 3A). Most studies sampled ripened cheeses (55.8%; Figure 3B) and did not report the use or composi-

tion of starter cultures (51.7%). Among the studies which did report on starter culture use, 13.3% did not use

any starter culture, while 20.8%, 12.5%, and 1.7% focused on cheeses made with commercial, local, and

unspecified starter cultures, respectively (Figure 3C). Only 2.5% of the studies2,19,21 sequenced the starter

cultures used in the production of the cheeses using 16S rRNA gene amplicon sequencing (Table S1). Phys-

icochemical parameters were reported for the minority of studies: on average, salinity was 2.5 G 1.1% (re-

ported for 11% of the studies), pH was 5.3G 0.5 (reported for 18% of studies), and cheeses were ripened at

10.7 G 5.5�C (reported for 26% of the studies, Figure 4). Cheese were ripened for 14 to 720 days (reported

for 46% of the studies).

The global cheese microbiome

To further delve into the relationship between a cheese’s location, ripening conditions, and its resident mi-

crobiome, we obtained publicly available sequences from 27 studies that performed 16S rRNA gene or

transcript amplicon sequencing (Table 1). This dataset included sequences from 58 cheese types, spanning

16 countries (Figure 5), and distributed across 824 samples. In total, we detected 5,521 distinct ASVs.

Across all samples, an average richness was 29 G 25 ASVs, but varied between cheese types. Caciocavallo

of Castelfranco (Italy) cheese had the lowest (5 G 6 ASVs), and Swiss semi-hard cheese had the highest

(146 G 12 ASVs) average richness (Figure 5). The cheeses’ microbiomes were dominated by members of

the Firmicutes and Proteobacteria phyla. Notably, whereas the microbiomes of Caciocavallo of Castel-

franco, Cheddar, Chiapas, Chihuahua, Gruyere, and Jarlsburg cheeses were dominated by Firmicutes

(>85% of the community), Adobera mesa, Canasto and Ranchero Veracruz were dominated by Proteobac-

teria (>85% of the community). Furthermore, the microbiomes of Halloumi, Grana, and Edam cheeses were

found to contain <5% of Cyanobacteria, a phylum not often reported in cheeses.

Among the 4 studies which reported salinity (84 samples), we found no consistent relationship between

richness and salinity (slope estimate 0.04 G 0.08, posterior probability of 0.69). In contrast, among the 7

studies which reported pH (119 samples), we found a strong, positive relationship between richness and

pH (posterior probability of 1), with a slope of 7.87 G 2.59 and an intercept of �24.23 G 14.81 (Figure 4).

We found no difference in richness between pasteurized and unpasteurized cheeses (posterior probability

of differences = 0.51, Figure S2A). On average, cheeses made from goat’s milk had the highest richness

(44 G 1 ASVs) and were consistently richer than cheeses from cow milk and sheep milk. Cheeses made

from sheep’s milk had the lowest richness (23 G 5 ASVs), and were consistently less rich than those from

cow milk or milk mixtures (posterior probabilities of 1 for all comparisons, Figure S2B). We also found no

differences between cheeses of different geographic regions (posterior probability of differences <0.79

for all comparisons, Figure S2C).

To assess whether the proportion of LAB in the community affected community richness, we examined the

relationship between the relative abundance of members of the order Lactobacillales and richness in the

whole community. We found a strong, negative relationship between richness and LAB abundance (pos-

terior probability of 1) with a slope of �18.13 G 1.28 and an intercept of 49.07 G 6.81 (Figure S3).
2 iScience 26, 105744, January 20, 2023



Figure 1. ROSES flowchart illustrating systematic search, identification, screening, and final selection of articles
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Figure 2. Cheese microbiome-related publications with (deep brown) and without (light brown) 16S rRNA gene

amplicon sequencing (n = 120) over time
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There was little overlap in cheese types across studies, and only three cheese types (Adobera, Cheddar,

and Grana Padano) were sequenced by more than a single study. A distance-based variance partitioning

of experimental variables (extraction kit used, study identity, type of sequencer used, and whether DNA or

RNA amplicons were sequenced) explained 55.6% of the variability in community composition at the genus

level (Figure S4A); however, of this variation, 48.5% was shared by more than one variable. Notably, study

alone explained 7.1%, while the combination of study and extraction kit used explained 32.7% of the vari-

ation in community composition.

