
RESEARCH ARTICLE

Cluster analysis on high dimensional RNA-seq

data with applications to cancer research - An

evaluation study

Linda VidmanID
1*, David Källberg1,2, Patrik Rydén1

1 Department of Mathematics and Mathematical Statistics, UmeåUniversity, Umeå, Sweden, 2 Department

of Statistics, USBE, UmeåUniversity, Umeå, Sweden

* linda.vidman@umu.se

Abstract

Background

Clustering of gene expression data is widely used to identify novel subtypes of cancer. Plenty

of clustering approaches have been proposed, but there is a lack of knowledge regarding their

relative merits and how data characteristics influence the performance. We evaluate how

cluster analysis choices affect the performance by studying four publicly available human can-

cer data sets: breast, brain, kidney and stomach cancer. In particular, we focus on how the

sample size, distribution of subtypes and sample heterogeneity affect the performance.

Results

In general, increasing the sample size had limited effect on the clustering performance, e.g.

for the breast cancer data similar performance was obtained for n = 40 as for n = 330. The

relative distribution of the subtypes had a noticeable effect on the ability to identify the dis-

ease subtypes and data with disproportionate cluster sizes turned out to be difficult to clus-

ter. Both the choice of clustering method and selection method affected the ability to identify

the subtypes, but the relative performance varied between data sets, making it difficult to

rank the approaches. For some data sets, the performance was substantially higher when

the clustering was based on data from only one sex compared to data from a mixed popula-

tion. This suggests that homogeneous data are easier to cluster than heterogeneous data

and that clustering males and females individually may be beneficial and increase the

chance to detect novel subtypes. It was also observed that the performance often differed

substantially between females and males.

Conclusions

The number of samples seems to have a limited effect on the performance while the hetero-

geneity, at least with respect to sex, is important for the performance. Hence, by analyzing

the genders separately, the possible loss caused by having fewer samples could be out-

weighed by the benefit of a more homogeneous data.
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Introduction

Diseases like cancer can arise from a multitude of genetic and epigenetic changes. Studying gene

expression profiles from tumor samples in cancer patients can reveal information about novel

cancer subtypes [1, 2]. However, the problem is challenging since the regulatory mechanisms

underlying gene expression are complex and expression levels are affected by external environ-

mental factors like diet and the use of drugs, as well as internal factors like gender and age.

Profiling of gene expression is a way of analyzing the activity of genes, and technologies like

RNA- sequencing and microarrays have made it possible to look at gene expressions for thou-

sands of genes simultaneously. Signatures in gene expression are widely used in medical

research, e.g. in the assessment of breast cancer [3, 4] and for predicting prognosis in colon

cancer [5–7] and ovarian cancer [8–10]. A common aim is to detect novel disease groups,

which can be used for personalized treatments, but to become a more useful tool in the field of

personalized medicine there is a need for evaluation of profiling methods [11].

A popular approach for detecting novel subtypes of a disease is to use cluster analysis,

which is an unsupervised approach for finding groups with similar patterns [12]. It has been

frequently used for identifying subtypes of cancer by clustering samples (individuals) with sim-

ilar gene expression patterns [13–15], as well as for finding groups of genes that have similar

profiles over samples [16, 17]. Classical algorithms such as hierarchical clustering and k-means

clustering are popular choices, but there are several alternative clustering methods, e.g. self-

organizing map (SOM) [18], Partitioning Around Medoids (PAM) [19] and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [20]. For an extensive overview of

available clustering methods, see [21].

The high dimensionality of gene expression data makes detection of novel subtypes a diffi-

cult task, which is also complicated by the noisy character of the data [22]. It is therefore com-

mon to apply either variable selection or feature extraction prior to the analysis to lower the

dimensionality of the problem. A wide range of variable selection and feature extracting meth-

ods have been proposed making the number of clustering approaches, defined by the

dimensionality reduction method and the clustering algorithm, very large.

The clustering algorithms use different strategies to define groups and can therefore cluster

samples in rather dissimilar partitions. Consequently, the relative performance of different

clustering methods can be expected to vary among different data sets. Understanding which

factors affect the clustering performance is essential in order to select a suitable clustering

approach for a specific problem. However, for problems aiming at detecting novel disease sub-

types using gene expression data, there are few studies that have evaluated the performance of

different clustering approaches.

Jaskowiak et al. [23] compared 4 clustering methods and 12 distance measures and con-

cluded that k-medoids and hierarchical clustering with average linkage were in general supe-

rior over hierarchical clustering with complete or single linkage. In an article by de Souto et al.

