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ABSTRACT

Introduction: The objectives of this study were

to (a) assess the factors associated with weight

gain in a population of type 2 diabetes patients

escalating from metformin (M) to M?

sulfonylurea (M ? S) and (b) evaluate whether

healthcare resource utilization associated with

being overweight or obese is underestimated in

typical health economic evaluations.

Methods: The study was a retrospective cohort

study using UK Clinical Practice Research

Datalink linked to Hospital Episode Statistics

(CPRD/HES) data. The association between

baseline phenotypic factors and weight gain

was assessed using logistic regression.

Hospitalization incidence rates per 1000

person-years for major diabetes-related

complications according to body mass index

(BMI) at baseline were estimated from the data

(observed) and compared to those obtained

from a validated diabetes model (predicted).

Results: 11,071 patients were included in the

analysis; approximately 40% gained weight in

the first year following escalation to M ? S.

Baseline age, HbA1c and gender were found to

be predictors of weight gain [odds ratios 0.99

(1-year increment), 1.11 (1% increment) and

0.81 (female vs male), respectively, p\0.001].

Observed vs predicted incidence rates of

hospitalization were 265 vs 13 (normal), 297

vs 31 (overweight), 223 vs 50 (obese) and 378 vs

41 (severe obese).

Conclusion: This analysis suggests there are

identifiable patient characteristics predictive of

weight gain that may be informative to clinical

and economic decision making in the context
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of patients escalating from M to an M ? S

regimen. Hospital admissions in people with

type 2 diabetes were generally under-predicted.

A particular focus of future research should be

the need for diabetes models to make the

likelihood of experiencing an event

conditional on BMI.

Funding: Takeda Development Centre Europe

Ltd., UK.

Keywords: Diabetes modeling; Therapy

escalation; Type 2 diabetes; Weight gain

INTRODUCTION

The global prevalence of diabetes as of 2013 is

estimated at 382 million, accounting for 11%

(548 billion US dollars) of the total global

healthcare spend [1]. By 2035, diabetes

prevalence is expected to rise by 55% to 592

million and cost the global economy 627 billion

US dollars [1]. The majority of the cost

associated with type 2 diabetes is related to

the management of diabetes-related

macrovascular and microvascular

complications, such as cerebrovascular and

cardiovascular (CV) disease and diabetic

retinopathy, nephropathy and neuropathy [2].

There is an increasing amount of

epidemiological evidence relating body mass

index (BMI) to increased risk of CV disease and

all-causemortality (ACM) in patients with type 2

diabetes [3, 4]. Importantly, CV and mortality

risk equations typically incorporate the effects of

elevated BMI indirectly via the inter-relationship

between modifiable CV risk factors (such as

cholesterol and systolic blood pressure) and

BMI; this approach may underestimate the true

morbidity and mortality risk. Consequently, the

resource utilization associated with obesity in

patients with type 2 diabetes may also be

underestimated.

While the importance of avoiding

complications that decrease quality of life and

consume healthcare resources in people with

type 2 diabetes is well understood, the

relationship between patient phenotype and

resource utilization is less well researched. A

recent study by Balkau and colleagues assessed

the factors associated with weight gain in type 2

diabetes patients starting insulin [5]: high

baseline glycated hemoglobin (HbA1c), insulin

dose requirements and lower baseline BMI were

all associated with weight gain. In a separate

study, van Dieren and colleagues evaluated the

relationship between baseline profiles and

weight change among participants in the

ADVANCE diabetes trial (ClinicalTrials.gov

identifier, #NCT00145925) [6]. They found

that baseline factors associated with weight

gain were younger age, higher HbA1c,

Caucasian ethnicity and number of

glucose-lowering medications. These studies

illustrate that the identification of phenotypic

characteristics that are predictive of weight gain

at the time of treatment initiation or escalation

may help to develop strategies for avoidance of

weight gain [5], and any downstream adverse

patient outcomes and excess resource

utilization associated with weight gain, among

type 2 diabetes patients. Moreover, the accurate

prediction of the health and resource

consequences associated with the management

of type 2 diabetes is crucial to inform decision

making in healthcare.

