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Opposing JAK-STAT and Wnt signaling
gradients define a stem cell domain by
regulating differentiation at two borders
David Melamed, Daniel Kalderon*

Department of Biological Sciences, Columbia University, New York, United States

Abstract Many adult stem cell communities are maintained by population asymmetry, where

stochastic behaviors of multiple individual cells collectively result in a balance between stem cell

division and differentiation. We investigated how this is achieved for Drosophila Follicle Stem Cells

(FSCs) by spatially-restricted niche signals. FSCs produce transit-amplifying Follicle Cells (FCs) from

their posterior face and quiescent Escort Cells (ECs) to their anterior. We show that JAK-STAT

pathway activity, which declines from posterior to anterior, dictates the pattern of divisions over

the FSC domain, promotes more posterior FSC locations and conversion to FCs, while opposing

EC production. Wnt pathway activity declines from the anterior, promotes anterior FSC locations

and EC production, and opposes FC production. The pathways combine to define a stem cell

domain through concerted effects on FSC differentiation to ECs and FCs at either end of opposing

signaling gradients, and impose a pattern of proliferation that matches derivative production.

Introduction
The physiological role of each type of adult stem cell is to maintain appropriate production of a

restricted set of cell types throughout life (Clevers and Watt, 2018; Post and Clevers, 2019). To

accomplish this objective, a sufficient population of stem cells must itself be maintained. Conse-

quently, there must be some mechanism that balances stem cell proliferation and differentiation.

The balance need not be precise or without fluctuations, especially if the stem cell population is

large and therefore not at risk of temporary insufficiency or extinction. However, if the number of

stem cells is held roughly constant over time, then an unchanging anatomy can provide a constant

environment for regulating and matching stem cell divisions and differentiation.

The balance between stem cell division and differentiation can operate at the single-cell level or

at the community level (Jones, 2010; Mesa et al., 2018; Snippert et al., 2010). If each stem cell

repeatedly divides to produce a stem cell and a differentiated product (‘invariant single-cell asymme-

try’), the rate of division must simply be matched to the required supply of product cells. More com-

monly, however, a group of stem cells in a given location is maintained by ‘population asymmetry’,

where individual stem cells exhibit non-uniform, stochastic behaviors and differentiation is commonly

not temporally or mechanistically linked to division of the same stem cell (Reilein et al., 2018;

Ritsma et al., 2014; Rompolas et al., 2016; Simons and Clevers, 2011). The behavior of such stem

cells is likely guided substantially by extracellular signals and it is commonly presumed that regula-

tion is achieved substantially by defining a compartment with fixed dimensions that can maintain

stem cells. However, very little is known about how extracellular signals define niche space and the

number of stem cells accommodated, how they affect stem cell division and differentiation, and

whether they co-ordinate those two fundamental behaviors. Drosophila ovarian Follicle Stem Cells

(FSCs) provide an outstanding paradigm to pursue these questions.

FSCs were first defined as the source cells for the Follicle Cell (FC) epithelium that surrounds each

egg chamber (Margolis and Spradling, 1995). An egg chamber buds from the germarium of each
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of a female’s thirty or more ovarioles (Figure 1A–D) every 12 hr under optimal conditions, requiring

a high constitutive rate of FC production throughout adult life (Duhart et al., 2017; Margolis and

Spradling, 1995). An FC is defined by permanent association with a germline cyst and therefore

passes inexorably out of the germarium within about two days and through the ovariole within five

days under optimal conditions. An FSC can therefore be defined by lineage analyses as a cell that

produces FCs but persists longer than an FC. However, in the original study identifying FSCs an

implicit assumption was made, in accord with contemporary precedents, that each FSC is long-lived

and maintained by invariant single-cell asymmetry (Margolis and Spradling, 1995). The consequent

deductions of FSC number, location and behavior were largely re-stated as dogma over the follow-

ing two decades despite some contrary observations (Hartman et al., 2015; Nystul and Spradling,

2007; Nystul and Spradling, 2010; Zhang and Kalderon, 2001). A comprehensive re-evaluation,

which included the analysis of all FSC lineages, without any prior assumptions about their behavior,

showed that individual FSCs were frequently lost or duplicated (Reilein et al., 2017) and that FSC

differentiation to an FC was not temporally coupled to, or dependent upon division of the same FSC

(Reilein et al., 2018). These characteristics of maintenance by population asymmetry, together with

independent cell division and cell differentiation events and decisions, are shared by two very impor-

tant and intensively studied types of mammalian epithelial stem cell, in the gut and in the epidermis

(Jones, 2010; Mesa et al., 2018; Ritsma et al., 2014; Rompolas et al., 2016). The re-evaluation of

FSC lineages and appreciation of population asymmetry as the governing principle not only

highlighted FSCs as a suitable model for many types of mammalian stem cells but also drastically

revised evaluation of the number, location and behavior of FSCs (Reilein et al., 2017), as summa-

rized below.

eLife digest Adult organisms contain a variety of cells that are routinely replaced using adult

stem cells which can generate the cells of a specific tissue. These stem cells are often clustered into

small groups, where combinations of chemical signals from nearby cells can encourage each stem

cell to divide or ‘differentiate’ into another type of cell. These different signals must somehow

balance stem cell division and differentiation to maintain the size and shape of the community.

The ovary of an adult fruit fly contains a group of adult stem cells called follicle stem cells, or

FSCs for short. FSCs support the continual production of eggs by supplying two types of cell from

opposite faces of the stem cell cluster: dividing follicle cells emerge from the back of the cluster and

guide late egg development, while non-dividing escort cells come from the front and guide early

egg development. Two of the signals that control FSCs are graded over the cluster. JAK-STAT

signaling is strongest in the follicle cell territory and gradually declines towards the front, while Wnt

signaling is strongest in escort cells and absent from early follicle cells. However, it was unclear how

the gradients of these two signals maintain the FSC population and control the formation of follicle

and escort cells.

To answer this question, Melamed and Kalderon used genetic engineering to modify the strength

of these two signals. The experiments measured how this affected the rate at which FSCs divide and

are converted into follicle or escort cells. Melamed and Kalderon found that the strength of JAK-

STAT signaling dictated division rates, which may explain why the rate cells divide varies across the

FSC cluster and escort cells do not divide at all. JAK-STAT signaling also stimulated FSCs to become

follicle cells and opposed their conversion to escort cells. Conversely, stronger Wnt signaling

favored the production of escort cells and inhibited FSCs from transitioning to follicle cells. This

suggests that the relative strength of these two opposing signals helps maintain thecorrect number

of FSCs while also balancing the formation of follicle and escort cells.

JAK-STAT, Wnt and other signals guide the development of many organisms, including humans,

and have also been linked to cancer. Therefore, the principles and mechanisms uncovered may

apply to other types of stem cells. Furthermore, this work highlights genetic changes that can allow

a mutant stem cell to amplify and take over an entire stem cell community, which may play a role in

cancer and other illnesses.
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Figure 1. Follicle Stem Cell locations, signals and behaviors. (A) Cartoon representation of a germarium. Cap Cells (CC) at the anterior (left) contact

Germline Stem Cells (not shown), which produce Cystoblast daughters that mature into 16 cell germline cysts (white) as they progress posteriorly.

Quiescent Escort Cells (ECs) extend processes around germline cysts and support their differentiation. Follicle Stem Cells (FSCs) occupy three AP

Layers (3, 2, 1) around the germarial circumference and immediately anterior to strong Fas3 staining (red) on the surface of all early Follicle Cells (FCs).

FCs proliferate to form a monolayer epithelium, including specialized terminal Polar Cells (PCs), which secrete the Upd ligand responsible for

generating a JAK-STAT pathway gradient (green) of opposite polarity to the Wnt pathway gradient (red), generated by ligands produced in CCs and

ECs. (B) A GFP-positive (green) MARCM FSC lineage that includes FSCs in each layer, an EC (magenta arrowhead), a recently produced ‘immediate’ FC

(blue arrowhead) and other FCs (yellow arrowheads) visualized together with Fas3 (red, arrows mark anterior Fas3 border) as (B) a single 3 mm z-section

and (B’) a projection of ten z-sections (scoring is done by examining each z-section). The dotted white line outlines the germarium here and in future

similar images. (C, D) Early portion of an ovariole with marked FSCs (green) in layer 1 (blue arrows) and layer 2 (yellow arrows), a marked immediate FC

(white arrowhead) and more posterior FCs (magenta arrowheads) together with the anterior Fas3 (red) border (gray arrows), also (D) shown

diagrammatically with anterior PCs of the first budded egg chamber indicated. (E) Germarium with a MARCM FSC lineage (green) stained for EdU

(blue) incorporation during 1 hr prior to fixation, showing examples of a GFP-positive EdU+ FSC (yellow arrow) and FC (yellow arrowhead), a GFP-

negative EdU+ FSC (white arrow) and FC (white arrowhead) and the anterior Fas3 (red) border (gray arrows). (F) Diagram showing four of five properties

of FSC behavior measured for all marked FSCs in MARCM lineages, with values indicated for normal FSCs: EdU incorporation frequency for each FSC

layer (red text and arrows), FSC location among the three layers (indicated by absolute numbers and frequencies), ECs produced per anterior FSC

(those in layers 2 and 3) over a given period (0.55 from 0-6d), and the likelihood for a layer 1 FSC to become an FC (p=0.62) in a single budding cycle.

(G) Distribution of the number of surviving FSCs observed for control genotypes at 6d (yellow) and 12d (blue), with the theoretically expected binomial

distribution of FSCs initially marked (0d; red) based on the measured average number of surviving marked FSCs. All scale bars are 10 mm.

The online version of this article includes the following source data for figure 1:

Source data 1. Numerical data for graphs in Figure 1.
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Production of 5–6 ‘founder’ FCs (the first FCs to associate with a germline cyst to seed the FC

epithelium) per budding cycle is accomplished by 14–16 FSCs, arranged in three anterior-posterior

(AP) rings anterior to the border of strong Fas3 protein expression, near the mid-point of the germa-

rium (Figure 1A–D; Hayashi et al., 2020; Reilein et al., 2017; Reilein et al., 2018). These FSCs also

produce a second cell type known as an Escort Cell (EC) (Hayashi et al., 2020; Reilein et al., 2017).

ECs are quiescent cells anterior to the FSC domain (Figure 1A) that envelop and support the differ-

entiation of developing germline cysts (Decotto and Spradling, 2005; Kirilly et al., 2011). FCs,

which first encapsulate region 2b germline cysts and are defined by continued association with a sin-

gle cyst, derive directly from the posterior (‘layer 1’) FSCs, whereas ECs derive directly from anterior

FSCs in layers 2 or 3 (Reilein et al., 2017).

Each FSC lineage (marked descendants of a single FSC) exhibits stochastic behaviors, including

extinction or amplification and production of FCs, ECs or both. A single FSC lineage can include

both ECs and FCs because FSCs can divide and can exchange AP locations over time. FSCs also

exhibit extensive radial movements tracked by live imaging, and no radial germarium asymmetries

are known, suggesting that all FSCs within a layer are equivalent (Reilein et al., 2017). Posterior

FSCs divide faster than anterior FSCs, so that the roughly four-fold greater efflux of derivatives from

the posterior face of the FSC domain is supported without significant net flow of FSCs from anterior

to posterior locations (Reilein et al., 2017; Reilein et al., 2018). Thus, FSCs present a paradigm of

dynamic heterogeneity (Greulich and Simons, 2016), where each stem cell within a fluid spatially-

defined community exhibits distinctive instantaneous properties characteristic of its precise AP loca-

tion but future behavior can change as a result of apparently stochastic changes in position or cell

division. How are these heterogeneous individual cell behaviors marshaled into a defined stem cell

domain that maintains a roughly constant number of stem cells and a continuous supply of an appro-

priate number of FC and EC products?

FSC maintenance and amplification have been found to depend on the activity of many of the

major pathways initiated by extracellular signals. The earliest studies highlighted the role of Hedge-

hog (Hh) signaling (Zhang and Kalderon, 2001). Hh is produced in Terminal Filament and Cap cells,

the anteriormost cells of the germarium, and its release is regulated by the Hedgehog binding pro-

tein Boi (Forbes et al., 1996a; Hartman et al., 2010). Hh was shown to promote FSC survival and

amplification principally by regulating the rate of FSC division through transcriptional induction of

the Hippo-pathway transcriptional co-activator Yorkie (Yki) (Huang and Kalderon, 2014). This consti-

tutive role of Hh signaling in well-fed flies is also part of an environmental sensor, with nutrient depri-

vation leading to reduced Hh dispersal and consequent slowing of FC and egg chamber production

(Hartman et al., 2013). The key role of FSC division rate for FSC competition was highlighted by

studies of Hh signaling and also by the discovery of several regulators of proliferation in a genetic

screen for FSC maintenance factors (Wang et al., 2012; Wang and Kalderon, 2009). A functional

connection between stem cell division rate and competition is not expected for stem cells main-

tained by invariant single-cell asymmetry and was finally explained by the finding that FSC differenti-

ation is independent of FSC division (Reilein et al., 2018).

Although the Hh signal is graded, declining from anterior to posterior, initial tests indicated that

graded signaling was not important for continued normal FSC function (Vied et al., 2012). BMP,

EGF, integrin and insulin receptor initiated pathways have also been implicated in FSC function

(Castanieto et al., 2014; Johnston et al., 2016; Kirilly et al., 2005; O’Reilly et al., 2008;

Vied et al., 2012; Wang et al., 2012) but the two pathways that have emerged so far as the stron-

gest candidates for determining niche space and position-specific stem cell behaviors are the Wnt

and JAK-STAT pathways because they both have graded activities in the AP dimension

(Figure 1A; Reilein et al., 2017; Vied et al., 2012; Wang and Page-McCaw, 2014) and they both

have a very strong influence on FSC behavior (Reilein et al., 2017; Song and Xie, 2003; Vied et al.,

2012).

The Wg and Wnt6 ligands are produced in Cap Cells at the anterior of the germarium and are

supplemented by the production of Wnt2 and Wnt4 in ECs (Forbes et al., 1996b; Luo et al., 2015;

Sahai-Hernandez and Nystul, 2013; Waghmare et al., 2018; Wang and Page-McCaw, 2018) to

produce high levels of pathway activity over the EC domain with a sharp decline over the FSC

domain and little or no activity in FCs (Figure 1A; Reilein et al., 2017; Wang and Page-McCaw,

2014). FSCs were lost from the niche cell autonomously when Wnt signaling was either genetically

elevated or reduced (Song and Xie, 2003; Vied et al., 2012). More recently it was shown that the
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primary effects of altering Wnt pathway activity were exerted on the AP location of FSCs and their

conversion to differentiated products, with increased pathway activity favoring more anterior loca-

tions and EC production, while reducing FC production (Reilein et al., 2017). Thus, relatively rapid

loss of FSCs due to elevated Wnt pathway activity results from conversion of all FSCs over time to

ECs.

The JAK-STAT ligand Unpaired (Upd) is produced in specialized FCs called polar cells that are

found at the anterior and posterior ends of developing egg chambers (Figure 1A,

D; McGregor et al., 2002; Vied et al., 2012). Pathway activity is high in FCs in the germarium and

decreases from posterior to anterior over the FSC domain with only low levels in ECs

(Figure 1A; Vied et al., 2012). When JAK-STAT activity was elevated in FSC lineages, it was shown

that these FSCs out-competed wild-type FSCs and that proliferating FSC derivatives could accumu-

late in EC territory. Conversely, loss of STAT activity resulted in accelerated FSC loss (Vied et al.,

2012). Those studies suggested potential roles in both FSC division and location or differentiation

but detailed analysis was not possible at that time, before understanding of the organization and

behavior of FSCs was drastically revised (Reilein et al., 2017).