A distance-based variance partitioning of cheese ripening conditions (cheese type, pasteurization,

country of origin, and milk source) explained 65.5% of the variation in community composition (Fig-

ure S4B). As expected, all of this variation was nested within cheese type, which alone explained

29.9% of the variation in community composition. Importantly, the combination of the country of origin

and cheese type explained an additional 25.7% of the variation in community composition, while

pasteurization only explained a modest portion (1.8%) of the variation in community composition. While

the significance of these nested variance fractions is not testable, the whole model was statistically sig-

nificant, suggesting that these ripening conditions have consistent and relevant effects on the

microbiome.
A B C

Figure 3. Features of cheese samples included in this study

Features of cheese samples reflecting (A) cheese source, (B) cheese state, and (C) starter culture use (n = 120).

4 iScience 26, 105744, January 20, 2023



Table 1. Metadata of the studies which performed 16S rRNA gene or transcript amplicon sequencing

NCBI SRA

Accession

#

Samples

Original

Reads

Filtered

reads

Final

reads Molecule Pasteurized pH NaCl

Mean

Richness Cheeses

Animal

species

Countries

of origin

Starter

culture Reference

PRJNA283170 4 4076 3875 3557.5 DNA No NA NA 17.7 Grancacio,

Mozzarella,

Ricotta,

Scamorza

Cow, Sheep Italy Yes Consonni

and Cagliani22

PRJNA637891 4 442,000 442,000 400,602 DNA Yes NA 1.5 84.2 Edam Cow Poland Yes Ritschard et al.23

PRJEB24792 6 80,642 80,601 79,068 DNA Yes 5.2 NA 33.5 Tafi Cow Argentina No Murugesan et al.24

PRJEB36556 22 189,222 188,652 183,195 DNA Yes NA NA 37.4 Paipa Cow Colombia NA Ramezani et al.25

PRJNA230456 9 5541 5387 4982 RNA Yes NA NA 20.4 Fontina Cow Italy Yes De Pasquale et al.26

PRJNA238397 16 5401 5375 2155 RNA Yes 5.2 3.275 13.9 Canestrato

Pugliese

Sheep Italy No Delcenserie et al.27

PRJNA255096 18 8735 6759 6476 RNA Yes NA NA 38.6 Grana Cow Italy Yes Alessandria et al.2

PRJNA272374 29 5849 5630 5434 DNA Yes NA NA 25.9 Mozarella Cow Italy NA Salazar et al.28

PRJNA277133 37 133,106 133,100 126,003 DNA Yes NA NA 78.6 Grana Padano Cow Italy NA Zhu et al.29

PRJNA286758 29 6265 5816 5178 RNA No 5.8 4.052 15.7 Pecorino

Toscano,

Pecorino

Siciliano,

Fiore Sardo

Sheep Italy Yes Kamimura et al.30

PRJNA290349 40 5781 5473 5372 RNA Yes NA NA 16.7 Caciocavallo

Silano

Cow Italy Yes Falardeau et al.31

PRJNA294953 6 12,685 12,663 10,588 RNA Yes NA NA 39 Grana Padano Cow Italy Yes Dugat-Bony et al.32

PRJNA295825 3 13,529 13,493 11,698 DNA Yes NA NA 146.3 Swiss semi

hard

Cow Switzerland NA Frétin et al.33

PRJNA311540 18 3997 3871 3737 DNA Yes 5.3 NA 5.4 Caciocavallo of

Castelfranco

Cow Italy Yes Giello et al.18

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

iS
cie

n
ce

2
6
,
1
0
5
7
4
4
,
Jan

u
ary

2
0
,
2
0
2
3

5

iS
cience

A
rticle



Table 1. Continued

NCBI SRA

Accession

#

Samples

Original

Reads

Filtered

reads

Final

reads Molecule Pasteurized pH NaCl

Mean

Richness Cheeses

Animal

species

Countries

of origin

Starter

culture Reference

PRJNA316626 17 43,316 42,829 42,265 DNA No NA NA 27.9 Adobera,

Zacatecas,

Chihuahua,

Cincho,

Oaxaca,

Canasto,

Asadero,

Manchego,

Adobera mesa,

Cotija,

Panela

pasteurizado,

Panela artesanal,

Jocoque,

Chiapas,

Ranchero

Estado de

Mexico,

Ranchero

Veracruz

Cow Mexico NA Kamilari et al.34

PRJNA319425 5 71,453 65,868 65,128 RNA Yes 5.0 NA 50.6 Liqvan Sheep Iran NA Ruvalcaba-