With this in mind, the objectives of this

study were to (a) assess the factors associated

with weight gain in a population of type 2

diabetes patients escalating to the most

common dual oral therapy regimen and

(b) evaluate whether healthcare resource

utilization associated with being overweight or

obese is underestimated in typical health

economic evaluations in type 2 diabetes.
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METHODS

Data

Consistent with current consensus guidelines

on the management of hyperglycemia in

patients with type 2 diabetes, metformin

(M) augmented with a sulfonylurea (S) (M ? S)

is the predominant second-line oral diabetes

therapy in clinical practice [7]. The addition of S

to M is known to be associated with increased

weight gain [7]. Hence, as a population, this

cohort provides a potentially interesting case

study to assess the relationship between BMI

and healthcare resource utilization.

A retrospective cohort study of linked

primary (Clinical Practice Research Datalink,

CPRD) and secondary (Hospital Episode

Statistics, HES) data informed (a) the baseline

profiles for model initialization, (b) baseline

patient phenotypic factors predictive of weight

gain, and (c) an analysis of observed versus

predicted healthcare resource utilization

associated with increasing levels of BMI.

The study cohort consisted of all type 2

diabetes patients with a diagnosis code for

diabetes (READ/OXMIS code: C10?) between

01/01/2000 and 31/12/2011 in CPRD who

initiated treatment with M ? S. M ? S

combination therapy was defined as ‘‘a

prescription record for a combination product’’

or ‘‘concomitant use of M or S within 30 days’’.

Index date was defined as the date of addition of

S to M. The following inclusion criteria were

applied to obtain the study cohort (Fig. 1):

patients escalating from M monotherapy (to

minimize impact of indication bias), to ensure

that the beginning of combination therapy was

captured accurately (patients were required to

have had at least 12 months on M

monotherapy). Patients were required to have

at least 3 months’ treatment exposure to M ? S

in the post-index period (to minimize bias due

to therapy failure). The following exclusion

criteria were applied: a prescription for any

blood glucose-lowering therapy (other than M)

prior to the index date. Patients with a diagnosis

of malignant disease at any time point prior to

the index date, or during the follow-up period.

Data were extracted in quarterly (3-monthly)

time periods for the observational period; a

12-month pre-index period was defined for all

patients. Data are longitudinal in nature

(repeated observations of the same variables

and units over periods of time); quarterly

measurements were based on the last available

record for each study variable. Patient follow-up

was restricted to time on M ? S dual therapy.

Data were extracted based on READ codes

and CPRD/HES data files describing patient

characteristics: age, sex, smoking status,

weight, HbA1c, cholesterol, observed duration

of diabetes, in addition to medication use and

history of complications (defined in Table 1).

Resource utilization data were extracted

describing hospitalization and length of stay

(LOS).

Studies using CPRD data are covered by

ethics approval granted by the Trent

Multicenter Research Ethics Committee. This

study was granted CPRD Independent Scientific

Advisory Committee approval (ISAC protocol

number 13-191). This article does not contain

any new studies with human or animal subjects

performed by any of the authors.

Model

Assessing the ability of contemporary health

economic analyses in type 2 diabetes to capture

the resource utilization associated with

increasing levels of BMI was undertaken using

the IMS CORE Diabetes Model (CDM) [8]. This

model has been extensively validated and
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currently has 87 peer-reviewed publications,

predominantly related to cost-effectiveness

applications in both type 1 and type 2

diabetes. The model has previously been

described in detail [8]. In brief, the model is a

fixed-time increment (annual) stochastic

simulation using time-, state- and

patient-dependent characteristics to model the

likelihood of type 2 diabetes-related clinical

events occurring. Monte Carlo simulations are

performed at the individual patient level using

tracker variables to accommodate complex

interactions between individual complication

sub-models. The CDM simulates the following

diabetes-related microvascular and

macrovascular complications: angina,

myocardial infarction, congestive heart failure,

stroke, peripheral vascular disease, diabetic

retinopathy, macular edema, cataract,

hypoglycemia, ketoacidosis, nephropathy and

end-stage renal disease, neuropathy, foot ulcer

and amputation, and cardiovascular and

non-specific mortality. The CDM incorporates

direct and indirect costs, adjusts for quality of

life and derives cost-effectiveness and

cost-utility estimates.

The model begins by establishing patients’

clinical and demographic characteristics, which

determines how patients progress through the

model. The current analysis using the CDM

focuses on the number of events

(hospitalizations) and mortality predicted by

the model over a 3-year period to facilitate a

comparison of observed (CPRD/HES) vs

predicted (CDM) hospitalizations and

mortality.

Fig. 1 Flow diagram of study cohort selection with inclusion/exclusion criteria. M ? S metformin ? sulfonylurea
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Statistical Analysis

Factors Associated with Weight Gain

The association between phenotypic factors at

baseline (therapy escalation from M to M ? S)

and weight gain (defined as [2 kg weight

change over 12 months following therapy

escalation) was assessed in logistic regression

analysis with 1 = weight gain and 0 otherwise.