Here, we have dissected cell autonomous responses to genetic changes in Wnt and JAK-STAT

signaling pathways to separate their influences on each potentially independently controlled and

separately measured parameter of FSC behavior: (1) FSC division rates, (2) FSC AP location, (3) FSC

conversion to FCs, and (4) FSC conversion to ECs, which combine to control FSC competitive status,

measured by changes in FSC numbers over time (Figure 1F). The results showed that these two

graded pathways are substantially responsible for defining the FSC domain. The polarity and conse-

quent magnitude of each graded pathway activity promoted differentiation to ECs at the anterior

and differentiation to FCs at the posterior of the FSC domain, with especially sensitive responses to

Wnt at the anterior and to JAK-STAT at the posterior. The magnitude of JAK-STAT signaling also

substantially influenced the spatial pattern of cell divisions. Some co-ordination of FSC division and

differentiation results from the dual role of the JAK-STAT pathway in promoting FSC division and

FSC conversion to FCs but this coordination did not suffice in the artificial absence of Wnt signaling.

Finally, the general correspondence between overall FSC competitive outcomes and the indepen-

dent constituent behaviors (division rate, AP location, and differentiation rate to FCs or ECs) mea-

sured under a large variety of genetic conditions provides further support for the current view of

FSC numbers, locations and behaviors (Reilein et al., 2017; Reilein et al., 2018).

Results

Cell lineage approach to measure five separable parameters of FSC
behavior
Prior to 2017, when each ovariole was thought to harbor just two or three FSCs, the cell autonomous

effects of altered genotypes on FSC biology were ascertained by measuring the frequency of surviv-

ing marked FSC clones, defined by the presence of labeled FCs and a putative FSC, at various times

after clone induction relative to control genotypes tested in parallel (Castanieto et al., 2014;

Kirilly et al., 2005; O’Reilly et al., 2008; Song and Xie, 2003; Vied et al., 2012; Wang et al.,

2012). Numerous genetic changes were found to reduce FSC clone survival severely. Occasionally,

the normally low frequency of ovarioles containing only marked FSCs and FCs (‘all-marked’) was also

elevated, indicating a genotype that markedly increased FSC competitiveness. Now that it is appre-

ciated that there are 14–16 FSCs in distinct AP locations, associated with different instantaneous

division rates and differentiation potential, and that FSCs produce EC as well as FCs (Hayashi et al.,

2020; Reilein et al., 2017; Waghmare et al., 2018), the results of clonal analysis can reveal far more

about the effect of a specific genotype on different aspects of FSC behavior and the net effect on

FSC survival and amplification can be measured more precisely by measuring FSC numbers. Corre-

spondingly, labeled lineages must be scored in far more detail than before to reveal that

information.

We conducted an extensive series of experiments using a standard regime in order to extract

comprehensive quantitative information about FSC behavior and to be able to compare results for a

large number of altered genotypes among all experiments in the series. We induced GFP-labeled

clones in dividing cells of young, well-fed adult females using the MARCM (Mosaic Analysis with a
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Repressible Cell Marker) system (Lee and Luo, 2001) with constitutive drivers (actin-GAL4 and tubu-

lin-GAL4 together) of UAS-GFP and, where relevant, additional transgene expression. Heat-shock

induction of a hs-flp recombinase transgene elicited recombination at the base of the relevant chro-

mosome arm (using FRT recombination sites on 2L, 2R or 3R) in a fraction of FSCs (about 20%) to

create homozygous recessive mutations or activate expression of a transgene (or both). After 6 or

12 days, ovarioles were dissected, labeled for 1 hr with the nucleotide analog EdU to measure cell

division (for the 6d test only), fixed and stained to label all nuclei and the cell surface protein, Fasci-

clin 3 (Fas3). Each experiment included a variety of altered genotypes and a control with the same

FRT recombination site. For each sample, GFP-labeled FC locations along the ovariole were

recorded (Figure 1C,D) and complete confocal z-section stacks of the germarium were archived and

analyzed to count labeled FSCs in layer 1, immediately anterior to the border of strong Fas3 stain-

ing, and in the next two anterior layers (2 and 3), as well as labeled ECs (anterior to FSCs)

(Figure 1B), scoring also the number of labeled ECs and FSCs that had incorporated EdU (at 6d)

(Figure 1E).

Our objective was to use the results to measure each distinguishable parameter of FSC behavior

or decision-making separately (Figure 1F). Cell division over the FSC domain was measured by EdU

incorporation at the earlier time-point (6d) so that sufficient FSCs of poorly competitive genotypes

were still present in good numbers and hyper-competitive FSCs were not sufficiently abundant to

potentially distort germarial morphology or induce secondary, non-autonomous responses. Geno-

type-dependent changes in the precise AP location of FSCs within the FSC domain were evident at

6d but were consistently most prominent at 12d, as were changes in the average number of FSCs

present, so only the 12d results are presented. FC production was assessed quantitatively by a

method we devised for measuring the probability of FC production per posterior FSC in one cycle of

egg chamber budding (‘p’ in Figure 1F), using 6d samples to ensure a suitably low frequency of pos-

terior FSCs for all genotypes. EC production was measured from 0-6d and 0-12d; it was normalized

to the inferred number of anterior FSCs present during those periods.

Normal FSC behavior was reported by controls from 31 separate MARCM experiments, scoring

at least 50 ovarioles in almost every case. The results were extremely similar to those deduced previ-

ously from the more limited set of multicolor and MARCM experiments that formed the basis of our

current perception of FSCs (Reilein et al., 2017). The results for controls are summarized in

Figure 1F and will be referenced individually later, in the context of genetic changes that alter those

behaviors.

Here we note that each germarium contained an average of 3.2 marked FSCs at 6d and 3.3

marked FSCs at 12d, counting all ovarioles, including those with no labeled cells. If marked FSCs of

the control genotype have no competitive advantage or disadvantage over unmarked FSCs it is

expected that the average number of labeled FSCs should remain constant, as observed, and these

measurements should therefore report the average number of FSCs initially labeled in each germa-

rium (as 3.2–3.3 at 0d). When deducing FSC properties for the first time it was often important to

assay ovarioles with lineages derived from a single FSC (Fox et al., 2008; Kretzschmar and Watt,

2012; Reilein et al., 2017). For example, FSC lineages with only a single candidate FSC at the time

of examination were used to ascertain the location of FSCs as being in any radial location, most fre-

quently in layer one or in layer two and occasionally in layer three (Reilein et al., 2017). Similarly, the

ability of an FSC to produce both FCs and ECs was demonstrated by generating FSC lineages at

very low frequency, so that most lineages originated from a single cell (Reilein et al., 2017). In the

present studies we already can define FSCs by location and the labeling of over three FSCs per ovar-

iole is advantageous because it effectively allows us to examine the fate of a larger number of FSCs

for a given number of ovarioles. Initial labeling of each FSC in a germarium is theoretically indepen-

dent and the chance of an FSC being labeled in any two germaria is theoretically equal, so the num-

ber of initially labeled FSCs per ovariole can be estimated to have a binomial distribution centered

around 3.2–3.3 (‘0d’, red in Figure 1G). The observed distribution at 6d was quite different from the

assumed starting distribution, most obviously because more than a third of ovarioles no longer

included any FSCs, while the proportion of ovarioles with six or more FSCs had increased

(Figure 1G), consistent with expectations for neutral competition (Jones, 2010; Reilein et al., 2017;

Reilein et al., 2018). These changes were further exaggerated at 12d but full colonization of a ger-

marium by marked cells generally takes longer (Reilein et al., 2017), so even at 12d marked FSCs

remain in a minority and are competing against unmarked wild-type cells in almost all ovarioles
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(Figure 1G). That circumstance also applies to almost all variant genotypes investigated, ensuring

that results reflect competition of marked FSCs with wild-type FSCs.

Graded JAK-STAT signaling instructs graded FSC proliferation
In control clones 6d after induction, the average percentage of all GFP-marked FSCs that incorpo-

rated EdU was 25.1% (n = 4753) with a pronounced gradient of labeling, declining from posterior to

anterior (33.4% for layer 1, 20.0% for layer 2, and 8.2% for layer 3) (Figure 2A), similar to previous

observations (Reilein et al., 2017). It had previously been observed that FSCs are rapidly lost in the

absence of STAT activity, and that FSCs with excess JAK-STAT pathway activity became unusually

numerous and included derivatives that incorporated EdU within the EC domain, suggesting that

this pathway may affect FSC proliferation (Vied et al., 2012). However, the quantitative effect of

JAK-STAT signaling on FSC division rates has not been reported. We found that only 2.4% of FSCs

with either of two homozygous null stat alleles incorporated EdU (n = 336), a ten-fold reduction

compared to controls (Figure 2A,B). To increase JAK-STAT activity, we expressed excess levels of

the only Drosophila Janus Kinase, Hopscotch (Hop) using a UAS-Hop transgene in FSC clones

(Vied et al., 2012; Xi et al., 2003), and found that 43.9% of UAS-Hop FSCs incorporated EdU

(n = 1379), nearly double the rate of control FSC clones (Figure 2A,C; Figure 2—figure supplement

1). The pattern of EdU incorporation in these FSCs still showed a posterior bias, with 49.9% of layer

1, 39.8% of layer 2, and 32.1% of layer 3 UAS-Hop FSCs labeled by EdU, although the EdU indices

of layer 1 and layer 3 FSCs relative to the whole FSC population were significantly different from

controls (Figure 2A). These experiments demonstrated that the JAK-STAT pathway has a very

strong positive, dose-responsive, cell autonomous influence on the FSC cell cycle. We also saw that

labeled cells in the EC region, which normally do not divide at all, sometimes incorporated EdU

(12.4%) when JAK-STAT pathway activity was elevated (Figure 2A; Figure 2—figure supplement

1B), as noted previously without quantitation (Vied et al., 2012).

JAK-STAT pathway activity, reported by a ‘STAT-GFP’ transgene with ten tandem STAT binding

sites (Bach et al., 2007), is graded from posterior to anterior over the FSC domain (Figure 2D,F),

with a major ligand emanating from polar follicle cells (Vied et al., 2012). Because the JAK-STAT

activity gradient runs parallel to the graded pattern of EdU labeling we wished to test whether the

two gradients were causally related. To do this, we took advantage of the C587-GAL4 driver, which

is expressed strongly in the anterior of the germarium and decreases in strength towards the poste-

rior with almost no detectable expression in FCs (Reilein et al., 2017; Song et al., 2004). This pat-

tern is roughly a mirror-image of the normal JAK-STAT signaling pathway gradient. We expressed

UAS-Hop from the C587-GAL4 driver (C587>Hop), utilizing a temperature-sensitive GAL80 trans-

gene (Zeidler et al., 2004) to restrict UAS-Hop expression temporally. After 3d at the restrictive

temperature of 29C, we measured STAT-GFP fluorescence and found it to be similar in each of the

three FSC layers and also over more anterior regions, indicating that the entire FSC domain now has

roughly even JAK-STAT pathway activity (Figure 2E,F).

With roughly even JAK-STAT activity across the FSC region, we measured proliferation in the

three FSC layers. We observed nearly identical frequencies of EdU labeling in each FSC layer of

C587>Hop germaria; 38.2% of layer 1, 37.4% of layer 2, and 41.1% of layer 3 FSCs (Figure 2G,H,J).

Thus, synthetically making JAK-STAT pathway activity uniform, rather than graded, eliminated the

normal posterior to anterior gradient of EdU labeling.

Additionally, elevated JAK-STAT activity in the anterior of the germarium stimulated EdU incor-

poration in 10.4% of ECs (Figure 2H,J). In this experiment, those cells were quiescent ECs prior to

increasing JAK-STAT activity with C587-GAL4 and temperature elevation. In the MARCM studies,

the GFP-marked dividing cells in the EC region originated instead from marked FSCs with elevated

JAK-STAT signaling. Clearly, excess JAK-STAT pathway activity can suffice to initiate cell division in

the EC domain, whether the target cells were recently derived from FSCs or not. The rate of division

of those cells, indicated by their EdU index, was substantially lower than for cells in the FSC domain

(Figure 2J) despite similar levels of JAK-STAT pathway activity in the C587-GAL4/UAS-Hop experi-

ment (Figure 2F), suggesting the presence of other factors restricting EC division or inertia due to

prior quiescence (Spencer et al., 2013).

For comparison, we tested the effect of increasing CycE expression. In MARCM clones expressing

UAS-CycE the FSC EdU index was greatly increased (Figure 2K) but we observed no EdU incorpo-

ration in the EC region. When UAS-CycE was expressed with the C587-GAL4 driver (C587>CycE) we
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Figure 2. Graded JAK-STAT signaling determines FSC and EC proliferation profile. (A) EdU incorporation frequency into FSCs in layers 1–3 and ECs for

the indicated genotypes of MARCM lineages, with the number of cells scored and significant differences to control values (red asterisks, p<0.001). The

statistical significance of the EdU index of each FSC layer as a fraction of overall EdU index relative to controls was calculated for all genotypes.

Significant differences are indicated by the # symbol (# [in red] p<0.001). (B, C) EdU (blue) incorporation into MARCM FSC lineages 6d after clone

induction with anterior border of Fas3 (red) marked (gray arrows). (B) Most FSCs lacking stat activity (green) did not incorporate EdU (red arrow), unlike

unmarked GFP-negative neighbors (white arrows). (C) Increased JAK-STAT pathway activity from expression of UAS-Hop produced many GFP-positive

EdU+ FSCs (yellow arrows). GFP-positive EdU- FSCs (red arrows) and a GFP-positive EdU- EC (magenta arrowhead) are also indicated. (D–E) STAT-GFP

reporter activity (green) (D) normally declines from the posterior over the FSC domain (blue bracket; arrows mark Fas3 (not shown) anterior border) but

(E) becomes uniformly high 3d after UAS-Hop expression with C587-GAL4. (F) Average relative intensity of GFP fluorescence from STAT-GFP reporter in

Figure 2 continued on next page
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found that the profile of EdU incorporation for FSCs remained graded with a posterior basis, con-

trasting with the response to UAS-Hop, although the gradient was flatter than in control FSCs, as

revealed by statistically significant differences in the relative EdU index for layer one and for layer

three relative to the overall EdU index (Figure 2I,J). Also, ECs remained quiescent. We conclude

that graded JAK-STAT pathway activity instructs graded proliferation within the FSC domain, and

that the anterior range of sufficient JAK-STAT pathway activity appears to define the anterior bound-

ary of this critical stem cell property.

JAK-STAT is not the sole potential contributor to the FSC proliferation
gradient
If JAK-STAT signaling were uniquely responsible for regulating the FSC proliferation gradient, then

we would not expect there to be any bias in EdU incorporation, by layer, for FSC MARCM clones

that have no JAK-STAT pathway activity. Though EdU incorporation was very low in stat FSC clones,

it was graded; 6.5% of marked layer 1 FSCs incorporated EdU, compared to 1.5% for layer 2 and 0%

for layer 3 (Figure 2A). Thus, there appear to be other influences that pattern FSC proliferation.

Their magnitude is, however, hard to assess reliably from this experiment alone because stat mutant

FSC cycling is very infrequent.

