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ABSTRACT
Background. Psoriasis is a chronic immune-mediated inflammatory dermatosis. Long
noncoding RNAs (lncRNAs) play an important role in immune-related diseases. This
study aimed to identify potential immune-related lncRNA biomarkers for psoriasis.
Methods. We screened differentially expressed immune-related lncRNAs biomarkers
using GSE13355 (skin biopsy samples of 180 cases) from Gene Expression Omnibus
(GEO). Moreover, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) were performed
to explore biologicalmechanisms in psoriasis. In addition, we performedLASSO logistic
regression to identify potential diagnostic lncRNAs and further verify the diagnostic
value and relationship with drug response using two validation sets: GSE30999 (skin
biopsy samples of 170 cases) and GSE106992 (skin biopsy samples of 192 cases).
Furthermore, we estimated the degree of infiltrated immune cells and investigated the
correlation between infiltrated immune cells and diagnostic lncRNA biomarkers.
Results. A total of 394 differentially expressed genes (DEGs) were extracted from
gene expression profile. GO and KEGG analysis of target genes found that immune-
related lncRNAs were primarily associated with epidermis development, skin devel-
opment, collagen-containing extracellular matrix, and glycosaminoglycan binding
and mainly enriched in cytokine-cytokine receptor interaction and influenza A and
chemokine signaling pathway. We found that LINC01137, LINC01215, MAPKAPK5-
AS1, TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 exhibited
well diagnostic efficacy. The ROC and ROC CI were 0.944 (0.907–0.982), 0.953
(0.919–0.987), 0.822 (0.758–0.887), 0.854 (0.797–0.911), 0.957(0.929–0.985), 0.894
(0.846–0.942), and 0.964 (0.937–0.991) for LINC01137, LINC01215,MAPKAPK5-AS1,
TPT1-AS1,CARMN, CCDC18-AS1, EPB41L4A-AS1, and LINC01214. LINC01137,
LINC01215, and LINC01214 were correlated with drug response. LINC01137,
CCDC18-AS1, and CARMN were positively correlated with activated memory CD4
T cell, activated myeloid dendritic cell (DC), neutrophils, macrophage M1, and
T follicular helper (Tfh) cells, while negatively correlated with T regulatory cell
(Treg). LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214
were negatively correlated with activated memory CD4 T cell, activated myeloid DC,
neutrophils, macrophage M1, and Tfh, while positively correlated with Treg.
Conclusions. These findings indicated that these immune-related lncRNAs may be
used as potential diagnostic and predictive biomarkers for psoriasis.
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INTRODUCTION
Psoriasis is a chronic immune-mediated inflammatory dermatosis that affects 0.09%–
5.1% of people worldwide, with incidence increasing annually (Boehncke & Schön,
2015; Michalek, Loring & John, 2017). The patients’ quality of life is seriously affected
because psoriasis is usually persistent and prone to relapse. The pathogenesis of psoriasis
involves dysregulation of innate and adaptive immune system; however, the specific
immunopathogenic mechanisms remain unclear (Albanesi et al., 2018). Therefore,
investigation of immune-related diagnostic biomarkers and a better understanding of
immunopathogenic mechanisms of psoriasis are important.

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that
generally do not code for proteins. They play pivotal roles in a number of physiological
and pathological processes (Kopp & Mendell, 2018). Recent study has identified a variety
of differentially expressed lncRNAs in psoriatic lesions that were changed after biologics
therapy (Gupta et al., 2016). Previous studies focused on the correlation between lncRNAs
and psoriatic keratinocytes (Duan et al., 2020); several lncRNAs, including TINCR,
PRANCR and ANCR, played an important role in epidermal homeostasis (Cai et al.,
2020; Kretz et al., 2013; Kretz et al., 2012). Research has revealed that PRINS is involved in
psoriasis pathogenesis by regulating keratinocyte stress response and apoptosis (Szell et al.,
2016). However, the role of lncRNAs in the psoriasis immune abnormalities has not been
reported. To date, studies have indicated that lncRNAs are involved in DC differentiation
and activation of innate immune response (Wang et al., 2014; Xu et al., 2019). Moreover,
lncRNAs play important role in T cell differentiation and immune-related diseases (Roy
& Awasthi, 2019). They exhibit cell- and tissue-specific expression (Liu et al., 2017; Tsoi et
al., 2015). Given this, immune-related lncRNAs may be used as potential diagnostic and
prognostic biomarkers for psoriasis.