Gómez et al.35

PRJNA379167 15 35,083 35,039 33,302 DNA Yes NA NA 12.3 Pecorino

Crotonese

Sheep Italy Yes Haddaway et al.36

PRJNA382370 89 109,117 104,938 102,021 DNA NA 5.4 1.491 14.5 Gouda Cow, Goat USA, Netherlands,

Unknown

NA Bunn and Korpela37

PRJNA413466 15 34,232 34,167 32,655 DNA Yes NA NA 26.8 Qula Yak China NA Quast et al.38

PRJNA421256 24 60,069 58,602 57,947 DNA Yes NA NA 19.1 Cantal Cow France Yes Turnbaugh et al.39

(Continued on next page)
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Table 1. Continued

NCBI SRA

Accession

#

Samples

Original

Reads

Filtered

reads

Final

reads Molecule Pasteurized pH NaCl

Mean

Richness Cheeses

Animal

species

Countries

of origin

Starter

culture Reference

PRJNA476316 180 82,455 81,258 75,293 DNA Yes NA NA 38.2 Serrano,

Cerrado,

Araxa,

Colonial,

Curd,

Campodas

Vertentes,

Serro,

Canastra,

Cerrado,

Caipira,

Campodas

Vertentes,

Cerrado,

Caipira,

Butter,

Marajo,

Curd,

Cow Brazil Yes Engel et al.40

PRJNA499132 43 278,760 278,576 233,882 DNA No NA NA 33.1 Brie,

Cheddar,

Jarlsburg,

Gruyere

Cow Canada Yes Chao et al.41

PRJNA523139 97 24,883 24,056 24,003 DNA Yes 5.2 NA 13.6 Camembert;

Reblochon

Cow France Yes McMurdie et al.42

PRJNA578621 32 31,487 24,489 24,239 DNA Yes NA NA 14.9 Saint-Nectaire Cow France Yes Oksanen et al.43

PRJNA598815 18 141,051 140,017 137,710 DNA Yes NA NA 43.7 Halloumi Goat,

Sheep,

Mixed

Cyprus NA Morgan44

PRJNA673975 40 63,315 63,035 61,401 DNA Yes NA NA 6.5 Cheddar Cow Australia NA Afshari et al.19

PRJNA681198 8 144,153 137,781 132,221 DNA Yes NA NA 169.6 Adobera Cow Mexico No Kolde et al.45

The number of original reads, filtered reads, and final reads is shown as an average per study. NA, not available; DNA, deoxyribonucleic acid; RNA, ribonucleic acid.
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Figure 4. Ripening parameters of cheese samples included in this study

(A–F) Ripening parameters including ripening duration (A), ripening temperature (B), salinity (C and E), and pH (D and F) varied among cheese types. While

salinity did not affect the richness of the resident microbiota (E), pH was positively related to richness. In (A–D), the percentage of studies (out of 120)

reporting each parameter is shown on the top right of each panel. Data in panels (E and F) was obtained from 5 to 7 microbiome datasets which reported

salinity and pH values, respectively. Regression lines indicate themean response across cheese types and studies. The shaded ribbon indicates the 95%CI of

the overall response, and data points are colored according to their study membership. In f, the overall trend diverges from zero with a probability of 1.

ll
OPEN ACCESS

iScience
Article
To investigate similarities among cheeses, we performed a cluster analysis across all cheese types for which

triplicate samples were available (n = 805). We found the strongest support for four clusters of cheeses, which

exhibited distinct dominant communities (Figure 6). Cheese microbiomes in Group 1 included 280 samples

from 23 cheese types and were dominated by Lactococcus. Similarly, microbiomes in Group 2 included 236

samples from 12 cheese types and were dominated by Lactococcus, but had lower evenness and richness

than those inGroup1 (p < 0.05 for allWilcoxon tests, Figure S5).Microbiomes inGroup 3 included 230 samples

from 18 cheese types and were dominated by Streptococcus, and microbiomes in Group 4 included 59 sam-

ples from 8 cheese types that were dominated by members of the genus Lactobacillus. Group 4 had the high-

est richness (p < 0.05 for all Wilcoxon pairwise tests, Figure S5). Of the 39 cheese types included in the cluster

analysis, samples from 17 cheese types were classified intomultiple groups. Instead, groups seemed to reflect

geographic origin: Group 1 was predominantly composed of samples of North- and South American origin
8 iScience 26, 105744, January 20, 2023
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Figure 5. Geographic distribution and richness of cheese samples included in this study