We therefore sought to introduce additional genetic changes onto a stat mutant background that

would increase FSC proliferation in the marked MARCM lineages without themselves altering the

normal graded pattern of proliferation. We found that expression of excess CycE and inactivation of

upstream components of the Hippo/Yorkie pathway, Kibra and Warts (Wts), previously shown to

influence FSC proliferation (Huang and Kalderon, 2014), appear to fulfill this requirement because

the gradient of EdU labeling was largely unaltered (Figure 2K). When each of these three manipula-

tions was paired with stat, the average frequency of EdU labeling roughly doubled compared to stat

alone (2.4%), with 4.8% of kibra stat FSCs (n = 461), 5.2% of wts stat FSCs (n = 231), and 5.2% of

stat UAS-CycE FSCs (n = 97) incorporating EdU, while kibra and UAS-CycE together increased EdU

incorporation to 15.9% (n = 252) (Figure 2K). In all of these experiments, more FSCs in layer one

incorporated EdU compared to the anterior layers in a pattern resembling that of normal FSCs

(Figure 2K). Moreover, there were no statistically significant differences from controls in the relative

EdU index of any one layer relative to the whole FSC population for these genotypes (Figure 2K) or

stat alone (Figure 2A), indicating that, in the absence of graded JAK-STAT pathway activity in the

marked cells, there remains a robust mechanism for imposing graded FSC proliferation. Once the

source of this mechanism is identified it will be possible to test whether it contributes to graded FSC

proliferation under normal conditions or is effective only in the absence of JAK-STAT pathway

activity.

Figure 2 continued

the indicated cell types for Control (n = 20) and C587 >Hop (n = 22) germaria. (G–I) EdU (blue) incorporation in somatic cells is (G) normally restricted

to FSCs (yellow arrows) and FCs beyond the Fas3 (red) border (gray arrows), (I) even when CycE activity is increased, but (H) ECs (arrowheads) are also

labeled when JAK-STAT pathway activity is elevated. Thick dashed white lines outline germline cysts labeled by EdU. Thin dotted white line outlines the

germarium. (J) EdU incorporation frequency into FSCs of layers 1–3 and ECs for germaria with the indicated genotypes. EdU incorporation is expressed

as the percentage of all counted FSCs in layers 1, 2 and 3, while the total number of ECs in each germarium was not counted but assumed to be 40 in

all cases (the total number of DAPI-labeled nuclei scored is above each column). The statistical significance of the EdU index of each FSC layer as a

fraction of overall EdU index relative to controls was calculated for both altered genotypes. Significant differences are indicated by the # symbol (#

p<0.05, # [in red] p<0.001). (K) EdU incorporation frequency into FSCs of layers 1–3 and ECs for the indicated genotypes of MARCM lineages with

number of cells scored above each column and significant differences between pairs of FSC layers indicated only for stat-containing genotypes (black

asterisks, p<0.05). The statistical significance of the EdU index of each FSC layer as a fraction of overall EdU index relative to controls was also

calculated for all genotypes. No significant differences were found, indicating a gradient of EdU incorporation that is not significantly different from

controls. All scale bars are 10 mm. See also Figure 2—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data for graphs in Figure 2.

Figure supplement 1. JAK-STAT pathway promotes division of FSCs and cells in EC territory.
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JAK-STAT pathway activity opposes anterior accumulation of FSCs
When scoring germaria with stat mutant clones, we observed that 96.5% of stat FSCs were found in

the anterior layers of the germarium by 12d (Figure 3A). Since loss of STAT drastically reduces FSC

proliferation we considered whether the location of FSCs might depend on their division rate. For

example, even though there is exchange of FSCs between layers (Reilein et al., 2017), a prolifera-

tion-deficient FSC may compete less well in layer 1. When we tested other mutants that had severely

impaired proliferation, including cycE and cutlet (Wang et al., 2012; Wang and Kalderon, 2009),

we observed an altered distribution of FSCs with the proportion of FSCs in layer one reduced from a

control value of 48.8% to 41.0% for cycEWX hypomorphs and 43.3% for cutlet FSCs but those

changes were not statistically significant and were much smaller than observed for stat mutant FSCs

(Figure 3A).

We also tested the consequences of increasing the division rate of stat mutant FSCs using the

kibra, wts, and UAS-CycE manipulations. The proportion of layer 1 FSCs was 29.7% for kibra stat,

wts stat, and UAS-CycE stat FSCs (‘kibra/wts/UAS-CycE stat’; average for the three aggregated gen-

otypes), and 36.5% for kibra UAS-CycE stat FSCs, both significantly lower than for controls (49%) but

higher than for stat alone (3.5%) (Figure 3A,D,E). Thus, we observed a consistent anterior bias for all

FSCs lacking STAT activity, even for genotypes that permitted EdU incorporation at frequencies

approaching normal values. The observation that stat mutant FSCs had a reduced anterior bias

when their proliferation was enhanced also supports the hypothesis that reduced division rates selec-

tively deplete FSCs from the fastest-dividing, posterior layer.

JAK- STAT pathway activity promotes FC production from posterior
FSCs; role of Fas3
The signals and mechanisms that govern conversion of an FSC to an FC are largely unknown. In fact,

only with recent insights into FSC organization can we measure this process independently of other

factors, such as altered division rates, in order to attribute changes in FSC survival to changes in the

frequency of differentiation to FCs (Figure 1F). Importantly, an FSC can become an FC at any time

relative to its last division, and FSC division and differentiation can therefore potentially be regulated

independently (Reilein et al., 2018). By correlating the location of labeled FSCs with recent produc-

tion of FCs it was determined that all or most FCs derive directly from layer 1; in other words, only

layer 1 FSCs associate with a passing germline cyst to become an FC (Reilein et al., 2017). Previous

studies also found that a single founder FC produced a patch occupying 17.8% of the monolayer of

an egg chamber on average, which translates to an average of 5.6 founder FCs (1/0.178) produced

per cycle of egg chamber budding (Reilein et al., 2018).

We devised a method to determine the probability that a single FSC becomes an FC in one cycle

of FC recruitment from our MARCM data. The germarium generally includes one stage 2b cyst and

one stage three cyst contacting Fas3-positive FCs (Figure 1C,D). We call the first layer of Fas3-posi-

tive cells adjacent to the posterior face of the stage 2b germline cyst ‘immediate FCs’ to acknowl-

edge that these cells very likely became FCs during the most recent cycle of FC allocation to a cyst

(Figure 1B–D). The designation of ‘immediate FCs’ reflects a location used for scoring, with no impli-

cation of specialized properties. We can reliably score if there is no labeled immediate FC in a ger-

marium but we cannot reliably score the number of immediate FCs. We therefore scored the

presence or absence of immediate FCs in germaria with 0–3 marked posterior FSCs in 6d samples.

Germaria with higher numbers of marked layer 1 FSCs almost invariably include marked immediate

FCs (layer 1 FSCs become FCs at a high frequency) and are therefore not informative for calculating

the frequency of conversion of a single layer 1 FSC to an FC. From 556 control germaria, across 31

MARCM experiments, we found that a layer 1 FSC has, on average, a 61.6% likelihood (p=0.616) of

becoming an FC in one cycle (see Materials and methods) (Figure 3C).

The calculation method assumes that 7 of 16 FSCs divide in an average budding cycle, based on

data from Reilein et al., 2018, so that the number of layer 1 FSCs available for conversion to FCs in

one cycle is higher than the measured steady-state number by a factor of a half (because new FSCs

will only be present on average for half the cycle) of 7/16. The average number of layer 1 FSCs mea-

sured from 31 control experiments was 7.6 (with 5.3 in layer 2 and 2.8 in layer 3; Figure 1F), so the

expected yield of FCs per cycle is 7.6 (1+ 7/32)(0.616)=6.1. The result is close to the value of 5.6
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Figure 3. JAK-STAT signaling promotes conversion of FSCs to FCs. (A) Relative frequency of marked FSCs in each layer for the indicated genotypes of

MARCM lineages, with the number of total FSCs scored for each genotype and significant differences to control values (red asterisks, p<0.001). Here

and elsewhere, ‘kibra/wts/UAS-CycE stat’ is the sum of all tests with kibra stat, wts stat and UAS-CycE stat. (B) ECs produced per anterior FSC from 0-

6d (magenta) and 0-12d (blue) for the indicated MARCM lineage genotypes with the total number of relevant germaria scored and significant

Figure 3 continued on next page
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calculated from founder FC clone sizes, validating the method employed to calculate the probability

of FC formation per FSC.

When applying the same method to mutant genotypes, the calculations factored in measured

changes in FSC division rate relative to controls because that influences the total number of FSCs

available for conversion to FCs during a cycle (see Materials and methods). Using this method, we

found that a stat mutant layer 1 FSC was much less likely than controls (34.2% compared to 61.6%)

to produce an FC (Figure 3C). To determine if reduced FC production was dependent on FSC divi-

sion rate we looked at kibra stat, wts stat, and UAS-CycE stat genotypes,. The average likelihood of

an FSC becoming an FC was 25.3% for these three genotypes (aggregated), and it was 22.8% for

kibra UAS-CycE stat mutant FSCs (Figure 3C–E). These experiments demonstrated that FC produc-

tion from its immediate precursor, a layer 1 FSC, is greatly impaired in the absence of STAT activity

and that this reduction is not related to changes in the rate of FSC division.

We also examined the consequences of increasing JAK-STAT pathway activity in a layer 1 FSC.

We found that the probability of becoming an FC increased from 61.6% to 78.1% for FSCs express-

ing UAS-Hop (Figure 3C). To test any contribution of altered FSC division we introduced a UAS-

Dacapo (UAS-Dap) transgene, encoding a CycE/Cdk2 inhibitor (Lane et al., 1996; Lehner et al.,

1992). We found that 23.5% of UAS-Dap UAS-Hop FSCs incorporated EdU, a frequency similar to

controls (Figure 3H). Layer 1 FSCs expressing both UAS-Hop and UAS-Dap also had a higher proba-

bility than controls of becoming FCs (76.7% vs 61.6%) (Figure 3C). Thus, both increased and

decreased JAK-STAT pathway activity significantly affected the production of FCs from FSCs inde-

pendent of FSC division rate, suggesting that the magnitude of pathway activity is an important fac-

tor in regulating this transition.

The proportion of FSCs in layer one depends not only on movements between FSC layers but

also on the rate of depletion from layer one to form FCs. Loss of STAT activity in multiple genotypes

reduced layer one occupancy even though conversion of layer 1 FSCs to FCs was reduced, suggest-

ing that the bias towards anterior movement within the FSC domain is even stronger than measured

simply by steady-state AP distribution (Figure 3A). Excess JAK-STAT pathway did not affect steady-

state AP location but increased conversion of layer 1 FSCs to FCs, suggesting that there is in fact a

bias towards posterior movement within the FSC domain that matches the increased conversion of

layer 1 FSCs to FCs. Thus, both FSC flux into layer one and conversion of layer 1 FSCs to FCs are

enhanced by increased JAK-STAT signaling and opposed by loss of JAK-STAT pathway activity.

It was previously noted that strong expression of the surface adhesion molecule Fas3, which is

normally observed only in FCs, was induced in some derivatives of FSCs with elevated JAK-STAT sig-

naling in the EC and FSC domains (Vied et al., 2012). We confirmed these observations for UAS-

Hop MARCM clones, finding that 66% of germaria with labeled cells in the anterior half of the ger-

marium (the FSC and EC domains) showed ectopic Fas3 expression at 12d after clone induction

(Figure 3F). Furthermore, we observed that these cells sometimes appeared to form a crude epithe-

lial monolayer surrounding developing germline cysts, indicative of FC behavior. Similar structures

were observed in germaria where UAS-Hop was conditionally expressed using C587-GAL4

Figure 3 continued

differences to control values (black asterisk, p<0.05, red asterisks, p<0.001). (C) Average probability of a layer 1 FSC becoming an FC during a single

budding cycle for the indicated MARCM lineage genotypes with the number of informative germaria scored and significant differences to control

values, or for the bracketed comparison (double asterisks) showing the impact of UAS-Fas3 (black asterisks, p<0.05, red asterisks, p<0.001). (D–E)

Despite marked FSCs in layer 1 (blue arrows), and a significant number of layer 2 FSCs (yellow arrows), layer 3 FSCs (red arrows), and ECs (magenta

arrowheads), marked FCs, posterior to the Fas3 (red) border (gray arrows) are absent here (and were generally rare) in kibra stat and kibra UAS-CycE

stat MARCM lineages. (F–G) Increased JAK-STAT pathway activity induced ectopic anterior Fas3 (red) expression (F) cell autonomously in MARCM

lineages (green) and (G–G’) in numerous cells anterior to the normal Fas3 border (arrows) when increased throughout the anterior germarium using

C587-GAL4, sometimes partitioning single cysts, visualized by DAPI (white) nuclear staining, into egg chamber-like structures (dashed blue line). (H)

Number of FSCs per germarium (red) using y-axis scale on the left, percentage of FSCs incorporating EdU (aggregating all layers, white), percentage of

ovarioles with a marked FSC (blue) and percentage of ovarioles with a marked FSC and marked FCs (yellow) (percentage y-axis scale in blue on the

right) for the indicated genotypes, with the number of germaria scored at 12d (EdU was scored at 6d with n reported in (A)) and significant differences

for FSC numbers compared to control values (black asterisks, p<0.05, red asterisks, p<0.001). All scale bars are 10 mm.

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data for graphs in Figure 3.
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(Figure 3G). Here, 53% of germaria included some cells with ectopic Fas3 expression by 3d, increas-

ing to 72% by 6d and 94% by 10d. Thus, high JAK-STAT pathway alone can instruct at least some

aspects of the FC phenotype even in locations where FCs do not normally form.

To test whether Fas3 might be an important intermediate in the normal influence of JAK-STAT

signaling on FC production we expressed excess Fas3 in kibra UAS-CycE stat mutant FSCs. We

observed a doubling in layer 1 FSC to FC conversion (from 22.8% to 45.4%) (Figure 3C), suggesting

that increased Fas3 expression can partially restore FC production in the absence of JAK-STAT path-

way activity. The mechanisms controlling Fas3 expression and its role in supporting FC production

remain to be explored more fully.

Net effect of JAK-STAT on cell-autonomous FSC longevity and
amplification
By measuring the impact of altered genotypes on each component of FSC behavior (Figure 1F) it

should be possible to predict, or at least rationalize, the net effect on FSC competitive behavior in

MARCM lineage analyses, measured by the proportion of ovarioles that retain marked FSCs over

time, or measured more precisely by the average number of marked FSCs per ovariole (counting all

ovarioles).

For FSCs and other stem cells governed by population asymmetry in which differentiation is inde-

pendent of stem cell division, the rate of stem cell division is necessarily a major determinant of com-

petitive success (Reilein et al., 2018). Excess JAK-STAT pathway activity substantially increased the

FSC EdU index. Accordingly, by 12d, there were an average of 10.4 UAS-Hop FSCs per germarium

(counting all ovarioles), significantly greater than the 3.3 FSCs per germarium observed in controls

(Figure 3H). The proportion of ovarioles containing a marked FSC was also increased with UAS-Hop

expression to 75.2% compared to 62.1% in controls (Figure 3H). When the increase in EdU index

was suppressed by co-expressing UAS-Dap with UAS-Hop, the increase in FSC numbers was greatly

reduced (Figure 3H).

FSC clones expressing UAS-CycE had a similar increase in the average EdU index to those

expressing UAS-Hop (40.4% vs 43.9%) (Figure 2A,K) and, again, FSC numbers were increased. How-

ever, the increase was more modest for CycE overexpression, with an average of 5.6 marked FSCs

per ovariole by 12d and 64.3% of ovarioles containing a marked FSC (Figure 3H). Neither UAS-CycE

nor UAS-Hop significantly altered steady-state FSC AP location (Figure 3A), and while UAS-Hop

promoted conversion of FSCs to FCs (Figure 3B), UAS-CycE did not (data not shown). The larger

impact of increased JAK-STAT pathway activity on FSC numbers is plausibly because increased divi-

sion was promoted preferentially in anterior FSC layers (Figure 2A,K), which normally do not divide

as frequently and are lost directly to differentiation at a lower frequency than posterior FSCs, or

because the domain of dividing cells has expanded into the EC region. It is also possible that the

EdU index does not reflect division rates accurately and that the FSC division rates in response to

excess CycE or excess Hop are not as similar as suggested by EdU incorporation.