Patients were required to have a valid

Table 1 Baseline profile by BMI category

Normal (BMI
18.5–25)

Overweight
(BMI 25–30)

Obese (BMI
30–35)

Severe obese
(BMI 351)

Total

n5 871 n5 3461 n5 3662 n5 2913 n5 11,071a

Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 65.84 12.61 62.65 11.16 60.35 10.81 57.10 10.67 60.74 11.41

Female (%) 41% – 32% – 38% – 49% – 39% –

Current smoker (%) 5% – 6% – 6% – 6% – 6%

Duration diabetes (years) 6.41 5.85 5.62 3.82 5.32 3.83 4.75 3.51 5.36 3.98

Weight (kg) 66.82 9.20 80.62 10.15 92.75 11.53 112.82 18.39 92.15 19.56

HbA1c

% 8.53 1.62 8.53 1.44 8.73 1.69 8.88 1.52 8.70 1.57

mmol/mol 70 70 72 74 72

HDL-C (mmol/L) 1.33 0.39 1.19 0.31 1.14 0.28 1.12 0.28 1.17 0.31

LDL-C (mmol/L) 2.29 0.82 2.27 0.80 2.30 0.86 2.34 0.81 2.30 0.83

BMI (kg/m2) 23.27 1.36 27.74 1.37 32.25 1.41 40.03 5.02 32.16 6.12

Prior complications (%) 32% – 30% – 29% – 25% – 28% –

Respiratory/cerebrovascular

complications (%)

8% – 7% – 6% – 7% – 7% –

Vascular complications (%) 25% – 25% – 25% – 20% – 24% –

History CAD 18% – 17% – 17% – 15% – 17% –

History CHF 3% – 3% – 2% – 3% – 3% –

History neuropathy 1% – 1% – 1% – 1% – 1% –

History stroke 4% – 3% – 3% – 2% – 3% –

History retinopathy 13% – 12% – 10% – 9% – 10% –

History nephropathy \1% – \1% – \1% – \1% – \1% –

Variable definitions: ‘Prior complications’ (pre-index history of CAD, CHF, neuropathy, stroke, retinopathy,
nephropathy),‘Respiratory/cerebrovascular complications’ (=asthma, chronic obstructive pulmonary disease,
cerebrovascular disease), ‘Vascular complications’ (=CAD, cerebrovascular disease, peripheral vascular disease,
microalbuminuria, chronic kidney disease, retinopathy). History refers to history in 12-months prior to index date
BMI body mass index, CAD coronary artery disease, CHF congestive heart failure, HbA1c hemoglobin A1c, HDL-C high
density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, SD standard deviation
a Overall n: 10,907 patients had a BMI record at baseline
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measurement at baseline and 12 months to be

included in this analysis, which estimated the

probability of weight gain, adjusting for

relevant differences in patient characteristics at

baseline. Model selection was based on a

backwards general-specific methodology,

eliminating statistically insignificant

covariates, covariate transformations and

interaction terms at the 0.05 level of testing to

estimate baseline factors predictive of weight

gain.

Observed vs Predicted Hospital Admissions

The association between hospitalizations

(number of admissions and LOS) and weight

status was assessed using BMI as the weight

measurement. This was required to assess the

relationship between observed and predicted

hospitalizations, as the CDM uses BMI as a risk

factor in estimating the incidence of

complications. Patients were classified by their

BMI at baseline: normal (C18.5 and \25),

overweight (C25 and \30), obese (C30 and

\35), and severe obese (C35).

Observed admissions were compared to the

number of events (admissions) predicted by the

CDM over a 3-year period, based on the number

of patients, baseline demographics and risk

factor profile of the cohort. Analysis was

stratified by BMI at baseline. The

corresponding total and average LOS of

admissions from the CPRD data were

descriptively summarized.

The observed vs predicted analysis was based

on incidence rates to account for variable

patient follow-up. For hospitalizations, the risk

set was treated as discontinuous risk intervals

(i.e., patients were not at risk of a subsequent

hospitalization until they had completed the

first hospitalization): person-time was

calculated by excluding the duration of

hospitalizations from the risk set (i.e.,

follow-up is equal to the sum of the

person-time for each risk interval) [9].