[24], 7 clustering algorithms were compared on 35 gene expression data sets; the best result

was achieved with a parametric approach assuming a mixture of multivariate Gaussians. Frey-

hult et al. [25] showed that k-means and hierarchical clustering using Ward´s linkage per-

formed significantly better than PAM and SOM, but they also pinpointed that pre-processing

steps could have a major influence on the performance. To our knowledge, limited efforts have

been made in order to understand how the sample size and the distribution of the samples

affect the clustering performance in high dimensional gene expression data.

A challenge in detecting novel disease subtypes using cluster analysis is that the individuals

in the study are often heterogeneous and that they can be grouped with respect to several fac-

tors, e.g. disease subtype, age, and gender. The fact that several of the factors may have a
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pronounced effect on the gene expression reduces the chance that the resulting cluster parti-

tion will agree with the partition defined by the disease subtype. We argue that the more het-

erogeneous a patient group is, the more difficult it will be to achieve a partition that

corresponds to the disease subtype.

One solution would be to base the clustering on a relatively homogeneous subset of

patients. A possible drawback with this approach may be that including fewer patients will in

itself have a negative effect on clustering performance.

In this paper we compare the performance of 30 clustering approaches, defined by which

clustering algorithm is used and how the variable selection and feature extraction are per-

formed. The approaches are used to analyze gene expression data (RNA-seq data) from four

human cancer tumor types, each with two known subtypes. In particular, we study how the

clustering is affected by the characteristics of the data, including the sample size, the distribu-

tion of the subtypes and the homogeneity of the individuals.

Methods

Data sets

We included four human cancer data sets from The Cancer Genome Atlas (TCGA) network,

where the gene expression data were obtained using Illumina HiSeq 2000 RNA Sequencing

Version 2. Clinical data together with Level 3 mRNA-seq RSEM data [26] were downloaded

from Broad institute GDAC FireBrowse Version: 1.1.35.

Only samples from primary solid tumors were included in the study. For all data sets, the

individuals belong to one of two predefined subclasses, see Table 1. We consider these sub-

classes as the gold standard partitions but it should be noted that there exist several ways of

dividing the observations into subclasses.

Brain cancer data set. The Brain data consists of normalized gene expression measure-

ments in tumor samples from patients with lower grade glioma (denoted as LGG by TCGA).

The patients were classified into three prognostically significant subtypes, IDHcodel—gliomas

with IDH mutation and 1p/19q co-deletion, IDHnocodel-gliomas with an IDH mutation and

no 1p/19q co-deletion, and gliomas with wild-type IDH -IDHwt. [27]. Gliomas with wild-type

IDH were excluded from the analysis, whereas the two remaining classes defined the sub-

groups. A total of 226 samples remained after removing samples that were missing informa-

tion about subtype, see Table 1 for further details.

Breast cancer data set. The Breast data consists of normalized gene expression measure-

ments in tumor samples from patients with breast invasive carcinoma (denoted as BRCA by

TCGA). Subtypes were defined by the Estrogen Receptor (ER) status, either positive or

Table 1. Summary of data sets.

Data set Size Subtypes Gender Age

Brain 20532 x 226

(17512)

IDHcodel (85) and IDHnocodel (141) Males (130)

Females (96)

Median (46)

Range (14, 89)

Breast 20532 x 1031

(17783)

ER+ (794) and ER- (237) Males (0)

Females (1031)

Median (59)

Range (27, 90)

Kidney 20532 x 163

(17612)

type 1 (77) and type 2 (86) Males (117)

Females (46)

Median (62)

Range (28, 88)

Stomach 20532 x 198

(18021)

CIN(138) and MSI (60) Males (118)

Female (80)

Median (68)

Range (30, 90)

A summary of the four data sets included in the study. The number of genes remaining after the pre-processing steps are written in parenthesis.

https://doi.org/10.1371/journal.pone.0219102.t001
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negative [28]. The ER status was given in the clinical data. A total of 1031 samples remained

after removing males and samples without subtype information, see Table 1 for further details.

Kidney cancer data set. The Kidney data consists of normalized gene expression mea-

surements from tumors in patients with kidney renal papillary cell carcinoma (denoted as

KIRP by TCGA). Two main subtypes, type 1 and 2, have been histologically determined [29].

A total of 163 cases remained after removing samples that were missing subtype information,

see Table 1 for further details.