(A and B) Geographic distribution of cheese samples included in this study (A and B) and their richness (B). In (B), each point represents a sample.
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(88.6% of samples), while Groups 3 and 4 were dominated by samples of European origin (95.2 and 91.5% of

samples, respectively, Figure 6). Group 2 had samples of diverse origins, including 19.9% from North and

South America, 55.5% from Europe, and 16.9% from Australia.

DISCUSSION

As global cheese consumption and production continue to rise,1,46 understanding the drivers of microbial di-

versity in cheese is crucial to determining the final product’s value, consumers’ enjoyment, quality and safety,

and shelf-life. From an ecological perspective, the cheese microbiome is the product of centuries of
iScience 26, 105744, January 20, 2023 9



Figure 6. Cheese microbiomes clustered into four main groups

Clusters were determined using Dirichlet multinomial mixture models, and are labeled on the top margin. The most abundant or prevalent genera are

displayed. These 14 genera comprised 83.5 G 21.9% of the community on average, across all samples, and order membership is displayed on the left

margin. The tree on the left reflects similarity in abundance profiles among genera. Within each cluster, cheeses were ordered by type and cheese types in

each cluster are indicated in the lower margin. Each sample’s geographic origin is shown on the top margin.
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domestication by different human cultures,47 and thus may serve as a simplified model system for the study of

microbial ecology.15 We characterized the global distribution of cheese microbiomes through synthesis.

While the use of sequencing technologies in the food sciences is expected to increase in the future14,48; we found

that the number of cheesemicrobiome studiesdidnot increase over the short period studied.We also found that

cheeses are most often sampled at the point of production. Information regarding the use and composition of

starter cultures, and the abiotic factors including cheese salinity and pH were seldom reported; however, our

study highlights how these variables influence the diversity and composition of the cheese microbiome11,49

Among the 16S rRNA gene amplicon sequencing studies in which pH was reported, we found a consistent, pos-

itive relationship between microbiome richness and pH. Low pH exerts a selective pressure that likely favors the

survival and dominance of a few bacterial species within the cheese microbiome.50 In contrast, we found no rela-

tionship between cheese salinity and richness. This is contrary to extant literature51,52; however, most available

studies examinea specific cheese type and thus focuson specific cheesemicrobiomes. Indeed, increasing salinity

influences cheese microbial composition and growth, biochemical changes and enzymatic activities, microbial

succession, and cheese quality.11,51,53 Our findings suggest that while salinity can modulate a specific micro-

biome, it does not explain thedifferentmicrobial community compositions found across cheese types. Neverthe-

less, our analyses are limited by the small number of microbiome studies that reported abiotic parameters.

Of the available cheese microbiome literature, 75% focused on LAB rather than the entire microbiome,

likely due to their central role in cheese ripening, and also, the health benefits they exert.54–57 Interestingly,
10 iScience 26, 105744, January 20, 2023
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we found a negative relationship between the relative abundance of Lactobacillales and community rich-

ness across cheese samples, suggesting that few, specialized LAB strains outcompete other resident

microbes in ripened cheese over time. Within the cheese matrix, LAB are known to competitively exclude

and counter the development of a range of co-existing microorganisms, especially potential spoilers which

may contaminate and negatively impact the cheese quality and safety.58

Depending on cheese type and safety concerns due to the possible presence of pathogens, milk collected

for cheese production is often pasteurized. Pasteurization can impact autochthonous non-pathogenic milk

microbiota and also inactivates some microbial-secreted antimicrobial compounds.46,59,60 Nevertheless,

we found no difference in richness between pasteurized and unpasteurized cheeses, which aligns with a

previous study of the microbiome of Herve cheese, where the lack of difference between pasteurized

and unpasteurized cheese microbiomes was attributed to the similarities in their manufacturing process.27

Cheese quality and safety are ultimately impacted by bacteria in milk and especially those that withstand

pasteurization.52,61 Our study suggests that this process does not affect the cheese microbiome’s richness,

and only modestly, but significantly, affects composition.