Incidence rates of hospitalizations per 1000

person-years were calculated for each BMI

category at baseline as the ratio of total

number of hospitalizations (numerator) and

the total person-years (denominator),

multiplied by 1000. Incidence rates from the

CDM were obtained by dividing the predicted

number of events by patient follow-up time in

the model, multiplied by 1000.

Observed vs Predicted Mortality

A comparison between observed and predicted

ACM was undertaken based on Kaplan–Meier

survival probabilities estimated over a 9-year

period for the average patient escalating to

M ? S dual therapy. This comparison aims to

assess the predictive performance of the CDM as

part of a typical economic evaluation compared

to the observed data and provide a second

comparative analysis to contrast the analysis of

observed vs predicted hospital admissions.

Analyses were undertaken using R version

2.12.2 (The R Foundation).

RESULTS

Patient (Baseline) Phenotypic Profiles

A total of 11,071 patients met the study

inclusion/exclusion criteria. The cohort had a

mean age at baseline of 60.74 (SD = 11.41)

years, duration of type 2 diabetes of 5.36

(SD = 3.98) years, HbA1c of 8.70%

(72 mmol/mol) (SD = 1.57), weight of 92.15 kg

(SD = 19.56) and BMI of 32.16 kg/m2

(SD = 6.12) and were 39% female (Table 1).

There was an increase in baseline mean weight

and BMI for increasing BMI categories.

Compared to the normal category, the

overweight, obese and severe obese categories
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were associated with successively younger mean

age at baseline (65.84, 62.65, 60.35, and

57.10 years, respectively) and shorter mean

diabetes duration at baseline (6.41, 5.62, 5.32,

and 4.75 years, respectively). People in the

obese and severe obese categories had higher

mean baseline HbA1c than people in the

normal category (8.7 and 8.9 vs 8.5,

respectively).

Factors Predictive of Weight Gain

In the 12-month period following initiation of

M ? S, weight gain (1 = weight gain; 0

otherwise) was observed in 40.39% of patients

with a valid measurement at baseline and

12 months (n = 3139/7771) and was

significantly associated with baseline age

(OR = 0.99 for 1-year increase in age,

p\0.001), female gender (OR = 0.81,

p\0.001) and baseline HbA1c (OR = 1.11 for

1% increase in HbA1c, p\0.001) (Table 2).

Observed vs Predicted Hospital

Admissions

Over the 3-year follow-up period, across BMI

categories, the most to least common events

associated with hospitalizations in the observed

dataset (CPRD/HES) were ischemic heart disease

(33%), end-stage renal disease (21%), congestive

heart failure (20%), myocardial infarction

(14%), stroke (13%), amputation (\1%) and

blindness (0%). The observed incidence rates of

hospitalizations per 1000 person-years

associated with myocardial infarction, stroke,

ischemic heart disease, congestive heart failure,

amputation, blindness and end-stage renal

disease were 265, 297, 223 and 378 for

normal, overweight, obese and severe obese

BMI categories, respectively. The predicted

(CDM) incidence rates of hospitalizations per

1000 person-years associated with the same

complications were 13, 31, 50 and 41 for

normal, overweight, obese and severe obese

BMI categories, respectively. These data are

presented in Fig. 2, which illustrates the

observed minus predicted incidence rates were

252, 266, 173 and 337 per 1000 person-years for

the increasing BMI categories. Thus, the CDM

generally under-predicted the incidence of

hospital admissions across event types, except

for amputation and blindness, where the model

slightly over-predicted incident rates compared

to the observed data. Overall, the difference

between observed and predicted events was

driven by end-stage renal disease, ischemic

heart disease, and congestive heart failure

hospitalizations, which in absolute terms

accounted for 74% of the observed versus

predicted difference (27%, 26%, 21%

respectively).

The total LOS associated with the observed

(CPRD/HES) 96 hospital admissions in the

normal BMI category was 1142 days (mean

LOS = 15.0); for the overweight category, total

LOS was 4691 (419 admissions, mean

LOS = 11.2); for the obese category, total LOS

was 4791 (477 admissions, mean LOS = 10.0);

and for the severe obese category, total LOS was

3896 (717 admissions, mean LOS = 5.4).

