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Artificial Intelligence

Artificial intelligence (AI) and its applications in cardiovascular science 
have rapidly grown in recent years, with 77% more papers being published 
on the PubMed database in 2021 than in 2011 including the terms AI or 
machine learning (ML) and cardiovascular disease. An even steeper 
increase can be seen in papers including AI/ML and arrhythmias, with 89% 
more papers published in 2021 than in 2011. 

Advancements have been aided by new ML techniques and increasing 
computing powers in the form of graphics processing units (GPUs), and 
availability of large databases, such as the UK Biobank.1 

Increased implementation of these techniques in clinical practice would 
have the potential to significantly improve the management of arrhythmias 
for patients and clinicians alike, but is subject to significant obstacles. 
Figure 1 gives an overview of these benefits and concerns associated with 
AI in clinical practice.

Case for Artificial Intelligence in 
Arrhythmia Management
Patient Outcomes and Workload Reduction
Disease detection is a key area where AI could prove beneficial. The 
application of ML to ECG analysis provides a promising solution to lessen 
the demand placed on clinicians’ already-limited time. For AF, early 
detection and intervention are key to minimising the increasing risk of 
adverse outcomes and the healthcare costs associated with this 
arrhythmia.2 

The use of AI can vastly reduce a medical practitioner’s workload as well 
as improve prognosis by early identification, diagnosis and appropriate 
management. For example, neural networks can be trained to analyse 
ECGs, and reinforcement learning can be used to help make dosage 
decisions.3 This is important given the move towards a more holistic or 

integrated approach to AF care, for which studies have demonstrated an 
association with improved clinical outcomes.4

AI-based risk prediction models can identify and quantify risk factors with 
higher accuracy than traditional risk scores and enable the detection of 
factors that researchers are unaware correlate with an outcome. For 
example, logistic regression, gradient boosting, a decision tree and a 
neural network for stroke risk prediction obtained areas under the curve 
(AUCs) of 0.891, 0.881, 0.881 and 0.859, respectively, compared with a 
value of 0.780 obtained by the CHA2DS2VASc score.5

More widespread use has the potential to improve patient-centred care 
by further individualising a patient’s level of risk, thus enabling the 
management of modifiable risk factors. An added benefit would be the 
ability to account for the dynamic nature of risk in certain cardiovascular 
outcomes. For example, ML and the use of mobile health data could 
enable stroke risk prediction to adapt to treatment changes over time and 
incident risk factors, in contrast with the static nature of current standard 
risk scores.5

Data-driven Performance
AI applications are benefiting from the explosion of data creation 
happening currently. With new methods of collection, data are becoming 
more diverse, enabling improvement in performance of ML models. 

Mobile health data applications have already aided prediction of 
arrhythmias including AF and VF, as well as supraventricular ectopic beat 
and ventricular ectopic beat.6 

ML techniques such as natural language processing (NLP) have enabled 
researchers to make better use of the data in patients’ electronic health 
records. A study of >63 million individuals applied NLP to free-text data 
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combined with structured electronic health record data, and correctly 
detected 3,976,056 further non-valvular AF cases, compared with using 
structured data alone.7 

Evidently, introducing AI-based detection methods into clinical use could 
help clinicians screen a vast number of arrhythmia cases that may 
otherwise have gone undetected and, with appropriate treatment, reduce 
the likelihood of adverse outcomes in these patients.

Barriers to Clinical Use and Potential Solutions
Clinical Acceptance
As AI progresses, such tools are beginning to become accepted into 
clinical use. For example, in 2019, HeartFlow received approval from the 
Food and Drug Administration (FDA) to implement its non-invasive, real-
time, virtual modelling tool for coronary artery disease intervention.8 

Although the application of this tool has been a success, agencies such as 
the FDA can often limit the progress of AI systems by subjecting them to 
lengthy acceptance processes. The Artificial Intelligence/Machine 
Learning (AI/ML) Software as a Medical Device (SaMD) Action Plan 
proposes a regulatory framework for the use of AI and ML solutions in 
healthcare.9 Better, more explicit resources on approval processes, such 
as this regulatory framework, would enable researchers and developers 
to reduce delays and rejection by ensuring their applications meet 
approval requirements.

Another barrier to the real-world application of AI research is the standard 
of reporting. Reviews have observed that studies developing prediction 
models for clinical use are not providing transparent pictures of their 
methods and findings.10 As a result, these findings may not be trusted by 
patients or clinicians, used or replicated. 

To address this, laws and protocols are being developed to advise AI 
researchers on how to thoroughly present their work, such as TRIPOD-AI 
and PROBAST-AI.11 They provide guidelines and tools that analysts should 
follow to prevent research waste and help readers identify key information 
to make a clear decision on the quality of the studies. 