Stomach cancer data set. The Stomach data consists of normalized gene expression mea-

surements from tumors in patients with stomach adenocarcinoma (denoted as STAD by

TCGA). Four molecular subgroups have been identified: Epstein-Barr Virus (EBV)–positive,

Genomically Stable (GS), MicroSatellite Instability (MSI) and Chromosomal INstability (CIN)

[30]. Here we kept only the 198 samples classified as CIN and GS and defined those as the two

subtypes, see Table 1 for further details.

Ethics statement

The data included in this study was accessed from TCGA according to open access guidelines

and comes from previously publishes articles where written informed consents were obtained

in accordance with the local institutional review boards [27, 29–31]. More information is avail-

able at: http://cancergenome.nih.gov/abouttcga/policies/informedconsent.

Pre-processing of data

The analyses were based on normalized level 3 mRNA-seq gene expression data from TCGA.

Prior to the analyses the data were log2-transformed. Furthermore, genes that either showed

no variation between samples (i.e. standard deviation equal to 0) or were expressed at very low

levels (i.e. > 75% of the samples had gene expression values below the 15th percentile) were

removed prior to the downstream analysis.

Variable selection and feature extraction

The first step in the downstream analysis was to determine which variables or features should

be included in the cluster analysis. This was done either by selecting the N genes with the high-

est standard deviation, or by creating new features using principal component analysis (PCA)

and let the analysis be based on the M first principal components (PC). The number of compo-

nents M was set to 5 or 30 and N was set at three levels: 100, 1000, and all genes. Hence five

selections methods were considered: top 100 genes, top 1000 genes, all genes, first 5 PC and

first 30 PC. The principal components were obtained using the R-function “prcomp”.

Cluster analysis

The final step in the analysis was to cluster tumor samples based on their gene expression pro-

files with the objective to detect cancer subtypes. Clustering algorithms often demand that the

user specifies the number of resulting clusters. Here, the analyses were performed in such way

that the clustering resulted in two clusters. The main aim here was not to study the relative per-

formance of different clustering approaches, but to study how data characteristics like sample

size, distribution of subtypes and sample heterogeneity influence the clustering performance.

Therefore we decided to include commonly used clustering algorithms and commonly used

methods for variable selection and feature extraction.

Hierarchal clustering is frequently used and an example of a connectivity model. We choose

to include a hierarchical clustering using the Manhattan distance and Ward´s linkage due to its
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relative good performance [25]. A rather different hierarchical clustering approach, using a cor-

relation distance was included as a complement. Within the centroid models, the k-means clus-

tering is the most used approach and was therefore included. Self-organizing map (SOM) is

arguably the most known unsupervised neural network and was therefore included in the study.

For low dimensional problems, i.e. few features, k-means and SOM can be expected to perform

similar, but this may not hold true for high-dimensional problems. Affinity propagation (AP)

may not be widely used for clustering cancer samples, but were included since it did not resem-

ble any of the other included algorithms. Finally, we included an ensemble approach since it

arguably offers a robust clustering alternative. The included algorithms are described below.

Hierarchical clustering. There are two strategies in hierarchical clustering; agglomerative

and divisive. Here the agglomerative clustering was used. This bottom-up approach starts by

treating the individual samples as clusters and then recursively joins them until only one single

cluster remains. Hierarchical clustering requires that the user specifies a dissimilarity measure

and a method for calculating distances between clusters. In this paper both the Manhattan dis-

tance and the absolute Pearson correlation distance (i.e. d(x,y) = 1 –| ρ(x,y) |, where ρ is Pear-

son correlation) were used as dissimilarity measures and Ward´s linkage was used to calculate

the distance between clusters [32]. The resulting dendrogram was cut so that two clusters were

defined. The R-function “hclust” was used for performing hierarchical clustering. Henceforth

the hierarchical cluster analysis method utilizing the Manhattan distance and the absolute

Pearson correlation distance will be denoted by hclust(M) and hclust(cor), respectively.

K-means clustering. The k-means algorithm (kmeans) partitions n samples into k clusters

where each sample is assigned to the cluster with the nearest mean. The method requires the

user to predefine the number of clusters k, here k = 2 The aim of the algorithm is to minimize

the within-cluster sum of squares, i.e.

argmin

s
Pk

i¼1

P
x2Si
kx � μik

2
;

where {x1, . . ., xn} are the d-dimensional observations, S = {S1, . . ., Sk} are the k clusters and

{μ1, . . ., μk} are the associated centroids [33].

The analyses were made using the R-function “kmeans”, which used 10 random starts

(nstart = 10).

Self-organizing map. Self-Organizing Map (SOM) is a type of artificial neural network

that can be used for clustering. A SOM consists of two layers; one input and one output layer.