When STAT activity was eliminated in FSC clones, there was an average of 0.3 stat FSCs per ger-

marium and 25.3% of germaria retained a marked FSC after 12d (Figure 3H). These are large defi-

cits compared to controls (3.2 FSCs, 62.1% of ovarioles), and similar to cycE partial loss of function

mutants (0.5 FSCs, 29% of ovarioles), which also drastically reduce FSC proliferation. When we

tested kibra stat, wts stat, and UAS-CycE stat genotypes, the average number of FSCs increased to

2.1 per germarium with 68.5% of germaria containing an FSC clone. An improved persistence of

FSCs was expected but the magnitude of rescue was surprisingly large if considering only FSC divi-

sion rates. This disparity was even more pronounced when examining FSC competition for kibra stat

mutants expressing UAS-CycE, which had an average EdU index about 64% of wild-type. Here, the

average number of marked FSCs was extremely high at 15.9 per germarium and 94% of ovarioles

included marked FSCs (Figure 3E,H). The remarkable persistence and amplification of these FSCs

shows that factors other than division rate are also major determinants of FSC competition. Specifi-

cally, the dramatically increased competitive success of FSCs lacking STAT activity for a given divi-

sion rate very likely results from reduced conversion to FCs. Reduced conversion to FCs results from

both the infrequent presence of FSCs in layer 1 (Figure 3A) and the markedly lower conversion of

layer 1 FSCs into FCs when FSCs lack STAT activity (Figure 3C). The virtual sealing off of this con-

duit, which is normally the major route for FSC loss, allows marked FSCs to accumulate despite

dividing at rates lower than their normal unmarked FSC neighbors.
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Although the survival and amplification of FSCs lacking STAT activity were increased towards,

and then beyond normal by relatively modest restoration of division rates, those FSCs still had much

reduced physiological activity, measured by continued production of FCs, with very few ovarioles

containing both FSCs and FCs (3.5% for stat, 9.5% for stat with kibra, wts or UAS-CycE, 17.0% for

kibra UAS-CycE stat, compared to 42.8% for controls) (Figure 3D,E,H). Thus, interfering with the

normal coordination of FSC division and conversion to FCs in response to JAK-STAT pathway activity

by adding genetic modifiers of division alone led to extensive amplification of unproductive FSCs. In

many of these ovarioles, egg chambers were surrounded entirely by unmarked cells and had an

abnormal, elongated morphology (Figure 3E), perhaps suggestive of a deficiency in overall FC

production.

When excess Fas3 was expressed in kibra UAS-CycE stat FSCs, doubling conversion of layer 1

FSCs to FCs and restoring rates of FC production towards normal values (Figure 3B), the average

number of FSCs per germarium declined sharply from 15.9 to 2.4 (Figure 3H). At the same time, the

percentage of ovarioles with at least one FSC at 12d declined from 94% to 59% but the proportion

of ovarioles with FSCs and FCs increased from 17% to 31% (Figure 3H). The response to excess

Fas3 provides further evidence of the large impact of the rate of FC production on both FSC num-

bers and the ability of FSCs to fulfill their physiological role. It also demonstrates that appropriate

magnitudes of artificial stimulation of both FSC division and FSC differentiation to FCs can partially

substitute for the normal coordination of these rates by JAK-STAT signaling to bring about roughly

normal FSC behavior.

Wnt signaling primarily influences FSC position and differentiation
The role of Wnt signaling in regulating FSC behavior has already been examined in the context of a

revised model of FSC numbers, locations and properties. A Fz3-RFP reporter demonstrated that

Wnt pathway activity decreases in strength across the FSC region, in the anterior to posterior direc-

tion (Reilein et al., 2017; Wang and Page-McCaw, 2014). FSCs with a null arrow (arr) mutation to

eliminate the Wnt pathway response and axin (axn) or Adenomatous Polyposis Coli (apc) mutations

to constitutively activate the Wnt pathway in MARCM clones (Reilein et al., 2017), all illustrated a

strong effect of higher Wnt signaling activity favoring anterior FSC locations and greater conversion

to ECs; 77.6% of arr FSCs but only 15–20% of axn and apc FSCs were observed in layer 1, while 9.1

axn and apc ECs and 0.1 arr ECs were observed per germarium, compared to an average of 1.5 ECs

for controls (Reilein et al., 2017).

Here we also tested the effect of reducing rather than eliminating Wnt pathway activity by

expression of a UAS-dnTCF transgene (van de Wetering et al., 2002) in clones. We found that

63.0% of UAS-dnTCF FSCs were observed in layer 1 (compared to 48.8% for controls), a significant

change but less pronounced than for arr FSCs, which showed a layer 1 occupancy of 79.3% across

three replicates (n = 237 cells), including two additional tests not previously reported (Figure 4A).

We also tested an additional axn replicate and confirmed layer one occupancy to be greatly

decreased, to 20.6% at 12d. Occupancy of layer one was slightly higher (31.0%) for axn FSCs that

also expressed excess CycE (Figure 4A) to increase division rates (from 7.4% to 15.3% towards con-

trol 25.0% EdU frequency (Figure 4E)), consistent with the evidence presented earlier of low division

rates favoring more anterior locations.

We also used the ‘immediate FC’ method to measure FC production. We found that arr layer 1

FSC clones had a significantly elevated probability (76.9% compared to 61.6% in controls) of becom-

ing an FC, (Figure 4B). By contrast, reducing Wnt pathway activity with UAS-dnTCF did not increase

conversion of layer 1 FSCs to FCs (52.9% probability). We also observed that FSCs with increased

Wnt activity showed only a 22.4% likelihood of becoming an FC, a roughly threefold decrease from

control values (Figure 4B). We therefore extend previous conclusions to surmise that the AP location

of FSCs in a competitive environment of normal FSCs is altered by reduction, elimination or

increases of Wnt pathway activity. By measuring the conversion of layer 1 FSCs to FCs as an inde-

pendent parameter for the first time, we also found that increased Wnt pathway activity strongly

reduced FC production from posterior FSCs and that only the most severe reductions in Wnt path-

way activity enhanced FC production. These results suggest that the magnitude of Wnt pathway

activity affects AP migration over the whole FSC domain, where Wnt signaling is graded, and that

the decline of pathway activity to near zero values at the posterior margin of the FSC domain is a

significant determinant of the FSC to FC transition.
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Figure 4. Wnt signaling opposes FC production and promotes anterior FSC location and EC production. (A) Relative frequency of marked FSCs in each

layer for the indicated genotypes of MARCM lineages, with the number of total FSCs scored for each genotype and significant differences to control

values (black asterisks, p<0.05, red asterisks, p<0.001). (B) Average probability of a layer 1 FSC becoming an FC during a single budding cycle for the

Figure 4 continued on next page
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ECs derived from FSCs turn over relatively rapidly
To evaluate EC production from anterior FSCs, we calculated the average ratio of marked ECs per

marked anterior (layer 2 or 3) FSC. We calculated this ratio for all germaria that retained at least one

marked FSC, so that there was a possibility of EC production throughout the period scored. The

average number of marked anterior FSCs (aFSCs) for control clones was slightly higher at 12d (2.7)

than at 6d (2.2), as expected because more ovarioles lack any FSCs at 12d and are not included

(Figure 1G). We took the number of marked anterior FSCs per germarium at 0d to be equal to those

scored at 6d because almost all germaria have FSCs at 6d. We then estimated the average number

of anterior FSCs present during the 0-12d period as the average of the number present at 0d (and

measured at 6d) and the number measured at 12d.

In controls, we found that the EC/aFSC ratio was 0.55 (SE 0.30; SEM 0.01) for the period from 0-

6d and 0.63 (SE 0.33; SEM 0.01) for the period from 0-12d (Figure 4D; median and other statistical

measures are in Figure 4C). If ECs were produced by FSCs at a constant rate and all labeled ECs

accumulated without loss, we would expect the 0-12d ratio to be double the 0-6d ratio. The

observed percentage increase was much lower (15%) across 31 control tests, suggesting that

marked ECs must also be lost at a significant frequency. The same inference is apparent from look-

ing at the number of marked ECs per germarium at 6d (1.2) and at 12d (1.5) without any correction

for the slightly greater number of anterior FSCs in germaria that retain FSCs at 12d (but still consid-

ering the same set of samples with at least one FSC). It appears that by 12d the number of marked

ECs is at, or approaching a steady-state where the rate of production is matched by the rate of loss.

This occurs when the average number of anterior FSCs (2.7) is almost double the number of marked

ECs (1.5), suggesting that the rate of loss of marked ECs is greater than the rate of conversion from

anterior FSCs on a per cell basis. Clearly, if this rate of EC loss applied to the whole population of

over 30 ECs, far outnumbering the total of about eight anterior FSCs, there would be a severe net

loss of ECs over time. We therefore deduce that the relatively high turnover that we infer for marked

ECs must apply only to ECs newly-produced from FSCs and not to the bulk EC population present

at the time of adult eclosion. It is certainly plausible that an FSC that moves into EC territory might

indeed often return to its former FSC position or be unable to survive for long in EC territory if it

does not associate with a germline cyst to receive key survival signals (Kirilly et al., 2011).

Apoptosis is observed in normal germaria at a low frequency (Pritchett et al., 2009) with the

fraction of ECs undergoing apoptosis at any instant reported as 1.5% (Wang and Page-McCaw,

2018) or about 0.5% (19% of germaria, each with about 35 ECs) (Kirilly et al., 2011) by TUNEL

labeling. The majority of apoptosis is observed in the neighborhood of the EC/FSC boundary. We

sought to test whether the turnover of marked ECs was due to apoptosis by expressing the inhibitor

of apoptosis, DIAP1 in otherwise wild-type clones. If EC turnover were reduced we might expect to

see a greater number of ECs accumulating at all time points, including continued significant accumu-

lation beyond 6d. We observed a small increase in marked EC numbers, whether measured per

Figure 4 continued

indicated MARCM lineage genotypes with the number of informative germaria scored and significant differences to control values (black asterisks,

p<0.05, red asterisks, p<0.001). (C) Box-and-whisker plot (median, first and third quartile, minimum and maximum) of ECs produced per anterior FSC

from 0-6d and 0-12d across all MARCM controls (n = 31 experiments) with a single outlier and the number of germaria scored. (D) ECs produced per

anterior FSC from 0-6d (magenta) and 0-12d (blue) for the indicated MARCM lineage genotypes with the total number of informative germaria scored

and significant differences to control values (black asterisks, p<0.05, red asterisks, p<0.001). (E) EdU incorporation frequency into FSCs of layers 1–3 and

ECs for the indicated genotypes of MARCM lineages with number of cells scored above each column and significant differences between FSC layers

indicated (black asterisks, p<0.05, red asterisks, p<0.001). The statistical significance of the EdU index of each FSC layer as a fraction of overall EdU

index relative to controls was also calculated for all genotypes. No significant differences were found, indicating a gradient of EdU incorporation that is

not significantly different from controls. (F–G) Fz3-RFP reporter of Wnt pathway activity (red) (F) normally declines in strength from anterior to posterior

but (G) was mostly eliminated after 3d of UAS-dnTCF expression with C587-GAL4. (H) Average Fz3-RFP intensity for control (n = 23 germaria) and

C587>dnTCF (n = 22 germaria) genotypes. (I) EdU incorporation frequency into FSCs in layers 1–3 for the indicated genotypes (number of DAPI-labeled

nuclei scored is above each column). The statistical significance of the EdU index of each FSC layer as a fraction of overall EdU index relative to controls

was also calculated for C587>dnTCF. No significant differences were found, indicating a gradient of EdU incorporation that is not significantly different

from controls. All scale bars are 10 mm.

The online version of this article includes the following source data for figure 4:

Source data 1. Numerical data for graphs in Figure 4.
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germarium at 6d (1.5) or 12d (1.7), or per anterior FSC at 6d (0.67) or 12d (0.78) (Figure 4D). These

results suggest that apoptosis does contribute to the turnover of marked ECs but it does not appear

to be the major factor, with EC production over 12d far short of doubling EC production over the

first 6d. Other forms of cell death may play a role but it is perhaps most likely that an FSC that

moves into the EC region frequently returns to the FSC domain.

Net EC production is promoted by Wnt and opposed by JAK-STAT
pathway activities
We measured EC production from FSCs of various altered genotypes as described for controls,

using the number of anterior FSCs at 6d for controls in each experiment as the best estimate of the

number of anterior FSCs at 0d for all genotypes, so that the average number of anterior FSCs pres-

ent during 0-6d and 0-12d could be calculated. We found that EC production was drastically

reduced for arr mutant FSCs at 12d (0.11 ECs per anterior FSC compared to 0.63 for controls) and

less severely at 6d (0.30 vs 0.55) (Figure 4D). The relatively high yield of ECs at 6d is likely because

several ECs were produced in the first day or two before wild-type Arr protein was depleted and

cell behavior was altered. Similarly, in FSCs expressing UAS-dnTCF there was a severe loss of

marked ECs at 12d relative to controls (0.22 vs 0.63) but not at 6d (Figure 4D); here some time is

likely required to accumulate sufficient dnTCF protein to inhibit Wnt pathway activity substantially.

These data indicated that reduction, and especially loss of Wnt signaling greatly reduced the net

conversion of marked anterior FSCs to ECs. This may be due to reduced conversion of anterior FSCs

to ECs, increased turnover of ECs derived from FSCs, or both.

Loss of Wnt pathway activity is known to elicit apoptosis in ECs (Wang et al., 2015; Wang and

Page-McCaw, 2018). We found that when we expressed UAS-DIAP1 in arr mutant FSCs, EC accu-

mulation was increased relative to arr alone at both 6d (0.39 vs 0.30) and 12d (0.21 vs 0.11, p=0.06)

but remained much below control values (Figure 4D). The continued deficit in EC accumulation for

arr mutant cells expressing DIAP1 and that of cells expressing UAS-dnTCF suggests that the equilib-

rium of conversion between anterior FSCs and ECs is tilted strongly towards FSCs when Wnt path-

way activity is reduced.

When Wnt pathway activity was increased using the axn and apc mutations we found the average

ratio of ECs per anterior FSC to be 2.0 from 0-6d and 7.3 from 0-12d, revealing a greatly elevated

rate of EC accumulation (Figure 4D). Again, perdurance of wild-type Axn or Apc proteins over the

earliest period may account for the less dramatic rate of EC accumulation over the first 6d. The rapid

addition of labeled ECs over 6-12d and the observation that FSC numbers eventually decline

towards zero, leaving many labeled ECs suggest that there is little or no turnover of newly-produced

ECs. Thus, any normal reversion of FSCs moving into EC locations back to FSC locations is strongly

opposed by high levels of Wnt pathway activity. For all genotypes with altered Wnt pathway activity

the marked cells in EC locations did not incorporate EdU and therefore do exhibit one of the key

characteristics that distinguishes them as ECs rather than FSCs. We did not mark cellular processes

and did not therefore ascertain whether these cells encapsulated germline cysts.

We also investigated JAK-STAT signaling and EC production dynamics. When STAT activity was

eliminated, we found that EC production increased to 0.88 ECs per anterior FSC from 0-6d and 1.2

ECs per anterior FSC from 0-12d (Figure 3B), showing that the normal equilibrium between anterior

FSCs and ECs was shifted significantly towards ECs, potentially by both increasing EC production

and reducing EC loss.