In recent years, bioinformatics analysis has provided new insight into the molecular
mechanism and therapeutic targets in psoriasis (Anbunathan & Bowcock, 2017). Weighted
gene coexpression network analysis (WGCNA) has been used to identify potential
biomarkers for psoriasis (Sundarrajan & Arumugam, 2016). In our previous study,
WGCNA was used to identify potential key mRNAs and lncRNAs for psoriasis (Li et
al., 2020). However, immune-related lncRNAs in the pathogenesis of psoriasis and the
correlation between immune-related lncRNAs and treatment response have been relatively
neglected.

In this study, we screened differentially expressed genes (DEGs) and differentially
expressed immune-related genes (DEIRGs) from training set and identified immune-
related lncRNA biomarkers using coexpression analysis. Next, we validated the diagnostic
efficacy of 10 lncRNAs and its correlation with biologics response using two validation
sets, respectively. In addition, we investigated the correlation between infiltrated immune
cells and immune-related lncRNAs. A total of 394 differentially expressed genes (DEGs)
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and 76 DEIRGs were extracted from the gene expression profile. Coexpression analysis
identified 16 immune-related lncRNAs. Of 16 immune-related lncRNAs, 10 lncRNAs were
identified as potential diagnostic biomarkers for psoriasis using LASSO logistic regression
algorithms.

MATERIALS & METHODS
Gene expression data processing
The psoriasis gene expression profile datasets GSE13355 (Nair et al., 2009), GSE30999
(Correa da Rosa et al., 2017; Suarez-Farinas et al., 2012), and GSE106992 (Brodmerkel
et al., 2019) were downloaded from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) using the GEOquery (Davis & Meltzer, 2007) package
of R software (version 3.6.5, http://r-project.org/). All samples of the datasets were derived
fromHomo sapiens, and the platformwas based onGPL570 [HG-U133_Plus_2]Affymetrix
Human Genome U133 Plus 2.0 Array. Affymetrix includes 47,400 probes and represents
38,500 human genes. Gene biotypes were extracted using the BioMart (Durinck et al.,
2009). Gene biotypes were used to distinguish lncRNAs, miRNAs and mRNAs, and
the expression matrix of lncRNAs was extracted separately. There are 1313 lncRNAs
on the Affymetrix Human Genome U133 Plus 2.0. GSE13355 consisted of 58 psoriasis
lesion samples, adjacent normal skin samples, and 64 normal skin samples from normal
controls. GSE30999 consisted of 85 psoriasis lesion samples and adjacent normal skin
samples. GSE106992 consisted of 192 skin samples of moderate to severe psoriasis patients
undergoing ustekinumab (amonoclonal antibody directed against the P40 unit of IL-12 and
IL-23) or etanercept (a TNF antagonist) therapy. Patients were categorized as responders
and nonresponders. Responders vs nonresponders was determined based on whether
the PASI75 score was reached following treatment with ustekinumab or etanercept for 12
weeks. All three datasets were included in this study. The raw data of GSE13355, GSE30999,
andGSE106992 datasets were read using the affy package (Gautier et al., 2004). Background
correction and normalization were performed, and distinguishable lncRNA and mRNA
gene expression matrices were obtained. The z-score normalization for GSE13355 dataset
was performed using the limma package. The effect of correction was presented using
principal component analysis (PCA) using ggplot2 package (Ginestet, 2011). GSE13355
was used as training set whereas GSE30999 and GSE106992 were used as validation sets.
This study did not involve studies on human participants or animals performed by any of
the authors.

Screening of differentially expressed genes
The limma package (Ritchie et al., 2015) was used to screen GSE13355 dataset DEGs
by comparing lesion samples, adjacent normal skin samples, and normal controls. A
cutoff value of adjusted P < .05 and |log2FC|> 1 was considered statistically different.
Subsequently, volcano plot was performed using ggplot2 to visualize DEGs.