We found that the origin of milk has a great influence on the cheese microbiome’s richness and composi-

tion. The composition of milk microbiota is dynamic and has been linked to the animal’s physiological state,

presence and activity of endogenous enzymes, number of milking sessions,2,16,46,62 which are species-spe-

cific and influenced by animal husbandry and farm management, the teat microbiome, and hygiene

practices related to the milking equipment and storage vessels.11 For example, 27% of bacteria detected

in ripened raw milk cheeses were also found on the teat surface.63 Furthermore, some of these bacteria

including LAB (Lactobacillus casei/paracasei, Lactococcus chungangensis/raffinolactis, and Lactococcus

lactis), Brevibacterium linens, and Staphylococcus equorum are known to be involved in the development

of different cheese organoleptic properties and the metabolism of fat and protein.11,63

Our study reveals strong geographic signatures in the cheese microbiome, independent of cheese types and

their associated production processes. We identified four main compositional profiles across cheese types.

Interestingly, samples from 17 cheese types (out of the 39 that were analyzed for clusters) were present in

more than one cluster, suggesting that the clusters were not driven by differences in cheese types. Differences

among cheeses in groups 2 and 3 were driven by the dominance of Lactococcus and Streptococcus, respec-

tively. In contrast, differences between cheeses in groups 1 and 2 were driven by dominance patterns: both

groups were dominated by Lactococcus, but microbiomes in group 1 had a higher evenness and richness

than those in group 2, suggestingmore complex communities. Cheeses in these two groups exhibitedmarked

differences in geographic origin, and cheeses with richer, more even communities were mostly manufactured

in North and South America, while those with lower richness and evenness were predominantly European.

Similarly, the microbiomes of cheeses in Group 4 had higher richness and evenness than Groups 2 and 3.

These clusters could be driven by local differences in domestication and quality regulations across the globe.

For instance, the legal somatic cell counts (SCC) threshold level for milk acceptance differs across countries,

and until now, there is yet to be a global consensus on SCC-acceptable limits in the dairy industry.Whereas the

European Union (EU), Australia, New Zealand, Norway, and Switzerland have an SCC limit of <400,000 cells/

mL, the United States, South Africa, and Brazil have a limit of 750,000, 500,000, and 1,000,000 cells/mL, respec-

tively.46,64–66 Still yet, several countries have no legal SSC limit for milk acceptance in their dairy industries, and

this may not only impact cheese microbiome variability but the overall safety and quality of dairy products.

Within the last few years, several varieties of cheese obtained the protected designation of origin (PDO) status.

The increasing application of PDO on cheeses identifies not just their specific geographical origin but also

helps ensure cheese quality and protect consumers from frauds.22,67 Since cheese with a PDO trademark

must be produced with milk obtained from animals bred strictly within the PDO area, its organoleptic and mi-

crobiome-associated properties are not easily reproducible in other geographical areas. The environmental

conditions associated with a specific geographical area/region are responsible for the unique characteristics

in both the milk as well the cheese, becoming primary determinants of cheese’s nature, quality, and safety.22

Ultimately, understanding the drivers of regional differences in cheesemicrobiomesmay provide insights into

the functional potentials of the abundantmicrobiomemember(s), their diversity, and beneficial roles in cheese

typical characteristics. Further research is necessary to determine whether these differences in dominance pat-

terns are due to regional differences in manufacturing processes, ripening practices, animal husbandry, and

food safety regulations, or the local environmental microbiome.
iScience 26, 105744, January 20, 2023 11
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Themicrobiome of cheese and other fermented foods has been repeatedly proposed as amodelmicrobial sys-

tem for understanding and managing microbiome diversity.14,68 However, our study shows that cheese micro-

biomes vary globally, and are driven by the cheese production process, as well as by the environment (i.e., pH).