Observed vs Predicted Mortality

Figure 3 contrasts observed survival from

CPRD/HES with predicted survival from the

CDM. At year 9, Kaplan–Meier survival

probability was 0.780 (95% CI 0.761–0.800)

compared to 0.749 (0.730–0.769). Although

the point estimate of the survival probability

from the CDM fell below the confidence

interval from the observed data, visual

inspection of Fig. 3 indicates a reasonable fit

to overall mortality.
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DISCUSSION

Study Objectives and Results

The aim of this study was to identify baseline

patient characteristics predictive of weight gain

and to assess whether typical health economic

evaluations capture the excess secondary care

healthcare resource utilization associated with

weight gain using linked primary and secondary

care data from the UK in people with a

diagnosis of type 2 diabetes escalating from M

to M ? S combination therapy.

Regarding the first objective of this study,

understanding the baseline factors predictive of

weight gain is important as it may help to

inform both clinical and economic decision

making. Where there are identifiable patient

characteristics predictive of weight gain, these

could help guide treatment decisions and define

management strategies, potentially improving

patient health outcomes and directing

healthcare resources to efficient uses. We

found that there are identifiable phenotypic

characteristics predictive of weight gain in the

M ? S cohort. Around 40% of patients gained

Table 2 Baseline factors predictive of weight gain

Odds Ratio 95% CI (lower) 95% CI (upper) Pr (>IzI)

Age (years) 0.99 0.98 0.99 \0.001

Gender (female vs male) 0.81 0.71 0.91 \0.001

HbA1c (%) 1.11 1.07 1.16 \0.001

CI confidence interval, HbA1c hemoglobin A1c, Pr ([IzI) probability being greater than z and less than -z, where z is the
value of the standard normal distribution

Fig. 2 Comparison of observed incidence rate of hospital
admissions stratified by BMI for myocardial infarction,
stroke, ischemic heart disease, congestive heart failure,
amputation, blindness and end-stage renal disease with

CPRD/HES compared to the incidence rate predicted by
the CDM. BMI body mass index, CDM IMS CORE
Diabetes Model, CPRD/HES Clinical Practice Research
Datalink/Hospital Episode Statistics
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weight in the first year following escalation to

M ? S; gender, baseline age and baseline HbA1c

were found to be predictors. These factors are

consistent with the phenotypic factors

identified in studies of patients starting insulin

therapy [5] and in patients assigned to receive

conventional vs intensive management [10].

The results of this study may usefully inform on

type 2 diabetes management strategies and

investment of healthcare resources; given that

M ? S is the most common second-line

therapeutic regimen.

Regarding the second objective of this study,

when initialized to the baseline profiles

observed in the CPRD population treated with

M ? S, the CDM generally under-predicted

hospital admissions associated with the most

common complications in people with type 2

diabetes. There was an increasing discrepancy

between the CPRD observations and CDM

predictions for increasing levels of BMI. For

instance, the CDM predicted 265 fewer

admissions in the normal BMI category,

compared to 337 fewer predicted admissions

for the severe obese category, per 1000

person-years. This type of discrepancy may

have implications for economic modeling used

to inform healthcare decisions and clinical

decision making where both patient

phenotype and the results of economic

modeling can impact treatment decisions.

Diabetes Modeling

It was not the objective of this study to cast

doubt over the predictive validity of the CDM.

The model has been subject to a number of

validation exercises and routinely participates

in the Mount Hood challenge meetings, a

forum for diabetes modelers to compare and

Fig. 3 Comparison of Kaplan–Meier observed survival
plot for all-cause mortality (with 95% upper and lower
confidence intervals) compared to output from the CDM.
CDM IMS CORE Diabetes Model, CPRD Clinical

Practice Research Datalink, LCL lower confidence limit,
M ? S metformin ? sulfonylurea, UCL upper confidence
limit
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contrast model results over a series of

standardized validation exercises [11, 12];

furthermore, the CDM has been shown to

capture the incidence of long-term

diabetes-related complications with a high

degree of accuracy [13]. Our concern rests with

whether the risk equations typically used in

diabetes models are failing to adequately

capture the multiple comorbidities that can

occur. The CDM model, as with most published

contemporary type 2 diabetes models, is based

on the United Kingdom Prospective Diabetes

Study (UKPDS) 68 risk equations [14]. BMI

features in only one of several risk prediction

equations: coronary heart failure. Modeling

under-predicted the incidence of myocardial

infarction, stroke, ischemic heart disease,

congestive heart failure and end-stage renal

disease compared to the observed data. The

results of this analysis suggest that BMI may

have a much larger role to play in determining

the risk of diabetes complications, as this

analysis suggests higher BMI levels were

associated with more hospitalizations. While

this study reports an apparent trend of reduced

LOS for increasing BMI, overall the findings of

this research suggest that secondary healthcare

resource utilization is higher for increasing BMI,

as reflected by more frequent admission. The

recent publication of the updated UKPDS 82 risk

equations [15], where BMI is a risk factor for a

larger number of diabetes-related

complications, further emphasizes the

importance of accurately modeling the

relationship between complication incidence

as a function of increasing BMI.