Functional and pathway enrichment analysis of DEGs
Gene Ontology (GO) serves as a powerful tool to annotate genes and analyze related
biological processes of genes, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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is a bioinformatics resource for understanding high-level functions and utilities of the
biological system. GO and KEGG analyses of DEGs were performed using clusterProfiler
package (Yu et al., 2012), adjusted P < .05 was considered statistically significant. Gene
set enrichment analysis (GSEA) is a statistical approach for determining whether the
genes from particular pathways or other predefined gene sets are differentially expressed
in different phenotypes (Subramanian et al., 2005). Reactome pathways were analyzed
with GSEA, using clusterProfiler (Yu et al., 2012) to define every functional cluster.
‘‘c2.cp.kegg.v7.0.symbols.gmt’’ was selected as reference set, and false discovery rate
(FDR) < 0.25 with P < .05 was considered significantly enriched.

Screening of immune-related genes and immune-related lncRNAs
The list of immune-related genes (IRGs) was downloaded from ImmPort (https:
//immport.niaid.nih.gov) database (Bhattacharya et al., 2018). DEIRGs from DEGs were
identified, and volcano plots (differential expression of DEIRGs) were plotted using
ggplot2 package. Immune-related lncRNAs were screened using coexpression analysis of
DEIRG and lncRNA expression matrices. Correlation coefficients >.4 with P < .05 was
considered as coexpression (Xiong et al., 2019; Deforges et al., 2019). Likewise, target genes
were screened using coexpression analysis of lncRNA and mRNA expression matrices.

GO and KEGG enrichment analyses of IRGs and immune-related
lncRNAs
To analyze the functions of IRGs and immune-related lncRNAS,GOandKEGGenrichment
analyses were performed using clusterProfiler, and adjusted P < .05 was considered
statistically significant.

Screening and validation of immune-related lncRNA biomarkers
Biomarkers of psoriasis were screened using LASSO logistic regression feature selection
algorithm (Tibshirani, 1996) based on immune-related lncRNA expression matrices. We
used a LASSO-logitstic-algorithm model; further, a 10-fold cross-validation was used
to identify the optimal lambda value. Diagnostic performances were validated using
GSE30999 dataset as validation sets, an AUC value >0.7 was determined to indicate
acceptable diagnostic efficacy (Watson et al., 2015; Bhardwaj et al., 2020), whereas the
correlation between lncRNA biomarkers and therapeutic response was validated using
GSE106992 dataset.

Assessment of immune cell infiltration and the correlation between
biomarkers and immune cells
To estimate the composition and abundance of immune cells in the mixed cells,
deconvolution of transcriptome expression matrices was performed using CIBERSORT
(Newman et al., 2015) based on linear support vector regression. Expression matrices were
uploaded to CIBERSORT, and immune cell infiltration matrices were generated with
cutoff value of P < .05. Heatmap was generated using R language ‘‘pheatmap’’ package
(https://CRAN.R-project.org/package=pheatmap) to visualize 22 infiltrated immune cells
in each sample. Two-dimensional PCA plots were visualized using ggplots, and heatmap
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394 differentially expressed genes (DEGs) were extracted

76 differentially expressed immune-related genes (DEIRGs)
 from DEGs were identified lncRNA expression matrices

 immune-related genes (IRGs) were
 downloaded from ImmPort

10 lncRNAs were identified 
 as diagnostic biomarkers 

16 immune-related lncRNAs were identified

correlation between lncRNA biomarkers
 and therapeutic response was validated 
using GSE106992 dataset.

assess diagnostic efficacy 
using GSE30999 dataset

GSE13355 (58 psoriasis lesion samples v 64 normal skin samples )

Screening of differentially expressed genes

Coexpression analysis 

LASSO logistic regression

Figure 1 A flowchart of the GEO datasets analysis.
Full-size DOI: 10.7717/peerj.11018/fig-1

was plotted using the corrplot package (Friendly, 2002) to visualize the correlation of 22
immune cell types. Violin plots were generated using ggplot2 package to visualize the
infiltration difference of 22 immune cell types. Infiltrating immune cells–related network
plots were generated using igraph package (Ju et al., 2016) to visualize the interactions
of infiltrated immune cells. P < .05 and correlation coefficients >0.4 were considered
statistically significant. Correlation analysis was performed between immune-related
lncRNA biomarkers and infiltrated immune cells. Afterwards, results were visualized using
ggplot2 package.