Research waste can also occur when applications are not designed with 
the needs of clinical purpose at the forefront. Regardless of outstanding 
performance in predicting an outcome, a model will not be deployed if a 
clinician requires the prediction of multiple outcomes simultaneously.

Shortcomings of Machine Learning
The complexity of the relationships modelled by deep learning, while a 
benefit of the technique, may also preclude its use in clinical practice. 
Applicability decreases if a model generalises too strongly to its training 
data, resulting in reduced performance with differing populations. 

This may be overcome by creating training models using a variety of 
datasets, although problems arise when health datasets differ in features, 
even when the same variables are collected. For example, if a model is 
trained on a dataset that categorises alcohol consumption by <5 units/
week and ≥5 units/week, retraining with a dataset that categorises 
alcohol consumption by <2 units/week, 2–7 units/week, and ≥7 units/
week would prove difficult. Feature selection methods, as well as model 
calibration, provide a solution to this by preventing overfitting. 

Similarly, any patterns, biases or outdated information in the data will 
influence a model’s robustness. 

Incorrect and harmful applications could ensue if models are applied to 
unsuitable populations, which may be especially concerning in 

Figure 1: Benefits and Concerns of Artificial Intelligence in Cardiovascular Research
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cardiovascular science given the life-and-death nature of many clinical 
decisions. 

Gaining access to reflective, diverse data is another problem within AI 
because of the red tape of data privacy and protection legislation. 
Developing countries and isolated communities tend to have a lower rate 
of data collection hence are less likely to be incorporated into model 
training.12 As a result, individual personal complexities that could influence 
outcomes in these populations will not be reflected by models. 

Additionally, algorithms built on a specific type of patient data gained from 
a congruent sample may not apply to those who differ in predictor values. 
This caveat is being slowly alleviated, with the growth of big data 
producing more representative and thorough datasets. 

These issues, if not addressed, will present significant obstacles to the 
many potential benefits the clinical use of deep learning could bring.

Interpretability and Explainability
The increasing concern surrounding interpretability and explainability is 
potentially the most considerable barrier to acceptance of AI in healthcare. 

Interpretability refers to the ability to observe the cause-and-effect 
relationships a model has learned and the outcomes that various factors 
will produce, e.g. a model predicts that a patient will develop lung cancer 
as the patient is a current smoker. 

Explainability refers to how well the influence of a model’s parameters on 
its decision can be understood; a regression model’s coefficients explain 
that smoking results in a certain increase in the likelihood a patient has 
lung cancer, whereas a ‘black box’ deep neural network’s weights give a 
much less explicit insight of how the presence of smoking impacted the 
final prediction. 

For risk prediction in particular, explainability can enable clinicians and 
patients to mitigate risk by identifying and managing the risk factors 
contributing most to the prediction. 

Increased interpretability and explainability may also help highlight any 

biases embedded within the data by allowing the examination of a 
model’s choices. Various methods are being developed to help explain 
the decisions made by more complex models. 

For risk prediction, Shapley values can be used to quantify each variable’s 
contribution.13 However, their calculation is computationally expensive, 
and the computation time required may be too expensive for a clinician to 
accept. For deep neural networks, saliency maps can be used to produce 
visualisations that highlight the patterns and areas of each beat that 
contribute to the model’s final outcome prediction.14

Conversely, some researchers question the necessity of interpretability, 
and argue that the pursuit of interpretable models is not necessary and 
holding back progression.15 

There is a strong argument for interpretability for models making high-
stakes decisions such as treatment recommendations and dosage 
calculations, where the negative consequences of an incorrect decision 
may be substantial. However, for models designed to perform smaller 
tasks, such as the annotation of ECGs, interpretability may not be essential 
as long as the model demonstrates good performance. 

Responsibility for decisions made by uninterpretable models is a 
discussion starting to arise now that system manufacturers are seeking 
approval for them to be deployed in a clinical setting. Since legislation on 
data and automatic systems are only a recent issue, there are no clear 
guidelines as to who would be at fault if a misdiagnosis were made by the 
machine. Although some believe this is a reason to delay use of algorithms 
in practice, a perquisite is that it takes blame away from overworked 
medical personnel who, by human nature, are bound to make mistakes 
occasionally.

Conclusion
Despite its barriers, one cannot deny the success, elevated accuracy and 
promise that AI is yielding in arrhythmia research. For this progress to be 
most useful in healthcare, it is imperative that the wall between AI 
research and clinical care be broken down, through both the 
implementation of solutions discussed here and the innovation of 
solutions. 
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