The insights provided by this study may serve to and situate new findings with a global context of all cheese

microbiomes, rather than remain limited to a localized single cheese type. This could greatly help improve cur-

rent knowledge regardingmicrobial diversity andpatterns associatedwith different cheese types as well as their

quality and sensorial characteristics, and regional production practices, as research in these areas continues to

develop (e.g.,69). Our studymay thus serve as a universal reference point for future cheesemicrobiome research

and aid in the optimization of food production while highlighting the drivers of microbial diversity in the cheese

microbiome. Futureworksmay, for example, leverage the processed sequence data created for this study (avail-

able at https://github.com/drcarrot/Cheese_synthesis/), to compare the microbiome in their cheeses to those

in the same region, made from the same milk, or with similar abiotic parameters.

Developing consensus workflow methodologies from cheese sampling to molecular techniques,

sequencing and bioinformatics may greatly accelerate research into the microbiome of cheeses. Similar

approaches have proven invaluable in human and environmental microbiome research,39,70–72 and could

foster interdisciplinary collaborations in cheese research, leading to better global microbiome diagnostics,

the optimization of monitoring and cheese production, quality, and safety strategies. In particular, consis-

tent adoption of a single hypervariable region of the 16S rRNA gene, metadata standards (i.e., technical

metadata as well as key abiotic parameters such as salinity and pH) and consistent methodological report-

ing (i.e., the region of the cheese sampled) may greatly improve comparability among studies without

affecting the labor or resources required to produce microbiome data. A global perspective on the cheese

microbiome and its drivers may aid researchers (across multiple disciplines), producers, food regulatory

agencies, and policymakers in understanding and effectively tracing regional diversity, peculiarities, and

trends in cheese-associated microbiomes.

Limitations of the study

Our study stresses the need for standardized reporting and, ideally, unified data collection methods in cheese

microbiome research. Despite our robust synthesis, our analyses were limited by the different experimental ap-

proaches, the unavailability of deposited (sequence) data, and a lack of reporting, consistent with previous re-

ports.73 Accordingly, we employed conservative bioinformatics approaches and statistics that accounted for

the randomeffect of study-specific techniques, at the cost of discriminatory power in these analyses, particularly

with respect to low-abundance taxa. While our study reveals broad-scale (i.e., global) spatial patterns in cheese

microbiomes, further research is needed todetermine the contribution of smaller-scale parameters (i.e., cheese

shape, exposed surface area, or sampling location within the cheese wheel) to the cheese microbiome.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R V. 4.0.2 Bunn and Korpela,37 https://cran.microsoft.com/snapshot/2019-09-22/

web/packages/dplR/vignettes/chron-dplR.pdf

SILVA V.132 Quast et al.38 https://doi.org/10.1093/nar/gks1219

Other

Sequence data and analysis pipelines This study https://github.com/drcarrot/Cheese_synthesis
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contacts, Dr. Rine Christo-

pher Reuben (reubenrine@yahoo.com).
Materials availability

This study did not generate new unique reagents.

Data and code availability

All accession numbers and code supporting this study are available in this paper’s supplemental informa-

tion, and https://github.com/drcarrot/Cheese_synthesis, respectively.
METHODS DETAILS

Literature search, systematic review, and data extraction

In March 2021, we performed a literature search in Web of Science (www.webofscience.com) to assess the

global state of cheese microbiome research using the RepOrting standards for Systematic Evidence Syn-

theses (ROSES) guidelines36 (Figure 1). Our keyword search included the terms ‘cheese microbiome’ OR

‘cheese microbiota’ OR ‘cheese microbial flora’ OR ‘cheese microbial community’ OR ‘cheese 16S rRNA

sequencing’, and was restricted to studies published between 2014 to March 2021. Of the resulting 396

studies, we selected 120 studies that used 1) 16S rRNA gene or transcript amplicon sequencing, 2) other

culture-independent techniques (e.g., shotgun metagenomics), 3) culture-dependent techniques to char-

acterize the whole cheese microbial community, or 4) both culture-dependent and independent tech-

niques to characterize multiple LAB in cheese by reading their titles and abstracts. Studies that focused

on other fermented foods, the cheese processing environment, commentaries, editorials, reviews, system-

atic reviews, and meta-analyses were excluded.