RESULTS
Gene expression data preprocessing and DEGs identification
Figure 1 represents the study flowchart. Primarily, gene expression matrices of GSE13355
dataset were normalized. PCA was plotted before and after normalization (Figs. 2A and
2B). The results indicated that sample clustering was more apparent after normalization,
which indicated that the sample source was reliable. A total of 394 DEGs were extracted
from gene expression profile using R software after data preprocessing, as shown in the
volcano plot (Fig. 2C). The details of top 10 upregulated and downregulated differently
expressed genes are presented in Tables 1 and 2.

Functional and pathway enrichment analysis of DEGs
GO analysis revealed that DEGs were primarily associated with epidermis development,
skin development, secretory granule lumen, and receptor ligand activity (Fig. 3A). The
results of KEGG analysis indicated that DEGs were mainly enriched in cytokine-cytokine
receptor interaction and IL-17 signaling pathway (Fig. 3B). GESA suggested that psoriasis
was mainly involved in IL-17 signaling pathway and proteasome pathway (Fig. 3C). CCL2,
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Figure 2 Density map and PCA plot before and after normalization of GSE13355 dataset. (A, B) PCA
plot before and after the batch effect removal, respectively. (C) Volcano plot of DEGs; red represents up-
regulated differential genes, green represents downregulated differential genes, and gray represents no dif-
ferential genes.

Full-size DOI: 10.7717/peerj.11018/fig-2

Table 1 The top 10 differentially expressed genes (upregulated). The logFC and p values of these top 10
upregulated differentially expressed genes are presented.

Gene symbol logFC P-value adj P-value

SERPINB4 6.553829 1.98E−82 3.44E−79
PI3 5.404915 8.91E−107 1.86E−102
TCN1 4.999575 6.35E−94 2.65E−90
SPRR2C 4.709046 4.24E−93 1.26E−89
S100A12 4.677867 4.94E−105 5.15E−101
AKR1B10 4.568268 5.91E−94 2.65E−90
SERPINB3 4.389195 3.26E−79 4.53E−76
S100A9 4.388357 1.97E−71 1.18E−68
IL36G 4.072299 1.21E−88 3.16E−85
C10orf99 3.962806 4.10E−75 3.88E−72

CCL7, CCL20, PSMB8, PSMB9, and PSMB10 played important roles in signal transduction
of the 2 pathways. Detailed enrichment results were presented in Table S1.

Identification of IRGs and immune-related lncRNAs
A total of 76 DEIRGs were extracted from gene expression profile, as shown in volcano plots
and heatmap (Fig. 4A and Fig. S1), these data only refer to GSE13355, and detailed results
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Table 2 The top 10 differentially expressed genes (down regulated). The logFC and p value of these top
10 down regulated differentially expressed genes are presented.

Gene symbol logFC P-value adj P-value

WIF1 −3.98135 2.64E−53 2.54E−51
BTC −3.27259 1.33E−50 1.07E−48
CCL27 −3.22479 8.40E−59 1.33E−56
KRT77 −3.21433 5.75E−63 1.43E−60
IL37 −3.03789 1.49E−57 2.11E−55
C5orf46 −2.75129 3.38E−61 6.77E−59
THRSP −2.6802 7.85E−20 6.04E−19
MSMB −2.59999 5.13E−35 1.19E−33
PM20D1 −2.56708 4.88E−12 2.09E−11
ELOVL3 −2.43197 4.72E−14 2.35E−13

of GO analysis of 76 DEIRGs are presented in Table S2. Coexpression analysis identified 16
immune-related lncRNAs, which are part of the 394 DEGs. The detailed results of KEGG
analysis of 16 immune-related lncRNAs are presented in Table 3.

Functional and pathway enrichment analysis of immune-related
lncRNAs
GO enrichment analysis of target genes found that immune-related lncRNAs were
primarily associated with epidermis development, skin development, collagen-containing
extracellular matrix, and glycosaminoglycan binding (Fig. 4B), and KEGG enrichment
analysis of target genes found that immune-related lncRNAs were mainly enriched in
cytokine-cytokine receptor interaction and influenza A and chemokine signaling pathway
(Fig. 4C). Detailed results of immune-related lncRNAs target gene functional correlation
analysis are presented in Table S3, and detailed results of coexpression analysis are presented
in Table S4.