A consequence of these findings is that

long-term projections obtained from diabetes

models may not adequately reflect the benefit

of improved risk factor profiles. In particular,

the value of diabetes management strategies

that minimize weight gain may be

underestimated as a result. It is noteworthy

that the UKPDS equations are most commonly

criticized for potentially over-predicting

complication rates [10, 16]; this study suggests

they may significantly under-predict total

burden associated with diabetes-related

complications.

Diabetes models are central to informing

decisions around product reimbursement and

hence the treatment alternatives available to

clinicians and ultimately patients. In this

context, and based on the analysis of this

patient cohort, there is a case for further

investigation around how diabetes models

characterize the relationship between weight

and hospital admissions; a relationship

complicated by many confounding factors

such as comorbidities and disease

management. Two immediate areas of

investigation are how models address the

probability of hospitalization as a function of

changing BMI and, once hospitalized, the

assignment of cost to event. Current models

almost exclusively apply an average cost to each

type of diabetes complication. This approach

may be appropriate where there are no expected

differences in hospital LOS as a function of BMI

or misleading where LOS is a function of

changes in BMI. The current analysis more

strongly highlights the need for diabetes

models to make the likelihood of experiencing

an event conditional on BMI.

Study Limitations

The findings of this study are set against the

following limitations. First, not all relevant

confounding factors are captured in the CPRD/

HES databases. Thus, predicting association

between BMI and resource use, and baseline

factors predictive of weight gain is limited by

the coverage and completeness of the data,
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though the databases contain significant detail

on the patient characteristics most relevant to

this analysis. There may be under-reporting for

certain variables within the dataset; for

example, the prevalence of congestive heart

failure and nephropathy appears low. However,

given the age distribution of the cohort,

congestive heart failure prevalence around 3%

is not surprising since these patients are

probably not that far into their disease course

as they have been users of M (first line) and have

only just needed augmentation. Nephropathy

can take several years to manifest, which may

account for the apparently low rate observed;

although other studies suggest a significant

proportion of type 2 diabetes with a relatively

short disease duration would have had

nephropathy [17].

Second, by nature, observational studies of

this kind will be subject to ‘confounding by

indication’, such that any observed patterns

within the data are a function of patient

phenotype, and patient phenotype is the

reason for prescription of a specific therapy.

Restricting analysis to only M ? S patients

minimizes this potential confounder. The

inferences that can be made from the current

analysis of observed versus predicted hospital

admissions are indirectly strengthened by the

analysis of observed versus predicted ACM,

where estimates from CPRD and the CDM

generally predicted the same survival

probabilities over a 9-year period. Observed

versus predicted survival estimates may have

been closer, possibly due to the nature of

mortality as an endpoint in that it may be

better recorded in CPRD compared to events,

and/or the estimation of mortality via UKPDS

equations is more accurate; however, the

precise reason cannot be determined from

this data.

Finally, the CDM was used to evaluate the

expected occurrence of events based on risk

factor profiles observed in routine clinical

practice; these estimates were compared

against observed event rates. Statistical

adjustment of the data, accounting for the

influence of patient characteristics at baseline

and over time on the observed relationship

between hospitalization rates and BMI, was not

undertaken given that the primary aim of this

study was to assess the relationship between

observed vs predicted hospital admissions in the

context of economic evaluation. Thus, reported

incidence rates should be interpreted as

unadjusted estimates from an epidemiological

perspective.

CONCLUSION

This real-world observational analysis suggests

that there are identifiable patient characteristics

that are predictive of weight gain, which may be

informative to clinical and economic decision

making among the context of patients

escalating to an M ? S regimen.

Increased BMI was associated with an

increased rate of hospitalization, although

average LOS was observed to decrease with

increasing BMI. Overall, these findings suggest

that there may be an important relationship

between increasing BMI and hospitalization

that may not be adequately captured in widely

used vascular risk equations such as UKPDS.

Consequently, the value of diabetes

management strategies that minimize weight

gain may be underestimated. Models used to

predict health outcomes and characterize the

value of competing interventions in type 2

diabetes should be investigated in light of these

findings. A particular focus of future research

should be the need for diabetes models to make
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the likelihood of experiencing an event

conditional on BMI.
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