The number of ECs initially produced from FSCs cannot be measured accurately for FSCs express-

ing UAS-Hop because increased JAK-STAT pathway activity sometimes induces the subsequent divi-

sion of cells in the EC domain. We found that adding UAS-Dap to UAS-Hop reduced ectopic

division in the EC domain from an EdU index of 12.4% to 5.9%. EC production from 0-6d was lower

for UAS-Hop UAS-Dap FSC lineages than controls, suggesting some reduction in conversion to ECs

(Figure 3B). The increased yield of marked cells in the EC region by 12d presumably results from

division of some of those cells. These results, together with the unaltered AP distribution of FSCs

with excess JAK-STAT activity and the anterior accumulation of stat mutant FSCs (Figure 3A) sug-

gest that a certain minimal level of JAK-STAT pathway activity is required to prevent unbalanced

anterior migration of FSCs and accelerated net conversion of anterior FSCs to ECs.
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Wnt signaling can reduce FSC division but does not greatly affect the
magnitude or pattern of FSC division under normal conditions
It has previously been reported that loss of Wnt signaling reduced FSC division by a small amount,

with most measured FSCs in layer 1, while increased Wnt pathway activity, measured mostly in ante-

rior FSCs, greatly decreased FSC proliferation, with results normalized in each case for FSC locations

(Reilein et al., 2017). To examine the effects of reduced signaling more comprehensively in anterior

FSCs we looked at more arr mutant samples, including those additionally expressing DIAP1, and

four independent experiments where Wnt signaling was reduced by expression of dnTCF, which

results in a less pronounced, but still significant, posterior shift of FSCs than complete inhibition of

Wnt signaling (Figure 4A). We found that EdU incorporation was slightly reduced in all layers for

FSCs lacking arr activity (26.3%, 15.3%, 4.0% for layers 1–3) or expressing dnTCF (24.9%, 15.2%,

5.4% for layers 1–3) relative to controls (33.4%, 20.0%, 8.2% for layers 1–3); the differences in layer

one were statistically significant (Figure 4E). In all experiments where Wnt signaling was reduced or

eliminated there was a clear posterior to anterior gradient of EdU labeling, as in normal FSCs with

no statistically significant difference from controls in the relative EdU index of any one layer relative

to the whole FSC population (Figure 4E).

In response to increased Wnt pathway activity, the EdU index was substantially reduced in all

layers (13.7%, 4.8%, 2.8% for layers 1–3) but a posterior to anterior gradient was still evident

(Figure 4E). To test the effect on graded proliferation further we combined loss of axn with UAS-

CycE in an attempt to restore overall FSC proliferation towards wild-type levels. Excess CycE indeed

doubled EdU labeling frequency overall (from 7.3% to 15.3%; control was 25%) and a robust poste-

rior to anterior gradient was still evident (23.8%, 18.1%, 7.3% for layers 1–3) with no statistically sig-

nificant difference from controls in the relative EdU index of any one layer relative to the whole FSC

population for axn/apc or axn UAS-CycE genotypes (Figure 4E).

Finally, to assess the contribution of graded Wnt signaling to the A/P pattern of graded prolifera-

tion, we reduced Wnt signaling globally by expressing the UAS-dnTCF transgene with the C587-

GAL4 driver (C587>dnTCF). As both normal Wnt pathway activity and C587-GAL4 expression

decline from anterior to posterior across the FSC domain, this manipulation ought in theory to flat-

ten or eliminate the normal Wnt gradient to produce a roughly even, low level of pathway activity.

Fz3-RFP reporter expression showed that Wnt signaling was considerably reduced and was close to

uniform across the three FSC layers (Figure 4F–H). Under these conditions there was very little dif-

ference in EdU incorporation in any FSC layer when compared to controls (Figure 4I). This result is

consistent with the evidence from MARCM clones that graded FSC proliferation does not rely on

graded Wnt signaling.

JAK-STAT and Wnt pathways do not directly affect one another cell
autonomously
As both the JAK-STAT and Wnt signaling pathways play important roles in the regulation of FSCs,

we asked whether regulation by each pathway is accomplished independently. We measured

whether genetic manipulation of the Wnt pathway influenced JAK-STAT pathway activity cell autono-

mously by inducing GFP-positive MARCM clones that also expressed a STAT-eRFP reporter, which

has STAT-responsive promoter sequences from the Socs36E gene (He et al., 2019). Reciprocal tests

measured effects of JAK-STAT pathway alterations on Fz3-RFP reporter activity. In these tests, we

measured the signal intensity of the reporters in marked cells relative to unmarked neighbors (Fig-

ure 5—figure supplements 1 and 2). Cells were considered neighbors if they would have been

scored in the same FSC layer, and if they were captured within the same z-section during confocal

imaging. Samples were examined 6d after clone induction so that all genotypes included marked

cells in a full range of FSC locations.

For genotypes affecting JAK-STAT signaling components, STAT-RFP intensity was significantly

altered when compared to neighbors, as expected. Reporter activity was significantly lower for stat

mutant cells (42.4%, p=0.001) and was not altered in control clones (Figure 5—figure supplement

1A,B). Cells expressing UAS-Hop had STAT-RFP expression roughly twice that of normal neighbors.

The stat genotype used is expected to prevent all stimulated JAK-STAT pathway activity. The mea-

sured residual RFP likely corresponds to a combination of basal reporter expression that is not

dependent on JAK-STAT pathway activity and any perduring RFP that was induced before normal
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STAT protein and pathway activity were fully depleted during clone expansion. Taking RFP levels in

stat mutant clones as the effective null condition, the change in STAT-RFP levels in UAS-Hop clones

corresponds to an increase of more than two-fold in normal JAK-STAT pathway activity (roughly

160%/60% = 2.7). Neither FSCs expressing UAS-dnTCF nor those with axn mutations (together with

UAS-CycE in order to increase FSC numbers) had significantly altered STAT-RFP expression suggest-

ing that the magnitude of Wnt pathway activity does not cell autonomously affect JAK-STAT path-

way signal transduction (Figure 5—figure supplement 1A,B).

For genotypes affecting Wnt signaling components, Fz3-RFP intensity was significantly altered

when compared to neighbors, as expected. Reporter activity was significantly lower for arr mutant

cells (39.4%, p=0.001) and for cells expressing UAS-dnTCF (63.1%, p=0.01) (Fig. S2). The null arr

genotype used is expected to prevent all stimulated Wnt pathway activity (Wehrli et al., 2000), so

residual RFP likely corresponds to perduring RFP and basal reporter activity. If RFP levels in arr

mutant clones are taken as the effective null condition, UAS-dnTCF expression reduced Wnt path-

way activity to below 40% of normal levels (23.4% reduction in a range of 60.3% from null to normal)

in MARCM FSC lineages and the measured elevation of pathway-induced Fz3-RFP levels in axn

clones (169.4%, p=0.02) corresponds to a roughly two-fold increase in normal Wnt pathway activity

(129.5% change compared to a normal range of 60.3%)(Figure 5—figure supplement 2A). Neither

decreased (stat and kibra UAS-CycE stat) nor increased (UAS-Hop) JAK-STAT pathway activity signif-

icantly altered Fz3-RFP expression, suggesting no direct, cell autonomous effect of JAK-STAT signal-

ing on Wnt signal transduction (Figure 5—figure supplement 2A,B).

We then asked how manipulating both pathways within the same FSC would influence FSC

behavior by measuring proliferation, position, and differentiation when both JAK-STAT and Wnt sig-

naling activity were altered in FSC clones.

FSC division rates; inhibition by Wnt is suppressed by JAK-STAT
pathway activity
Reduction or elimination of Wnt signaling alone caused a small reduction in EdU incorporation in

MARCM clones (Figure 4E). It was therefore surprising that expressing UAS-dnTCF increased EdU

incorporation in FSCs lacking STAT activity (from 2.4% to 4.5%). This effect was more striking in

STAT-deficient genotypes with higher division rates, elevating the EdU index of FSCs with stat muta-

tions together with kibra, wts, or UAS-CycE from an average of 4.9% to 16.2% (Figure 5A), close to

the value observed for otherwise normal FSCs expressing dn-TCF (19.0%). In other words, a five-fold

reduction of EdU incorporation (5% vs 25%) due to the stat kibra/wts/UAS-CycE genotype was

largely suppressed when Wnt pathway was reduced by UAS-dnTCF.

By contrast, the increased FSC division induced by increased JAK-STAT pathway activity (43.9%

EdU index) was not significantly altered by addition of dnTCF (46.3%) and was only slightly reduced

by loss of arr function (37.7%) (Figure 5B; Figure 5—figure supplement 3A; Figure 6). Ectopic EdU

labeling in the EC region was also largely unaltered by reducing Wnt pathway activity (increasing to

16.7% from 12.4%) (Figure 5B). EdU labeling of FSCs with increased JAK-STAT pathway activity was

also only slightly reduced by genetically increasing Wnt pathway activity (from an EdU index of 43.9

to 38.3% for axn UAS-Hop) to a level far above that observed for axn/apc mutant FSCs (7.3%)

(Figure 5B; Figure 5—figure supplement 3B,C). Even at a lower temperature of 22C, where GAL4

and consequently UAS-Hop activities are lower, the EdU index for axn UAS-Hop FSCs was higher

than control values (28.2% vs. 18.9%) and not much lower than for UAS-Hop alone (35.1%) (Fig-

ure 5—figure supplement 3D). At both temperatures the EdU index of marked cells in the EC

region was higher for axn UAS-Hop than for UAS-Hop lineages (Figure 5B; Figure 5—figure supple-

ment 3D).

These results indicate that normal Wnt pathway activity inhibits FSC division under artificial condi-

tions of removing STAT activity, even in locations (layer 1) where Wnt pathway activity is quite low

(Figure 5A). Under otherwise normal conditions, genetically increasing Wnt pathway activity to a

level that approximates or slightly exceeds the highest physiological levels observed in the germa-

rium, strongly inhibited FSC division but this inhibition was robustly overridden by genetically

increasing JAK-STAT pathway activity (Figure 5B). Thus, inhibitory actions of the Wnt pathway can

be strong and dose-dependent but are strongly suppressed by JAK-STAT pathway activity under

conditions when both pathways are unaltered or both are artificially elevated.
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In all samples where FSCs lacked STAT activity and expressed dnTCF there was a robust posterior

to anterior gradient of EdU labeling (Figure 5A). This included genotypes with overall division rates

close to controls (kibra UAS-CycE stat plus UAS-dnTCF; 21.6% vs 25% control EdU index). Thus, pro-

vided overall FSC division is bolstered by excess CycE and Yki activation, there remains a roughly

normal FSC proliferation gradient in the complete absence of one major graded signaling

pathway (JAK-STAT) and reduction of another (Wnt).

Potent acceleration of FC production from increased JAK-STAT
combined with absent Wnt pathway activity
Increased JAK-STAT activity favored conversion of layer 1 FSCs to FCs (78.1% probability) and this

was further increased by loss of arr activity (90.3% for arr UAS-Hop FSCs) to a level higher than

Figure 5. Wnt pathway activity reduces FSC division only in the absence of JAK-STAT pathway activity and JAK-STAT overrides inhibition by the Wnt

pathway when both are in excess. (A, B) EdU incorporation frequency into FSCs of layers 1–3 and ECs for the indicated genotypes of MARCM lineages

with number of cells scored above each column. (A) Significant differences between genotypes with and without UAS-dnTCF (black asterisks, p<0.05,

red asterisks, p<0.001) are indicated for individual FSC layers. The statistical significance of the EdU index of each FSC layer as a fraction of overall EdU

index relative to controls was also calculated for all genotypes. No significant differences were found, indicating a gradient of EdU incorporation that is

not significantly different from controls. (B) Significant differences from control values are indicated for each FSC layer (black asterisks, p<0.05, red

asterisks, p<0.001). See also Figure 5—figure supplements 1–3.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Numerical data for graphs in Figure 5.

Figure supplement 1. STAT-RFP intensity is not affected by Wnt pathway activity.

Figure supplement 1—source data 1. Numerical data for graphs in Figure 5—figure supplement 1.

Figure supplement 2. Fz3-RFP intensity is not affected by JAK-STAT pathway activity.

Figure supplement 2—source data 1. Numerical data for graphs in Figure 5—figure supplement 2.

Figure supplement 3. Increased JAK-STAT signaling promotes FSC division even when Wnt pathway activity is altered.

Figure supplement 3—source data 1. Numerical data for graphs in Figure 5—figure supplement 3.
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Figure 6. Promotion of FC production by the JAK-STAT pathway overrides the opposing influence of increased Wnt pathway activity and synergizes

with loss of Wnt pathway activity to cause dramatic loss of highly proliferative FSCs. (A) Average probability of a layer 1 FSC becoming an FC during a

single budding cycle for the indicated MARCM lineage genotypes with the number of informative germaria scored and significant differences resulting

from the presence (purple) of UAS-Hop (black asterisks, p<0.05, red asterisks, p<0.001). (B, C) axn mutant MARCM lineages (green) at 6d, with the Fas3

Figure 6 continued on next page
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induced by Wnt signaling deficiency alone (76.9% for arr FSCs) (Figure 6A). Thus, the combination

of eliminating the normally low levels of Wnt signaling and increasing the already high levels of JAK-

STAT pathway in layer 1 FSCs potently accelerated and almost mandated conversion of layer 1 FSCs

to FCs. Moreover, despite accelerated loss from layer one to become FCs, 87.1% of arr UAS-Hop

FSCs were found in this layer, representing an enhancement of the bias seen for arr FSCs (79.3%)

(Figure 6D), and further accelerating overall FC production. Expression of dnTCF did not increase

the probability of layer 1 FSC to FC conversion in the presence of either increased JAK-STAT path-

way activity (Figure 6A) or in FSCs lacking STAT activity (Figure 6—figure supplement 1A). Artifi-

cially increasing Wnt pathway activity in FSCs strongly inhibited conversion to FCs (21.5%

probability), but this inhibition was entirely negated by increasing JAK-STAT pathway activity in axn

UAS-Hop FSCs, whether tested at 25˚C (Figure 6A) or 22˚C (Figure 6—figure supplement 2). Thus,

reducing Wnt pathway activity to zero synergized with elevated JAK-STAT pathway activity to

potently drive FSCs to become FCs, while smaller decreases achieved with dnTCF were without

major consequence. High JAK-STAT activity also overcame the normally strong inhibition of FC pro-

duction by elevated Wnt pathway activity.

EC production was reduced for arr FSCs, increased dramatically for axn FSCs and increased less

prominently for stat FSCs. Reduction of Wnt signaling with dnTCF reduced EC production alone by

12d (Figure 4D) but did not diminish the increased EC production of FSCs lacking STAT activity (Fig-

ure 6—figure supplement 1E). The effects of UAS-Hop on EC production per anterior FSC cannot

be quantified accurately because some of these marked cells in the EC region divide. Nevertheless,

measurement of the total number of marked ECs provides some guidance. The average number of

marked cells in the EC region per germarium at 12d, which was 1.3 for controls and 3.3 for UAS-

Hop lineages, was greatly reduced for arr UAS-Hop (0.07), reduced to a lesser degree for UAS-

dnTCF UAS-Hop, and greatly increased for axn UAS-Hop (17.2) FSC lineages (Figure 6E,G–I), show-

ing that EC production is still highly responsive to changes in Wnt pathway activity in both directions

even when JAK-STAT pathway activity is elevated. Thus, epistasis tests reveal a primary role of Wnt

signaling for differentiation decisions in anterior regions and a primary role for JAK-STAT signaling

for differentiation decisions in posterior regions.