Identification and validation of diagnostic biomarkers
Of 16 immune-related lncRNAs, 10 lncRNAs were identified as potential diagnostic
biomarkers for psoriasis using LASSO logistic regression algorithms (Fig. 5A). Detailed
LASSO results are presented in Table S5. To further assess diagnostic efficacy, we performed
validation using the GSE30999 dataset. The ROC curve (Figs. 5B and 5C) indicated
that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMN, CCDC18-AS1,
EPB41L4A-AS, and LINC01214 exhibited well diagnostic efficacy (AUC > 0.7), which
indicated high diagnostic value of the screened lncRNA biomarkers. The details of the
AUC and 95% CI of AUC of the 10 immune-related lncRNAs are presented in Table 4.

Analysis of relation between screened biomarkers and biologics
therapeutic response
Results of drug response (Fig. 6) indicated that LINC01137, LINC01215, MAPKAPK5-AS1,
TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 were significantly
expressed between the responders and nonresponders groups, which was statistically
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Figure 3 Functional and pathway enrichment analysis of DEGs. (A) GO enrichment analysis of bio-
logical functions. The x-axis represents the proportion of DEGs enriched in GO team. Dot color indi-
cates corrected P values: the brighter the red color, the smaller the corrected P values, and the brighter the
blue color, the bigger the corrected P values. Dot size represents the number of enriched genes. (B) KEGG
pathway analysis; Significantly enriched KEGG pathways obtained. (C) Gene enrichment analysis; P value
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component. GeneRatio: the ratio of the number of genes related to this Term in the differential gene to the
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Full-size DOI: 10.7717/peerj.11018/fig-3
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Figure 4 Volcano plot, heatmap of differentially expressed immune-related genes (DEIRGs), and
lncRNA functional annotation. (A) Volcano plot of DEIRGs; red represents upregulated differential
genes, green represents downregulated differential genes, and gray represents no differential genes. (B) GO
analysis of immune-related lncRNA target genes. (C) KEGG analysis of immune-related lncRNA target
genes. The x-axis represents the proportion of DEGs enriched in GO team. Dot color indicates corrected P
values: the brighter the red color, the smaller the corrected P values; the brighter the blue color, the bigger
the corrected P values. Dot size represents the number of enriched genes.

Full-size DOI: 10.7717/peerj.11018/fig-4

significant (P < .00001). The expression of LINC01137, LINC01215, and LINC01214 was
higher in the responders group.

Analysis of immune cell infiltration and correlation assessment of
immune cells and diagnostic biomarkers
Heatmap of immune cell infiltration and results of cluster PCA indicated a significant
difference between the psoriasis group and control group (Figs. 7A and 7B). Heatmap of
22 immune cells indicated that psoriasis was positively correlated with activated memory
CD4+T cell, activated myeloid DC, neutrophils, and T follicular helper (Tfh) cells, while
negatively correlated with T regulatory cell (Tregs) and activated mast cell. Violin plots
of immune cell infiltration difference (Fig. 8A) indicated that naïve B cell, CD8+T cell,
activated memory CD4+T cell, Tfh cell, T gamma delta cell, NK cell resting, macrophage
M0, macrophage M1, activated myeloid DC, and neutrophil were higher than normal
control, whereas B cell memory, B cell plasma, T cell CD4+ naïve, Tregs, activated NK
cell, and activated mast cell were lower. Plots of 22 immune cells interaction (Fig. 8B)
indicated that activated mast cell exhibited the strongest interaction with other immune
cells, whereas CD8+T cell and monocyte were the weakest. Results of the correlation
analysis indicated that activated memory CD4 T cell, activated myeloid DC, neutrophil,
and Tfh were significantly positively correlated with LINC01137, CCDC18-AS1, and
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Table 3 The details of the 16 immune-related lncRNAs. The gene symbol, gene type, description, location and phenotypes of the 16 immune-
related lncRNAs.