From each study, we collected information about cheese type, cheese state (whether commercial or indus-

trial, ripened or under ripening), duration of ripening, physicochemical parameters (pH, salinity, and

ripening temperature), whether starter cultures were used, whether temporal or spatial gradients were

used, and sampling location (Table S1). Additionally, for studies which performed 16S rRNA gene amplicon

sequencing, we recorded technical variables including the sequencing platform used, the DNA extraction

method, the target molecule (DNA or RNA), and the 16S rRNA gene region amplified (Table S1).
Bioinformatics

We downloaded sequence data and metadata for studies that performed 16S rRNA gene amplicon

sequencing and had accessible and reusable sequences from NCBI’s Sequence Read Archives. We

excluded samples from milk, unripened cheese, and technical controls. Sequence processing was per-

formed in R37 with the dada2 package.5 For each study, reads were first inspected with the plotQualityPro-

file, and trimmed to 90 base pairs with the filterAndTrim function, as recommended by the Earth Micro-

biome Project.72 Further trimming parameters were selected for each study (Table 1. Reads were

assigned a taxonomy using SILVA V.132 76. The proportion of reads lost at each processing step for
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each study are detailed in Figure S1. Prior to analyses, all samples were standardized to 1500 reads per

sample using the rarefy_even_depth function, which led to a loss of 7 samples. Coverage was estimated

using the coverage function of the BetaC package40 as previously described,41 and was 0.99 G 0.007%

(mean G SD) of the community across all samples, on average. The final dataset contained 824 samples

from 27 studies.
QUANTIFICATION AND STATISTICAL ANALYSES

For data obtained from the systematic review, changes in the proportion of studies for which amplicon

sequencing was performed over time were evaluated with a X2-test for trends in proportions. All

sequence-based analyses were performed using the phyloseq42 and vegan43 packages. Microbiome rich-

ness was measured as the number of bacterial ASVs (amplicon sequence variants) per sample. We used

Bayesian statistics to assess the relationship between richness and cheese ripening conditions (e.g.,

whether the cheeses were pasteurized, the milk source, NaCl content, and pH, were available as well as

the country of origin) using the brms package.4We used a poisson distribution with an identity link function,

with default priors for each model’s intercepts, standard deviations, and random effects. We computed

posterior distributions using the MCMC No-U-Turn Sampler and ran 3 MCMC chains of 2000 iterations

with a warm up phase of 1,000 samples. We verified convergence by Gelman-Rubin statistics (Rhat<1.01)

and adequate effective sampling size (n_eff). To estimate richness per cheese, we used cheese as a fixed

effect and study as a random effect to account for technical differences among studies. To determine

whether richness varied among cheese types according to country, milk source, or pasteurization, we

used cheese type nested in study as a random effect. To estimate the relationship between cheese richness

and NaCl, pH, and the percent of Lactobacillales in the community, we included cheese type nested within

in study as a random intercept. We report confidence in differences between means as posterior probabil-

ities of differences, which were estimated using the brms hypothesis function. Richness values and model

estimates are presented as value G SD.

Differences in the composition of the microbial communities across samples were quantified using Bray-

Curtis distances, and analyses were performed at the genus level by agglomerating ASVs with phyloseq’s

tax_glom function. Prior to these analyses, cheese types with less than triplicate samples (n = 19) were

removed. First, to determine the amount of compositional variance explained by technical parameters

(molecule type, extraction kit, and sequencer used), we performed a distance-based variance partitioning

using the varpart function in vegan. Then, to determine the role of environmental parameters (cheese type,

country of origin, milk source, and pasteurization) on microbial composition, we performed a second dis-

tance-based variance partitioning. The significance of each model and of testable components of both

variance partitions was tested using the ANOVA.cca function.

To determine whether the microbial communities of different cheeses clustered into groups, we used a

Dirichlet multinomial mixture model (dmn function) (DirichletMultinomial package44), allowing up to 20

clusters (one for each cheese type). To determine the optimal number of clusters, we selected the cluster

number with the lowest Laplace approximation. Group membership for all cheese samples and the relative

abundance of most abundant taxa (i.e., those which appeared in at least 3% of the samples or represented

at least 10% of the community in a sample) was depicted in a heatmap with the package pheatmap.45

Differences in the richness and evenness between groups were tested with Kruskall-Wallis tests for overall

differences among groups, andWilcoxon tests for pairwise comparisons. The scripts used to produce these

analyses are available in https://github.com/drcarrot/Cheese_synthesis.
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