Figure 6 continued

(red) anterior border (gray arrows indicated) generally include, as here, anterior FSCs (layer 3, white arrows), and ECs (magenta arrowheads) but (C)

addition of UAS-Hop resulted in more marked FSCs, including layer 1 (blue arrows) and layer 2 (orange arrows) FSCs, and marked FCs (yellow

arrowheads). (D) Proportion of FSCs in layer one for the indicated MARCM lineage genotypes, with the number of FSCs scored and significant

differences resulting from the presence (blue) of UAS-Hop (red asterisks, p<0.001). (E) Number of ECs per germarium for the indicated MARCM lineage

genotypes at 12d, with the number of germaria scored and significant differences resulting from the presence (red) of UAS-Hop (black asterisks, p<0.05,

red asterisks, p<0.001). (F–I) MARCM lineages (green) with the Fas3 (red) anterior border indicated (gray arrows), commonly showed, as here, (F) only

layer 1 FSCs (blue arrows) and FCs (immediate FCs, yellow arrowheads) for arr UAS-Hop at 6d and (G) loss of FSCs, leaving only labeled FCs (yellow

arrowheads) by 12d and (H, I) a large increase of labeled cells in EC locations (magenta arrowheads) when Wnt pathway activity is increased (axn) on

top of increased JAK-STAT pathway (UAS-Hop), supplementing the many labeled FSCs in layers 1 (blue arrows), 2 (orange arrows) and 3 (white arrows)

and FCs (yellow arrowheads). (J) Number of FSCs per germarium (red) using y-axis scale on the left, percentage of FSCs incorporating EdU

(aggregating all layers, white), percentage of ovarioles with a marked FSC (blue) and percentage of ovarioles with a marked FSC and marked FCs

(yellow) (percentage y-axis scale in blue on the right) for the indicated genotypes, with the number of germaria scored at 12d (EdU was scored at 6d)

and significant differences for the number of FSCs (red asterisks, p<0.001) compared between genotypes with and without UAS-Hop. All scale bars are

10 mm. See also Figure 6—figure supplements 1–2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Numerical data for graphs in Figure 6.

Figure supplement 1. Decreasing Wnt signaling increases FSC division and posterior location but does not strongly alter loss of FC production or

increased FC production in the absence of JAK-STAT signaling.

Figure supplement 1—source data 1. Numerical data for graphs in Figure 6—figure supplement 1.

Figure supplement 2. Excess JAK-STAT pathway activity promotes conversion of layer 1 FSCs to FCs even when Wnt pathway activity is increased.

Figure supplement 2—source data 1. Numerical data for graphs in Figure 6—figure supplement 2.
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Compound pathway perturbations reveal potent effects of both FSC
division rate and flux toward FCs on FSC competition
The relatively high number and persistence of FSCs lacking STAT activity despite low division rates

has been noted earlier and attributed to diminished conversion to FCs. The addition of dnTCF

increased EdU labeling without increasing conversion of layer 1 FSCs to FCs and might therefore be

expected to increase FSC persistence. However, for stat alone or together with kibra, wts or UAS-

CycE the average number of marked FSCs at 12d was not greatly altered by addition of dnTCF (0.48

vs 0.33 for stat alone, 2.0 vs 2.1 for others) (Figure 6—figure supplement 1F). The location of FSCs

did, however, shift towards layer 1 (23.5% vs 3.5% for stat alone, 36.9% vs 29.7% for others) (Fig-

ure 6—figure supplement 1B–D) and this would be expected to increase FC production even for a

constant rate of conversion of layer 1 FSCs to FCs. Thus, increased division of stat mutant FSCs in

response to dnTCF plausibly did not increase FSC numbers because increased division was offset by

a modest increase in FC production. FSCs with kibra stat and UAS-CycE were already present at sat-

urating normal numbers (15.9) by 12d and that number was not significantly altered by the presence

of UAS-dnTCF (16.9) (Figure 6—figure supplement 1F).

Elevated JAK-STAT activity increased the average FSC number to 10.4 per germarium, largely by

increasing division rates (Figure 6J). EdU incorporation was only slightly reduced for arr UAS-Hop

FSCs and unchanged for UAS-dnTCF UAS-Hop FSCs. However, complete Wnt pathway inhibition

greatly increased FSC concentration in layer 1 (Figure 6D) and enhanced conversion from layer one

to FCs (Figure 6A,F), with the net effect of drastically reducing the 12d average FSC population to

0.3 per germarium, with only 17.8% of ovarioles retaining any marked FSCs (Figure 6G,J). Wnt path-

way reduction with dnTCF only modestly increased posterior accumulation of FSCs without acceler-

ating FC production from posterior FSCs (Figure 6A,D) and resulted in 3.2 FSCs per germarium

(Figure 6J). Thus, even a greatly elevated FSC division rate cannot maintain a sufficient supply of

marked FSCs when they are drained by posterior flux and conversion to FCs at the high rates pro-

moted by a combination of high JAK-STAT pathway activity and elimination of Wnt pathway activity.

With elevated Wnt signaling in UAS-Hop mutant lineages, FSC division rates remained abnormally

high (UAS-Hop was largely epistatic to axn) (Figure 5B), FC production from layer 1 FSCs was

roughly normal (Figure 6A) but FSCs were predominantly in anterior locations (Figure 6D), thereby

reducing the overall rate of FC production relative to UAS-Hop FSC lineages. Accordingly, labeled

FSCs accumulated to an even greater extent than for UAS-Hop alone and indeed exceeded the nor-

mal capacity of the germarium at 28.1 axn UAS-Hop FSCs per germarium (Figure 6H–J). Thus,

changes in Wnt pathway activity profoundly altered the competitive success of FSCs with elevated

JAK-STAT pathway activity by either promoting (loss of Wnt) or reducing (elevated Wnt) FC produc-

tion, without significantly altering FSC division rates in either case.

Discussion
Our investigations have generated a detailed picture of how a variety of fundamental stem cell

behaviors, including precise location, division, differentiation, survival and amplification, respond to

positional cues relayed by the activity levels of two major signaling pathways that are graded with

complementary polarities across the stem cell domain. The results reveal JAK-STAT pathway activity

as the primary dose-dependent agent dictating the pattern of FSC proliferation and as a major influ-

ence promoting conversion of FSCs to FCs. Wnt pathway magnitude relative to neighboring FSCs

was previously shown to be a major determinant of the AP position of an FSC and its conversion to

an EC (Reilein et al., 2017). Here we found that elevated Wnt pathway activity also inhibits FC pro-

duction while elimination of Wnt pathway activity promotes conversion of posterior FSCs to FCs.

These and other results suggest an outline for how external signals specify a functional stem cell

domain and some elements of the mechanisms for coordinating division and differentiation in a fluid

collection of instantaneously heterogeneous stem cells maintained by population asymmetry.

The original perception of just two rigidly held FSCs per germarium, repeatedly undergoing

asymmetric divisions to produce FCs (Margolis and Spradling, 1995) was replaced by a very differ-

ent picture of 14–16 mobile FSCs of varied lifetimes, division rates and two alternative differentiation

products (FCs and ECs) on the basis of detailed examination of FSC lineages over a variety of time

periods (Hayashi et al., 2020; Reilein et al., 2017). The original model provided no basis for

explaining why FSC maintenance was dependent on FSC division rate, why both increased and
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decreased Wnt signaling led to stem cell loss, or why FSC maintenance relied on input from almost

every major signaling pathway tested. The revised model, in which FSC division and differentiation

are independent, explains why the division rate of one stem cell relative to others is a key determi-

nant of FSC competition (Reilein et al., 2018). Likewise, we now understand that FSC loss is driven

by excessive conversion of FSCs to ECs in response to elevated Wnt pathway activity (Reilein et al.,

2017) and by excessive conversion of FSCs to FCs in response to loss of Wnt pathway activity (this

study). Now that we understand that FSC behavior has many independent facets that are potentially

subject to regulation, including precise AP location, rate of division and differentiation to ECs or

FCs, we are also beginning to understand the initially surprising finding that normal FSC behavior

depends on the activities of multiple signaling pathways (Castanieto et al., 2014; Johnston et al.,

2016; Kirilly et al., 2005; O’Reilly et al., 2008; Reilein et al., 2017; Song and Xie, 2003;

Vied et al., 2012; Wang et al., 2012; Zhang and Kalderon, 2001). Importantly, in this study, we

found that the measured overall maintenance and amplification of an FSC is consistent with the sum

of the individual behavioral responses we measured in response to a large variety of changes in two

of the major signaling pathway activities, in isolation and in various combinations, affirming the valid-

ity of our overall conception of FSC behavior.

Our findings provide insights of unprecedented detail of how a stem cell community maintained

by population asymmetry can be regulated by spatially-restricted signals and can therefore inform

future studies of stem cells with a similar organization, including mammalian intestinal stem cells.

Some of the genetic conditions we examined also provide clear precedents for how different sets of

mutations might cause diseases related to either cancers initiated in stem cells or stem cell

dysfunction.

FSC proliferation
The near-parallel gradients of FSC division frequency reported by EdU incorporation and JAK-STAT

pathway activity, declining from posterior to anterior across the FSC domain suggested a potential

causal link (Figure 7). Indeed, when the JAK-STAT pathway was globally manipulated to be uniform

across the EC and FSC domains, at a level marginally higher than seen normally in posterior FSCs, all

FSCs were seen to incorporate EdU at the same high frequency and even some cells in EC locations

entered the cell cycle. Thus, the pattern of JAK-STAT pathway activity appears to be a key determi-

nant of the pattern of FSC divisions (Figure 7). Moreover, the anterior border of dividing somatic

cells, a key characteristic of active stem cells, appears to be set by JAK-STAT pathway activity drop-

ping below a critical threshold.

In our studies EdU was incubated with freshly dissected ovarioles for 1 hr, so the EdU index

reports the fraction of cells in S phase at the time of dissection or shortly afterwards. A higher EdU

index reports a higher proportion of cells in S phase, which commonly correlates with a higher rate

of cycling of the cell population assayed, but it is only a quantitative measure of the rate of cell divi-

sion if the length of S phase is unchanged. It is quite possible that the length of S phase may differ

between FSCs in different AP locations or under different genetic conditions, so the EdU labeling

indices we report provide an indication, rather than a definitive measure of FSC division rates. Thus,

the uniform EdU incorporation observed when JAK-STAT signaling was made uniform may not

report the true status of FSC division rates.

Additional influences on the FSC division pattern were clearly revealed in the absence of JAK-

STAT pathway activity by a robust AP gradient of EdU incorporation observed in five different geno-

type combinations covering a range of overall FSC division rates. We cannot yet tell whether the sig-

nals responsible for that polarized behavior normally augment JAK-STAT pathway action or serve

only as a latent reserve system. Graded Hh signaling strongly promotes FSC division but it declines

from anterior to posterior and cannot therefore underlie the converse gradient of FSC division

(Hartman et al., 2013; Hartman et al., 2010; Huang and Kalderon, 2014; Vied et al., 2012). Wnt

pathway activity clearly intersects with the mechanisms that regulate FSC cell cycles but it does not

appear to have a major influence on the AP pattern of FSC divisions. Under conditions of normal

JAK-STAT pathway activity, increased Wnt signaling strongly inhibits FSC division but global reduc-

tion of Wnt pathway activity that drastically diminishes graded signaling, permitted a normal pattern

of FSC EdU incorporation at roughly normal frequencies. Similarly, reduced Wnt pathway activity

strongly increased FSC division when STAT was inactivated but those FSCs with diminished Wnt sig-

naling still showed a normal AP gradient of EdU incorporation. A potential physiological focus of
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Figure 7. Summary of the cell autonomous influences of JAK-STAT and Wnt pathway magnitudes on FSC

behavior. Diagrammatic summary of key results supporting inferences of how graded JAK-STAT (green shading)

and Wnt (red shading) pathways regulate the division rates of ECs and FSCs in layers 1–3 (left) and the location of

FSCs among layers 1–3, the conversion of anterior FSCs to ECs and posterior FSCs to FCs (right). The central

column shows the average number of marked FSCs per germarium at 12d in MARCM tests. Genotypes at the

extreme left are paired with vertical arrows indicating the direction (up/down) and magnitude (thickness) of JAK-

STAT (green) and Wnt (red) pathway alterations. For the C587>Hop experiment only division rates were measured

as the fraction of all FSCs in a given layer, or all ECs, incorporating EdU. Other tabulated values report the

properties of marked cells in MARCM clones. Asterisk for axn UAS-Hop indicates results are for the test at 22C.

Measurements of division rate in the EC region or any layer 1 FSC behavior (division rate, proportion of all FSCs or

conversion to FCs) are highlighted by colored text if there was a notable increase (blue) or decrease (orange).

JAK-STAT signaling promotes FSC division in proportion to graded pathway activity (green vertical arrows, top),

while Wnt pathway activity only inhibits division (red verticals) under artificial conditions of increased Wnt signaling

Figure 7 continued on next page
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Wnt pathway influence is at the EC/FSC border where Wnt pathway activity is high and JAK-STAT

pathway low. While we did not observe any ectopic cell division in the EC region in response to Wnt

pathway reduction or elimination, those observations were limited by the low frequency of Wnt

pathway deficient cells in EC locations and the possibility that such cells may be prone to apoptosis

or other stresses. Hence, it remains possible that high Wnt pathway activity may contribute to defin-

ing the anterior border of dividing somatic cells.

FSC location and differentiation
Through concerted actions on two separable parameters of behavior (FSC AP location and conver-

sion of posterior FSCs to FCs), FC production is promoted by JAK-STAT pathway activity and

reduced by Wnt pathway activity, in keeping with the relative levels and gradients of these pathways

in the posterior half of the FSC domain (Figure 7). Although the mechanisms for FSC to FC conver-

sion are currently unknown, it involves association with germline cysts and the beginning of a transi-

tion to an epithelial phenotype, neither of which are apparent in the AP movements of FSCs

between layers. The concerted actions of Wnt and JAK-STAT pathways on both FC production and

FSC AP location are not therefore likely different manifestations of exactly the same molecular

responses to signaling. The responses to loss of Wnt signaling and elevated JAK-STAT pathway

activity on these behaviors were found to be additive, with that specific combination causing an

extremely high rate of FC production, severely depleting the marked FSC pool. In effect, that result

shows that the signaling environment posterior to layer 1 FSCs cannot support maintenance of an

FSC.

EC production from anterior FSCs was strongly favored by increasing Wnt pathway activity, as

noted previously (Reilein et al., 2017), and was increased by loss of JAK-STAT signaling. We also

found evidence of significant turnover of wild-type ECs produced from FSCs during adulthood and

the limited effects of blocking apoptosis suggest that a major component of turnover may be a

return of those cells to the FSC domain. Our measurements did not separate EC production from

EC turnover but it seems likely that the changes we observed in EC accumulation in response to

altered Wnt and JAK-STAT signaling may be due to regulation of both processes.

Co-ordination of FSC responses to external signals
By examining twin-spot products of recombination in an FSC (with complementary colors) where

one daughter lineage consisted of just a single FC patch, it was possible to measure the time

between division of an FSC and acquisition of FC status, revealing that an FSC can become an FC at

any time after its last division (Reilein et al., 2018). Thus, for an individual FSC, division and differen-

tiation to an FC are separate processes. That separation of fundamental stem cell activities allows

the possibility of independent regulation of each process at the single-cell level. There may, none-

theless, be some systematic connections among individual, separable FSC behaviors that coordinate

behavior at the single-cell level.