Gene symbol Gene type Correlation
coefficients

P value Location Phenotypes

LINC01214 LncRNA 0.832 2.13E−47 Chr3:150,265,407-150,296,6 5 No report
LINC01215 LncRNA 0.842 1.09E−49 Chr3: 108,125,821-108,138,610 No report
LINC01137 LncRNA 0.861 4.43E−54 Chr1: 37,350,934-37,474,411 Vaccinia virus infection
LINC01305 LncRNA 0.710 5.72E−29 Chr2: 174,326,027-174,330,643 Epithelial-mesenchymal transition
CARMN LncRNA 0.779 5.65E−38 Chr5: 149,406,689-149,432,835 Vaccinia virus infection
CCDC18-AS1 LncRNA 0.724 1.56E−30 Chr1: 93,262,186-93,346,025 No report
DUBR LncRNA 0.754 2.53E−34 Chr3: 107,220,744-107,348,464 No report
EPB41L4A-AS LncRNA 0.772 7.94E−37 Chr5: 112,160,526-112,164,818 Metabolic reprogramming
MAPKAPK5-AS1 LncRNA 0.795 2.03E−40 Chr12:111,839,764-111,842,902 Tumorigenesis
TPT1-AS1 LncRNA 0.766 5.65E−36 Chr13: 45,341,345-45,417,975 Tumor promotion
PGM5-AS1 LncRNA 0.854 1.81E−52 Chr9: 68,353,614-68,357,893 Tumor suppression
SH3PXD2A-AS1 LncRNA 0.909 1.50E−69 Chr10:103,745,966-103,755,423 Tumor promotion
LINC00173 LncRNA 0.745 4.26E−33 Chr12:116,533,422-116,536,518 Chemoresistance
LINC00518 LncRNA 0.731 2.61E−31 Chr6: 10,429,255-10,435,015 Tumor promotion, chemoresistance
LINC00526 LncRNA 0.755 1.68E−34 Chr18: 5,236,724-5,238,598 Tumor suppression
EMX2OS LncRNA 0.811 2.36E−43 Chr2: 117484293-117545068 No report

CARMN, while negatively correlated with LINC01215, MAPKAPK5-AS1, LINC01305,
DUBR, TPT1-AS1, EPB41L4A-AS, and LINC01214. In addition, Tregs and activated mast
cell were found to be significantly negatively correlated with LINC01137, CCDC18-AS1,
and CARMN, while positively correlated with LINC01215, MAPKAPK5-AS1, LINC01305,
DUBR, TPT1-AS1, EPB41L4A-AS, and LINC01214.

DISCUSSION
Psoriasis is a chronic immune-mediated inflammatory dermatosis that significantly affects
patients’ quality of life (Alexander & Nestle, 2017). To date, the specific pathogenesis is
unclear. Crosstalk of keratinocytes and immune cells including DCs, T cells, mast cells, and
neutrophils plays an important role in the pathogenesis of psoriasis, Cytokine-cytokine
receptor pathway transmits intercellular interactions, with IL-23/IL-17 pathway currently
being the most investigated (Chiricozzi et al., 2018). LncRNA are closely associated with
immune-related diseases (Roy & Awasthi, 2019); however, the role of lncRNAs in psoriasis
immune abnormalities remains elusive. In our study, we explored the potential biological
and diagnostic efficacy of immune-related lncRNAs in psoriasis.

This study aimed to identify key immune-related lncRNAs involved in the pathogenesis
of psoriasis. We performed systematic analysis of expression profile from GSE13355
dataset; 16 immune-related lncRNAs were identified using coexpression analysis for
further analysis. GO analysis has found that identified lncRNAs were enriched in biological
processes related to epidermis development, skin development, and collagen-containing
extracellular matrix, and KEGG analysis has found that identified lncRNAs were associated
with cytokine-cytokine receptor interaction and influenza A and chemokine signaling
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Figure 5 Diagnostic biomarker identification and validation. (A) Ten lncRNAs were identified as po-
tential diagnostic biomarkers for psoriasis by LASSO logistic regression algorithms with 10-fold cross-
validation. (B, C) ROC curve for diagnostic biomarker in test dataset.

Full-size DOI: 10.7717/peerj.11018/fig-5

Table 4 The gene symbol, AUC and 95%CI of AUC of the 10 immune-related lncRNAs.