Our results to date suggest that most FSC behaviors are largely independent. One exception was

a potentially systematic connection between division rate and AP location. We found that cycE

mutant FSCs, which may have reduced division as the only direct consequence of the mutation, had

a small anterior bias and that the anterior bias of stat mutant FSCs was significantly reduced when

division rate was increased by elevating CycE expression or Yki activity. Changes in AP location

Figure 7 continued

or elimination of JAK-STAT pathway activity. FC production from posterior FSCs is promoted by JAK-STAT

(horizontal green arrow) and by elimination of Wnt pathway activity (reverse horizontal red arrow). Consequently,

stat mutant FSCs were maintained better than expected from their greatly reduced division rates but FSCs with

high JAK-STAT activity and no Wnt pathway activity were rapidly drained despite high division rates. Increased

Wnt pathway activity always favored more anterior FSC locations and EC production (12d EC/aFSC values are

shown) from anterior FSCs (horizontal red arrows), and generally had a stronger influence than the opposing

influence of JAK-STAT in anterior regions (thinner green reverse horizontal arrows). By contrast, increased JAK-

STAT activity overcame the influence of increased Wnt pathway activity on conversion of FSCs to FCs at the

posterior of the FSC domain. Values for EdU in parentheses for arr UAS-Hop indicate unreliable values because

only a very low number of FSCs were present in those locations (n < 10).
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might plausibly be caused by poorer competition of slow-dividing FSCs in the posterior layer where

normal FSCs divide and become FCs at a high rate.

In contrast to the noted effect of division rate on AP location, the greatly reduced FSC to FC con-

version of stat mutants was not altered by increasing division rate through additional genetic manip-

ulations, and the increased conversion of FSCs to FCs due to elevated JAK-STAT pathway activity

was not altered by reducing FSC division rates (with a Cdk2 inhibitor). Thus, the mechanisms that

regulate FSC division and FSC differentiation do not appear to be robustly coupled within single

cells. However, the balance between these two processes might in theory still be achieved in single

stem cells if a key regulatory signal affected both division and differentiation in appropriate

proportions.

The JAK-STAT pathway was found to promote both FSC division and conversion to FCs, while

reducing net conversion to ECs. About 5–6 FSCs become FCs per 12 hr budding cycle, while only

one fourth as many FSCs become ECs (Reilein et al., 2018). Conversion to FCs is therefore the main

drain on the FSC population that mandates compensatory FSC division. Because JAK-STAT signaling

stimulates both FSC division and conversion to FCs in a dose-dependent manner, there will be a ten-

dency to maintain each FSC, without loss or amplification, even when there are stochastic or sys-

temic changes in the strength of this pathway. Also, by instructing posterior FSCs to divide faster

than anterior FSCs the generation and loss of FSCs is roughly balanced for each layer, allowing for a

roughly equal dynamic exchange of FSCs between layers, rather than, for example, a net anterior to

posterior flow that would make anterior FSCs systematically longer-lived. The role of JAK-STAT sig-

naling coordinating FSC division and differentiation was evident when pathway activity was elimi-

nated and only the division rate of stat mutant FSCs was elevated by genetic alteration of other

agents (in kibra UAS-CycE stat FSCs). The consequence was a large accumulation of hyper-competi-

tive marked FSCs that supported very little FC production (Figure 7). Graded Wnt pathway activity

appears to be important for supplementing the cell autonomous coordinating activity of JAK-STAT

signaling. When JAK-STAT pathway is elevated, increased FSC division is partially offset by increased

FC production and marked FSCs amplify over time. FSC amplification was greatly accelerated when

Wnt pathway activity was genetically increased (in axn UAS-Hop FSCs) because FSC division

remained rapid but FC production was limited through FSCs adopting more anterior locations (Fig-

ure 7). By contrast, when Wnt pathway activity was eliminated (in arr UAS-Hop FSCs) the marked

FSC population was drained rapidly because conversion to FCs was enhanced without markedly

altering FSC division rates (Figure 7).

Although dual JAK-STAT pathway responses, supported by Wnt pathway input to FSC AP loca-

tion and conversion to FCs, contribute cell autonomously to balancing FSC division and differentia-

tion, as described above, that balance is largely exercised at the community level when stem cells

are maintained by population asymmetry. Several parameters must be balanced at the community

level. The average FSC division rate must be appropriate to support production of a specific number

of FCs and ECs every 12 hr but this also depends on the total number of FSCs. This, in turn, appears

to be defined by a specific domain or space where FSCs can reside.

A key general question is how a stem cell domain is spatially-defined. The FSC paradigm provides

an example where this can be understood in terms of the distribution and influences of ligands for

two major extracellular signaling pathways. Both graded JAK-STAT and Wnt pathways contribute to

both borders. The anterior border is between non-dividing ECs and FSCs. Increasing Wnt pathway

activity and decreased JAK-STAT pathway activity both promote FSC to EC conversion, while declin-

ing JAK-STAT signaling also limits the proliferative zone. The posterior border is between FSCs and

FCs. Increased JAK-STAT and reduction of Wnt pathway activity (to zero) promote the FSC to FC

transition. Thus, the graded nature of both pathways plays a crucial role in determining the A/P

extent of the FSC domain and, consequently, the number of FSCs supported.

The influences of JAK-STAT and Wnt pathways were examined here as cell autonomous

responses in mosaic tissues (where most cells have normal genotypes). Further experiments manipu-

lating pathway activities globally (in all cells) may well result in a number of compensatory changes in

behavior and signaling properties, and will have to be evaluated in detail to understand to what

extent the size and location of the FSC domain depends on the normal magnitude and gradations of

these and other pathways.

The organization of mammalian intestinal stem cells is quite similar to FSCs and Wnt signaling

also plays a prominent role. There, Wnt signals derive from mesenchymal cells surrounding the crypt

Melamed and Kalderon. eLife 2020;9:e61204. DOI: https://doi.org/10.7554/eLife.61204 27 of 38

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.61204


base and additionally from Paneth cells in the small intestine, to form a gradient (Gehart and Clev-

ers, 2019). In collaboration with R-Spondin signals, the magnitude of Wnt signaling appears to be

translated into a variety of responses, including promotion of stem cell division and the expression

of a key transcription factor, Ascl2, and Ephrin signaling components, which contribute to regulating

cell migration and the transition to transit-amplifying cells (Batlle et al., 2002; Gehart and Clevers,

2019; Schuijers et al., 2015; Yan et al., 2017). Whether stem cell division is patterned and whether

additional spatially-restricted signals guide the development of different stem cell products remain

to be explored. In the FSC paradigm the dependence of stem cells on intermediate, rather than the

highest levels of Wnt signaling as in the mammalian intestine, and the use of a second major graded

patterning influence may be essential adaptations to differentiation occurring at two faces of the

stem cell domain.

Verification of the organization of FSCs
FSCs (originally termed SSCs) were first identified by lineage studies, which noted that long-lasting

lineages generally extended from roughly the mid-point of the germarium (Margolis and Spradling,

1995). The conclusions from the same study that there were just two FSCs per germarium, each with

a half-life around two weeks were subsequently cited many times. However, this dogma was dramat-

ically revised two decades later through an extensive series of lineage studies comprising three dif-

ferent approaches to assess the number of FSCs as 14–16, the first definitive approach to identifying

precise FSC locations and a demonstration that FSCs produced ECs as well as FSCs. A key aspect of

this revision was the realization that earlier studies had implicitly assumed that FSCs are long-lived

and maintained by single-cell asymmetry, leading to the exclusion of the majority of FSC lineages

from all analyses, necessarily leading to substantial under-estimation of FSC numbers, over-estima-

tion of average FSC longevity and obscuring the evidence that FSCs are in fact maintained by popu-

lation asymmetry. Our current picture of FSCs is supported by extensive direct evidence; recent

claims supporting the original conception of FSCs (Fadiga and Nystul, 2019) were addressed, and

in our opinion, refuted comprehensively (Kalderon, 2020). Nevertheless, additional evidence can

always contradict, confirm or refine an existing model.

Here we have presented extensive quantitative sets of data concerning FSC division, location and

differentiation. A demanding test of the FSC model is whether the aggregation of these measured

parameters fits well with the measured retention, loss or expansion of FSCs of a large range of

mutant genotypes, which instruct a wide range of altered behaviors. We found that this was the

case, as discussed above. One or two outcomes are especially noteworthy with regard to the num-

ber and location of FSCs. When FSCs lacked STAT activity but were stimulated by additional genetic

changes to divide at rates approaching normal FSCs, those kibra UAS-CycE stat FSCs were present

at an average of 15.9 FSCs per germarium, including multiple cells in each FSC layer (Figure 3A,E,

H). The layer 1 FSCs were clearly stem cells rather than FCs because this genotype rarely produced

FCs captured in any location along the ovariole (Figure 3E). Cells in layers 2 and 3 were also clearly

stem cells rather than ECs because a large fraction incorporated EdU at a given time, while ECs are

naturally quiescent. The phenotype of arr mutant FSC lineages, where almost all labeled cells are in

layer one or further posterior (Figure 4A) provides further evidence that layer 1 cells are stem cells

because these arr mutant lineages survive almost as well as control lineages (Figure 6J). These

observations provide further confirmation of our current FSC model and are clearly not consistent

with either the original models postulating just two FSCs in a single layer (Fadiga and Nystul, 2019;

Margolis and Spradling, 1995; Nystul and Spradling, 2007; Nystul and Spradling, 2010) or recent

postulates of an intermediate model where FSCs occupy the full circumference of the germarium

but only in layer 2 (Singh et al., 2018).

Some of the mutant FSC phenotypes we observed also illustrate disease-relevant situations that

could arise in other stem cells with a similar organization, such as mammalian intestinal stem cells.

The relevance of mutations that allow amplification of specific stem cell genotypes to cancer origins

has been described previously, both within the concept of field cancerization and specifically with

regard to the effect of mutations conferring increased rates of stem cell division when differentiation

is not coupled to stem cell division (Frede et al., 2014; Reilein et al., 2018; Ritsma et al., 2014;

Rompolas et al., 2016; Slaughter et al., 1953; Vermeulen and Snippert, 2014). In those situations,

exemplified by ptc mutations activating the Hh pathway in FSCs, a mutant stem cell expands within

the normal stem cell domain to provide a stable, expanded source of hyperproliferative stem cell
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derivatives (Huang and Kalderon, 2014; Reilein et al., 2018; Vied and Kalderon, 2009). The prop-

erties of FSCs with increased JAK-STAT signaling provide an illustration of a more potent variant of

the same principle because the genetic alteration also allows expansion of the proliferative domain

into more anterior EC territory. Interestingly, for FSCs there is a genetic remedy; loss of Wnt signal-

ing encouraged differentiation of these hyperproliferative stem cells and effectively extinguished the

mutant lineages. Finally, the kibra UAS-CycE stat genotype provides a strikingly different paradigm.

Here, the mutant stem cells also amplify but these stem cells do so because they rarely differentiate;

they are not hyper-proliferative. If these differentiation-defective stem cells eventually out-compete

all normal stem cells the ability of the stem cell community to support continued production of deriv-

ative cells will be severely compromised.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(D. melanogaster)

cycE Flybase ID:
FBgn0010382

CG3938

Gene
(D. melanogaster)

cutlet Flybase ID:
FBgn0015376

CG33122

Gene
(D. melanogaster)

hop Flybase ID:
FBgn0004864

CG1594

Gene
(D. melanogaster)

dap Flybase ID:
FBgn0010316

CG1772

Gene
(D. melanogaster)

pan (TCF) Flybase ID:
FBgn0085432

CG34403

Gene
(D. melanogaster)

sha Flybase ID:
FBgn0003382

CG13209

Gene
(D. melanogaster)

arr Flybase ID:
FBgn0000119

CG5912

Gene
(D. melanogaster)

stat Flybase ID:
FBgn0016917

CG4257

Gene
(D. melanogaster)

axn Flybase ID:
FBgn0026957

CG7926

Gene
(D. melanogaster)

apc1 Flybase ID:
FBgn0015589

CG1451

Gene
(D. melanogaster)

apc2 Flybase ID:
FBgn0026598

CG6193

Gene
(D. melanogaster)

kibra Flybase ID:
FBgn0262127

CG33967

Gene
(D. melanogaster)

wts Flybase ID:
FBgn0011739

CG12072

Genetic Reagent
(D. melanogaster)

hs-flp PMID:7867064 FBti0002738 hsp70-driven Flp
recombinase on X

Genetic Reagent
(D. melanogaster)

NM FRT40A BDSC BL-1835 Control for
MARCM clones

Genetic Reagent
(D. melanogaster)

FRT42D ubi-GFP BDSC BL-5626 Control for
MARCM clones

Genetic Reagent
(D. melanogaster)

FRT82B NM PMID:23079600 Control for
MARCM clones

Genetic Reagent
(D. melanogaster)

C587-GAL4 BDSC BL-67747 FBti0037960 GAL4 expressed
in ECs and FSCs

Genetic Reagent
(D. melanogaster)

UAS-dnTCF BDSC BL-4784
BDSC BL-4785

FBtp0012500 Dominant-negative
TCF on 2nd

(4784) and 3rd

(4785) chromosome

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic Reagent
(D. melanogaster)

UAS-dap PMID:10790398 FBtp0001369 Inhibitor of
CycE/Cdk2

Genetic Reagent
(D. melanogaster)

UAS-Hop3W PMID:23079600 Activated form of
Hopscotch (JAK)

Genetic Reagent
(D. melanogaster)

UAS-DIAP1 PMID:22473013 Inhibitor of
apoptosis (3rd

chromosome)

Genetic Reagent
(D. melanogaster)

UAS-CycE PMID:19966222 GAL4-responsive CycE

Genetic Reagent
(D. melanogaster)

FRT42D tub-GAL80 PMID:28414313 For 2R MARCM clones

Genetic Reagent
(D. melanogaster)

FRT82B tub-GAL80 BDSC BL-5135 For 3R MARCM clones

Genetic Reagent
(D. melanogaster)

Fz3-RFP PMID:28414313 Wnt pathway activity
reporter; used on 2nd

and 3rd chromosome

Genetic Reagent
(D. melanogaster)

STAT-GFP PMID:23079600 JAK-STAT
pathway reporter

Genetic Reagent
(D. melanogaster)

STAT-RFP PMID:31140975 JAK-STAT
pathway reporter

Genetic Reagent
(D. melanogaster)

cycEWX PMID:19966222 FBal0241968 hypomorphic allele

Genetic Reagent
(D. melanogaster)

cutlet4.5.43 PMID:22473013

Genetic Reagent
(D. melanogaster)

arr2 PMID:23079600 FBal0000724 amorphic allele

Genetic Reagent
(D. melanogaster)

stat85C9 PMID:23079600 FBal0130583 amorphic allele

Genetic Reagent
(D. melanogaster)

stat06346 PMID:23079600 FBal0009559 amorphic allele

Genetic Reagent
(D. melanogaster)

axnE77 PMID:28414313 FBal0121005 Q406 stop codon,
likely null

Genetic Reagent
(D. melanogaster)

axnSO44320 PMID:28414313 FBal0097414 enhancer trap null

Genetic Reagent
(D. melanogaster)

apc1Q8 PMID:28414313 FBal0091898 Q427 stop codon

Genetic Reagent
(D. melanogaster)

apc2D40 PMID:28414313 FBal0137655 hypomorphic
allele

Genetic Reagent
(D. melanogaster)

kibra32 PMID:24798736 FBal0244965 deletion in 5’
UTR and first exon

Genetic Reagent
(D. melanogaster)

kibradel PMID:24798736 FBal0244407 amorphic allele

Genetic Reagent
(D. melanogaster)

wtsx1 PMID:24798736 FBal0044527 amorphic allele

Chemical
compound, drug

Normal goat serum Jackson
ImmunoResearch
Laboratories

005-000-121 10% in PBS
for blocking

Antibody anti-GFP
(rabbit polyclonal)

Molecular Probes A6455 (1:1000)

Antibody anti-Fas3
(mouse monoclonal)

DSHB 7G10 (1:250)

Antibody AlexaFluor
488, 546, 594, 647

Thermofisher
Scientific

(1:1000)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

DAPI Fluoromount-G Southern Biotech 0100–20 Mount samples
and stain for DAPI

Commercial
assay or kit

Click-iT EdU
Cell Proliferation Kit

ThermoFisher
Scientific

C10086

Software,
algorithm

ZEN Blue, ZEN
Black, and ZEN Lite

Zeiss For viewing Z-stack
images and
quantifying
fluorescence

MARCM clonal analysis
1-3d old adult D. melanogaster females with the appropriate genotypes were given a single 30 min

(for FRT40A and FRT42D) or 45 min (for FRT82B) heat shock at 37C, with the heat shock duration

determined by the observed relative rate of recombination for different FRT sites. Afterwards, flies

were incubated at 25˚C, 29˚C or 22˚C. Higher temperature increases GAL4 activity and was used for

expression of UAS-Hop when using FRT40A or FRT42D, while 22˚C was also used for the axn UAS-

Hop genotype to moderate activity. Flies were maintained by frequent passage on normal rich food

supplemented by fresh wet yeast during the 12d experimental period. Flies were dissected at 6d

and 12d. We waited until 6d to ensure that all GAL80 present in cells, prior to clone induction, would

be titrated out, permitting robust GAL4 induction of UAS-GFP and any additional transgenes. The

6d time point also ensured that any marked cells are derived from FSCs, as dividing FCs marked in

the heat shock would have passed through the ovariole in less than 5d.