Gene symbol AUC 95%CI of AUC

LINC01137 0.944 0.907–0.982
LINC01215 0.953 0.919–0.987
MAPKAPK5-AS1 0.762 0.688–0.835
TPT1-AS1 0.822 0.758–0.887
CARMN 0.854 0.797–0.911
CCDC18-AS1 0.957 0.929–0.985
DUBR 0.56 0.474–0.647
EPB41L4A-AS1 0.894 0.846–0.942
LINC01214 0.964 0.937–0.991
LINC01305 0.544 0.457-0.631

pathway, consistent with the previous study (Li & Meng, 2019). Some studies have indicated
that lncRNAs can regulate the expression of cytokines and chemokines (Dong et al., 2020;
Qi et al., 2020). Previous studies have indicated that cytokine-cytokine interaction and
chemokine pathway play a crucial role in the pathogenesis of psoriasis (Benezeder & Wolf,
2019). However, the role of influenza A pathway in psoriasis has not yet been reported.
Therefore, based on our findings, we suggested that these identified immune-related
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LINC01137****                 4.02e−12
LINC01215****                 1.90e−11
MAPKAPK5.AS1****      3.33e−04
TPT1.AS1****                   3.43e−06
CARMN****                     1.04e−05
CCDC18.AS1****             4.02e−12
DUBR                                 8.59e−01
EPB41L4A.AS1****         8.81e−06
LINC01214****                1.69e−10
LINC01305                        7.61e−01

Subtype                               P−value
Non−Responders Responders

−2

−1

0

1

2

Figure 6 Heatmap of diagnostic biomarker and biologics response correlation analysis.
****P < .00001.

Full-size DOI: 10.7717/peerj.11018/fig-6
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Figure 7 Assessment and visualization of immune cell infiltration. (A) Heatmap of differentially infil-
tration of immune cells between psoriasis group and control group. (B) PCA plots show the clustering of
immune cell infiltration in the psoriasis group and control group. (C) Heatmap of correlation of infiltra-
tion between 22 immune cells. Blue indicates positive correlation, whereas red indicates negative correla-
tion; the darker the color, the stronger the correlation.

Full-size DOI: 10.7717/peerj.11018/fig-7

lncRNAs may be involved in the pathogenesis of psoriasis by regulating cytokine-cytokine
interaction and chemokine pathway.
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Figure 8 Visualization of immune cell infiltration and correlation analysis with diagnostic biomarker.
(A) Violin plots of the proportion of infiltration of 22 immune cells. Red represents the psoriasis group,
and blue represents the control group. (B) Interaction plots of infiltration of 22 immune cells. The size of
the circle represents interaction strength; the bigger the circle, the stronger the interaction. (C) The corre-
lation analysis of infiltration between 22 immune cells and immune-related lncRNA diagnostic biomark-
ers; red represents positive correlation, and blue represents negative correlation.

Full-size DOI: 10.7717/peerj.11018/fig-8

Previous studies have found that some key genes or proteins may serve as potential
biomarkers for psoriasis (Dand et al., 2019; Yadav, Singh & Singh, 2018). However,
immune-related lncRNA biomarkers for psoriasis have not yet been reported. Of the 16
immune-related lncRNAs, 10 lncRNAs were identified as potential diagnostic biomarkers
for psoriasis using LASSO algorithms. To further assess the diagnostic efficacy, we
performed validation using GSE30999 dataset. ROC curve indicated that LINC01137,
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LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and
LINC01214 exhibited well diagnostic efficacy (AUC> 0.7), which indicated high diagnostic
value of the screened lncRNA biomarkers.

Although the appearance of novel biologics such as TNF inhibitor, IL-12/23 inhibitor, IL-
17A/IL-17RA inhibitor, and phosphodiesterase 4 (PD4) inhibitor has improved treatment
efficacy, treatments is far fromoptimal because of highermedical expenses or no response to
biologics therapy or residual lesions after treatment or clinical recurrence (Masson Regnault
et al., 2017; Sawyer et al., 2019). Therefore, early evaluation of the response to biologics
treatment is important. This study also aimed to validate the correlation between immune-
related lncRNAs and response to biologics therapy. Results of drug response indicated
that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMNCCDC18-AS1,
EPB41L4A-AS, and LINC01214 were differentially expressed between the responders and
nonresponders groups. This difference was statistically significant where the expression of
LINC01137, LINC01215, and LINC01214 was higher in the responders group. These results
indicate that LINC01137, LINC01215, and LINC01214 may act as potential prognostic
biomarkers for monitoring therapeutic response.

To date, there are only a few studies on these lncRNAs. LINC01137 showed upregulated
expression in human HepG2 cells when exposed to chemical stress (Tani et al., 2019).
The function of LINC01137 still remains to be determined. LINC01215 acted as a hub
gene involved in the rehabilitation process through the T cell receptor signaling pathway
in respiratory syncytial virus infection (Qian, Zhang & Wang, 2019). LINC01214 was
overexpressed in non-small cell lung carcinoma (Acha-Sagredo et al., 2020). However, its
exact function remains unknown. As an immune-related lncRNA, MAPKAPK5-AS1 may
act as prognostic biomarker for anaplastic gliomas (Wang et al., 2018). Another study found
that MAPKAPK5-AS1 was significantly overexpressed in colorectal cancer and played a
role by inhibiting P21 expression (Ji et al., 2019). Its immunologic mechanisms have not
yet been reported. In addition, involvement of CARMN, TPT1-AS1, and EPB41L4A-AS in
cancer pathogenesis were reported (Jiang et al., 2018; Kouhsar et al., 2019; Roychowdhury
et al., 2020). There has been no report of CCDC18-AS1 in the literature.

To further validate the correlation between immune-related lncRNAs diagnostic
biomarkers and infiltrating immune cells, CIBERSORT was applied to estimate the
infiltrating immune cells in psoriasis. In immune cell infiltration matrices, increased
activated memory CD4+T cell, activated myeloid DC, neutrophil, and Tfh cell were
observed, whereas Treg decreased in psoriatic lesions, consistent with previous studies.
Psoriasis is an immune-driven dermatosis (Benhadou, Mintoff & Del Marmol, 2019). The
IL-23/IL17 axis is the main immune pathway in the pathogenesis of psoriasis, and the main
immune cells involved in psoriasis include CD4+T cells, DCs, neutrophils, macrophages,
and Tfh (Chiricozzi et al., 2018). Tregs are important in suppressing the immune response,
whereas they decrease in psoriatic lesions (Yang et al., 2016). Of the LINC01137, CCDC18-
AS1, CARMN, LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214,
LINC01137, CCDC18-AS1, and CARMNwere positively correlated with activated memory
CD4 T cell, activated myeloid DC, neutrophil, macrophage M1, and Tfh, while negatively
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correlated with Treg. In addition, LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-
AS, and LINC01214 were negatively correlated with activatedmemory CD4 T cell, activated
myeloid DC, neutrophil, macrophage M1, and Tfh, while positively correlated with Treg.
These correlations may partly be explained by LINC01137, CCDC18-AS1, and CARMN
that induce activation of CD4+T cells, myeloid DCs, neutrophils, macrophages, and Tfh
cells and exhibit Treg cells involved in the immunopathogenesis of psoriasis, whereas
LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214 work in the
opposite way.

Our findings suggest that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1,
CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 may be potential diagnostic
biomarkers for psoriasis and LINC01137, LINC01215, and LINC01214 may serve as
predictive biomarkers for biologics response in psoriasis. These immune-related lncRNAs
may involve in the immunopathogenesis of psoriasis by activating or inhibiting related
immune cells.

In the past few years, psoriasis genome-wide association studies (GWAS) have been
conducted worldwide, and numbers of genetic loci associated with psoriasis susceptibility
have been estimated (Ogawa & Okada, 2020). Previews studies showed that approximately
10% of autoimmune disease-associated SNPs localize to lncRNA genes present in
autoimmune disease-associated loci, and SNPs can affect the expression of lncRNAs
(Kumar et al., 2013). Therefore, as a future prospect, identifying whether these estimated
immune-related lncRNAs biomarkers contain psoriasis-related SNPs identified by GWAS
will be worthwhile.

This study has some limitations. First, these results were generated by bioinformatics
analysis and need further experimental verification. Second, a larger sample size of the
dataset is needed for internal validation. Third, additional clinical information is needed
to explore the correlation between immune-related lncRNAs and clinical severity. Fourth,
Th17 is a CD4+T cell subtype; further, because the 22 immune-infiltrating cells estimated
by CIBERSORT were not specific to the Th17 subgroup, Th17 cells were not observed in
immune cell infiltration. Finally, the normal control group needs to be involved to analyze
the differentially expressed immune-related lncRNAs.

CONCLUSIONS
We found that LINC01137, LINC01215,MAPKAPK5-AS1, TPT1-AS1, CARMN,CCDC18-
AS1, EPB41L4A-AS, and LINC01214 may be potential diagnostic biomarkers for psoriasis.
LINC01137, LINC01215, and LINC01214 may serve as predictive biomarkers for biological
response in psoriasis.
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