Immediately after dissection, 6d ovaries underwent 1 hr of EdU labelling based on the protocol

of the Click-iT Plus EdU Cell Proliferation Kit for Imaging (Invitrogen). Both 6d and 12d ovaries were

stained for Fasciclin III (Fas3) and GFP. Ovaries were then manually separated into constituent ovar-

ioles, and mounted using DAPI Fluoromount-G (SouthernBiotech) to stain nuclei. Ovarioles were

imaged with a Zeiss LSM700 or LSM800 confocal microscope, operated in part by the Zeiss ZEN

software. The entire germarium was captured in the images, as well as an average of 3–4 egg cham-

bers. Collected images were saved as CZI files, and were later analyzed utilizing the ZEN Lite soft-

ware. We aimed to image 50 germaria for every genotype in each experiment.

MARCM genotypes
Flies with alleles on an FRT40A, FRT42D, or FRT82B chromosomes were used in MARCM experi-

ments using the following genotypes:

FRT40A: yw hs-Flp, UAS-nGFP, tub-GAL4/yw; act-GAL80 FRT40A / (X)FRT40A; act >CD2>GAL4/

UAS-(Y) – where X, Y combinations included: (X) – NM (Nuclear Myc, Control), cycEWX, cutlet4.5.43 (Y)

- UAS-Hop3W, UAS-Dap, UAS-dnTCF.

FRT42D: yw hs-Flp, UAS-nGFP, tub-GAL4/yw; FRT42D act-GAL80 tub-GAL80/FRT42D (X);

act >CD2>GAL4/UAS-(Y) – where X, Y combinations included: (X) – sha (Control), ubi-GFP (Control),

arr2, (Y) – UAS-Hop3W, UAS-DIAP1, Fz3-RFP.

FRT82B: yw hs-Flp, UAS-nGFP, tub-GAL4/yw; act >CD2>GAL4 UAS-GFP/UAS-(Y); FRT82B tub-

GAL80/FRT82B (X) – where X,Y combinations included: (X) – NM (control), stat85C9, stat06346, axnE77,

axnS044320, apc1Q8apc2D40, kibra32, kibradel, wtsx1, UAS-Hop3W, UAS-CycE, UAS-dnTCF, (Y) UAS-

dnTCF, Fz3-RFP, STAT-RFP, including combinations of (X) elements.

All tests not involving UAS-Hop were performed at 25˚C. For UAS-Hop in experiments with

FRT40A or FRT42D a temperature of 29˚C was required to observe strong excess JAK-STAT pheno-

types, as reported previously (Vied et al., 2012) (at 29˚C act-GAL80 [provided by T. Laverty, Janelia

Farms] in place of tub-GAL80 on 2L, or in addition to tub-GAL80 on 2R in MARCM clone stocks

were essential to suppress GFP expression in non-recombined cells). The UAS-Hop insertion is on

3R, so that clones made with FRT82B contain two copies of UAS-Hop, with tests performed at 25˚C.

The phenotypes due to two copies at 25˚C were overlapping with those from one copy at 29˚C and

those data were aggregated in summary results presented. For FRT82B clones with axn and UAS-

Hop on 3R the accumulation of marked cells was so high at 25˚C that samples could not be scored
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reliably at 12d after heat shock. Consequently, additional tests for that genotype, FRT82B Hop and

an FRT82B control were performed in parallel at 22˚C, with results given separately from those

obtained at 25˚C.

C587-GAL4 experiments
1-3d old flies of the genotype C587-GAL4; UAS-X/ts-GAL80, FRT42D tub-lacZ; (Reporter)/TM6B

were chosen, where UAS-X was UAS-dnTCF, UAS-CycE, or UAS-Hop, and the reporter was either

STAT-GFP or Fz3-RFP. Flies were incubated at 29˚C for 3d, and UAS-Hop flies were also incubated

for 6d and 10d. Dissected ovaries underwent the EdU and Immunohistochemistry protocols as

above, without staining for GFP. For Fz3-RFP experiments with EdU, Alexa Fluor 488 dye was used

instead of 594 to avoid spectral overlap.

EdU protocol
Ovaries were directly dissected into a solution of 15 mM EdU in Schneider’s Drosophila media (500

ml, Gibco) and incubated for one hour at room temperature. These tubes were laid on their side and

rocked manually, to ensure all dissected ovaries were fully submerged. Ovaries were then fixed in

3.7% paraformaldehyde in PBS for 10 min, treated with Triton in PBS (500 ml, 0.5% v/v) for 20 min,

and rinsed 2x with bovine serum albumin (BSA) in PBS (500 ml, 3% w/v) for 5 min each rinse. Ovaries

were exposed to the Click-iT Plus reaction cocktail (500 ml) for EdU visualization, for 45 min. The

reaction cocktail was freshly prepared prior to use, with reagents from the Invitrogen Click-iT Plus

EdU Cell Proliferation Kit for Imaging, including the Alexa Fluor 594 dye. Ovaries were then rinsed

3x with BSA in PBS (500 ml, 3% w/v) for 5 min each rinse.

Immunohistochemistry
For experiments without EdU, ovaries were dissected directly into a fixation solution of 4% parafor-

maldehyde in PBS for 10 min at room temperature, rinsed 3x in PBS, and blocked in 10% normal

goat serum (NGS) (Jackson ImmunoResearch Laboratories) in PBS with 0.1% Triton and 0.05%

Tween-20 (PBST) for 1 hr. Monoclonal antibodies for Fas3 were obtained from the Developmental

Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of

Iowa, Department of Biology, Iowa City, IA 52242. 7G10 anti-Fasciclin III was deposited to the DSHB

by Goodman, C. and was used at 1:250 in PBST. Other primary antibodies used were anti-GFP

(A6455, Molecular Probes) at 1:1000 in PBST. Ovaries were incubated in primary antibodies over-

night, rinsed three times in PBST, and incubated 1–2 hr in secondary antibodies Alexa-488 and

Alexa-647 (ThermoFisher) at 1:1000 in PBST to label GFP and Fas3, respectively. DAPI-Fluoro-

mount-G (Southern Biotech) was used to mount ovaries.

Imaging and scoring
All germaria were imaged in three dimensions on an LSM700 or LSM800 confocal laser scanning

microscope (Zeiss) and using a 63 � 1.4 N.A. lens. Zeiss ZEN software was used to operate the

microscope and view images. Images were typically 700 � 700 pixels with a bit depth of 12. The

scaling per pixel was 0.21 x 0.21 x 2.5 mm. The range indicator in ZEN was used to determine the

appropriate laser intensity and gain. ZEN was used to linearly adjust channel intensity for dim signals

to improve brightness without photobleaching samples. Images were saved as CZI files and scored

directly in ZEN. DAPI and Fas3 staining were used as landmarks to guide scoring. Marked cells were

considered FSCs if they were within three cell diameters anterior of the Fas3 border. Cells immedi-

ately adjacent to the border were considered to be in Layer 1, with Layers 2 and 3 in sequentially

anterior positions. Anterior to the FSC niche, the EC region was roughly divided into two halves,

with region 2a ECs immediately anterior to FSCs and region 1 ECs anterior to that. Germaria were

also scored (Y/N) for the presence of marked FCs. For the ‘immediate FC’ method tabulation, the

presence of an FC immediately posterior to Layer one was also scored Y/N. For publication, images

were digitally zoomed in ZEN and exported as tif files using the ‘Contents of Image Window’ func-

tion. Images were rotated in Abode Photoshop CS5 to uniformly orient the germaria.

Melamed and Kalderon. eLife 2020;9:e61204. DOI: https://doi.org/10.7554/eLife.61204 32 of 38

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.61204


Measurement of signaling pathway reporter activities
STAT-GFP, STAT-RFP and Fz3-RFP reporter activity was quantified within ZEN software. Using the

Draw Spline Contour function, an outline of a DAPI cell nuclei was traced, and the fluorescence

intensity within the outline was recorded. The outline of cells not expressing the reporter strongly

(anterior ECs for JAK-STAT reporters and FCs for Fz3-RFP) were used to determine background

intensity and were subtracted from calculated totals. For quantification of signaling pathway gra-

dients in experiments using C587-GAL4 the signal in germline cells of the first egg chamber was

used to determine background intensity. Also, the intensity of FCs from the second or third egg

chamber of each sample was used as a reference, and all intensity measurements of cells within the

germarium were divided by the reference to produce a relative intensity that could be compared

between samples. For quantification of individual clones, the RFP intensity of a GFP-positive cell was

divided by that of a GFP-negative cell in a similar position along the A/P axis, within the same or an

adjacent Z plane and an average was calculated from many such pairs to derive the percentage

intensity for labeled cells relative to unlabeled cells.

Statistics and reproducibility
All images shown are representative of at least ten examples. In most cases the number is much

higher and is given explicitly where relevant for statistical analysis of outcomes. No statistical method

was used to predetermine sample size but we used prior experience to establish minimal sample

sizes. No samples were excluded from analysis, provided staining was of high quality. The experi-

ments were not randomized; all samples presented as groups in the results were part of the same

experiment and treated in exactly analogous ways without regard to the identity of the sample.

Investigators were not blinded during outcome assessment, but had no pre-conception of what the

outcomes might be. For EdU incorporation, FSC layers, Immediate FC probability tabulations, pro-

portion of germaria with FSCs and/or FCs, the ‘N-1’ Chi-squared test method was used to calculate

a Z score for determining significance between indicated genotypes, and error was reported as stan-

dard error of a proportion. To determine whether the EdU index distribution among the FSC layers

of an altered genotype different from controls, we first calculated the average EdU index for all

FSCs of the altered genotype, with each layer contribution weighted based on the normal distribu-

tion of FSC among layers measured in appropriate controls (for MARCM or C587-GAL4 tests). This

average EdU index was then multiplied by the control EdU index for each layer to derive expected

EdU indexes for each layer of an altered genotype if the EdU pattern matched controls. Finally, a

chi-squared test was applied to compare observed and expected EdU indexes for each layer to

determine the statistical significance of differences. For average number of FSCs, Fz3-RFP reporter

intensity comparison, and EC/FSC ratio, a t-test was used to determine significance between indi-

cated genotypes, and error was reported as standard error of the mean.

Immediate FC method for calculating posterior FSC to FC conversion
probability
The immediate FC method was used to calculate the probability for any layer 1 FSC to become an

FC in a given cycle of egg chamber budding. As layer 1 FSCs directly give rise to FC daughters

(Reilein et al., 2017), this was assessed by determining the proportion of germaria that contained a

marked FC immediately posterior to the FSC region, which indicated recent FC production. This was

only assessed in germaria with a small number of FSCs (1-3) to reasonably deduce the likelihood for

an individual FSC. As the rate of proliferation would also influence this probability, this was

accounted for in the immediate FC method equation.

Probability of a single layer 1 FSC becoming an FC in one cycle = p
Probability of a single layer 1 FSC dividing in one cycle = q

We assume that on average FSC division occurs halfway through a cycle, such that the probability

of a newly-produced FSC becoming an FC is p/2. Therefore, the total probability (P) of an FSC

becoming an FC in one cycle is the sum of two probabilities: an FSC becoming an FC and an FSC

dividing and the additional FSC becoming an FC.

p=p + (1 p)*q*(p/2)
p=p + pq/2 – p2q/2
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We calculate the probability of an FSC becoming an FC by tallying the proportion of germaria (x)

that do not have immediate FC daughters when a single marked layer 1 FSC is present (we assume

that, on average, a single marked layer 1 FSC was present at the start of the prior cycle).

x = 1 – (p + pq/2 – p2q/2)
x = 1 – p – pq/2 + p2q/2
x = 1 – (1+q/2)*p + (q/2)*p2

0 = (q/2)*p2 – (1+q/2)*p + (1-x)
p = [(1+q/2) +/- SQRT((-(1+q/2)2) – (4(q/2)(1-x)))]/q (using quadratic formula)

Using this equation, we can solve for p, as x and q can be tabulated from scoring data.

We also considered germaria with immediate FC daughters that have no FSCs present in layer 1,

as the only possibility is that a layer 1 FSC was present at the start of the last cycle and then became

an FC. These instances were incorporated into the calculation of the proportion of germaria with a

single layer 1 FSC but no immediate FCs.

If 2 or 3 FSCs were present, the square or cube root of the x ratio was used, respectively. A

weighted average of adjusted x ratios for germaria with 1, 2 and 3 FSCs was calculated (weighted

according to the number of examples of 0–1, 2, and 3 layer 1 FSCs) and used in the formula to calcu-

late p.

The q value was adjusted based on measured proliferation for mutants compared to controls, as

well as predicted daughter cell production, which assumes that seven FSCs (out of a total of 16

FSCs) are dividing per cycle to produce 5.6 FCs and 1.4 ECs per cycle. Therefore:

q = ‘Proportion of EdU incorporation for layer 1 FSCs (mutant or control)’ / ‘average EdU incor-

poration of all control FSCs’ * 7/16.

EC per anterior FSC ratio
The EC/aFSC ratio was calculated by dividing the number of marked ECs per germarium present at

6d or 12d by the inferred average number of marked anterior FSCs per germarium during the 0-6d

or 0-12d period. The inferred average number of anterior FSCs per germarium was the average of

the observed number of anterior FSCs per germarium (at 6d or at 12d) and the observed number of

anterior FSCs per germarium in the control samples at 6d for that experiment (representing our best

estimate of the number of marked anterior FSCs per germarium at 0d in all samples of the same

experiment). In all cases, only germaria that contained at least one marked FSC (in any position)

were scored in order that there was an opportunity to produce new marked ECS throughout the

experimental period. Results from multiple experiments for a particular genotype were aggregated

by calculating the totals for marked ECs and for the inferred average number of anterior FSCs

before deriving the overall EC per anterior FSC ratio.
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