The output layer typically consists of two-dimensional arrays of nodes that are ordered as a

rectangular or hexagonal grid. The input layer is fully connected to the output layer, and each

node has a vector of weights of the same dimension as the input vector. The weights are

updated during the training process and when the weights are fully trained, the distance from

each node to the input data is calculated and the sample falls into the cluster (node) that is clos-

est [18].

The clusters were obtained using the function “som” in the R-package “kohonen” [34], with

default settings, a hexagonal 2x1 grid and rlen = 1000. Since the function uses a random input,

the algorithm was run ten times where only the result which gave the lowest within-variation

was reported.

Affinity propagation. The Affinity Propagation (AP) algorithm tries to identify data

points (exemplars) that can represent clusters. It considers every data point as a potential

exemplar and tries to maximize the total similarity between data points and their exemplars. If

we consider data points as nodes in a network, then the algorithm operates by sending two

types of messages along the edges: one that represent how well suited a data point x is to serve
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as exemplar to a data point y, and one indicating how suitable it is for y to choose x as it´s

exemplar. The algorithm updates the messages until convergence [35].

The R-function “apclusterK” in the package “apcluster” [36] with parameters prc = 0,

lam = 0.9, maxits = 2000, convits = 200 and nonoise = TRUE was used for performing affinity

propagation. The number of clusters k was set to 2 and the function “negDistMat” was used

for calculating dissimilarities.

Cluster ensemble. The resulting clusters from the above mentioned methods were used

to create a consensus cluster using Cluster Ensemble (CE). This was achieved using the R-

function “cl_consensus” in package “clue” [37], with method “HE”, which is a fixed-point

algorithm for obtaining hard Euclidean least squares consensus partitions. The analysis

resulted in a consensus partition dividing the samples into two groups.

Data composition

Aside from the fact that the data sets in this study come from different cancer diseases, there

are a number of other things that characterize them as well, e.g. the sample size, the relative

distribution of the two subtypes and underlying factors like gender and age distribution.

In order to study how the data characteristics affected the clustering performance, we con-

structed sub-data sets by sampling the data as described below. Unless otherwise stated the

sampling was made without replacement and repeated 10 times to reduce sampling effects. We

sampled a maximum of 70% of the available samples. All cluster analysis approaches were

applied to each of the sub-data sets.

Number of samples

The number of samples in the data sets varied between 163 and 1031. To evaluate how sensi-

tive the clustering performance was to sample size, we compared the performance by consider-

ing sub-data sets with different number of samples. The sample size was varied (with a step of

10) from 40–110, 40–330, 40–100 and 40–80 for Brain, Breast, Kidney and Stomach, respec-

tively. Each sampling was made so that the fraction of observations belonging to each of the

two subtypes was fixed at 50% (balanced distribution). In addition, the analysis were repeated

for a case where 20% of the samples were in the smallest group. The maximum number of

samples were then 120, 270, 70 and 120 for Brain, Breast, Kidney and Stomach respectively.

Distribution of subtypes

Here the fraction of samples belonging to the first subtype was varied while keeping the sample

size fixed. The percentage of samples belonging to the first subtype was altered at the levels

10%, 20%, 30%, 40% and 50%, with 108, 100, 65 and 83 samples for Brain, Breast, Kidney and

Stomach, respectively.

Homogeneity with respect to gender

Homogeneous data sets with respect to gender (i.e. data sets including only males or females)

were constructed such that the distribution of the subtypes was symmetric and the sample size

was the same for both genders. As a control, we constructed a heterogeneous data set with 50%

female and 50% male, having the same sample size and relative distribution of the subtypes as

the two homogeneous data sets. Here the sample sizes were 55, 28 and 36 for Brain, Kidney

and Stomach, respectively. The ARIs for the heterogeneous data were calculated separately for

males and females.
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Difficulty of the clustering problems

The considered sub-classes for the data sets were regarded as gold standards. Arguably, other divi-

sions of the data could have been considered. A minimum criterion on a gold standard is that

there should be a genetic signal that can be detected using supervised techniques. To assess how

well the gene expression data separated the cancer subtypes, we used PCA and plotted the first two

components with the patients colored according to subtypes. In addition, the supervised classifier

random forest was applied to the data sets with the gold standard partition as response [38]. The

fraction of correctly classified samples was used as a measure of the separation between the sub-

types. A data set with low separation may be regarded as a difficult clustering problem. Random

forest using sampling with replacement was performed using the R-package “randomForest” [39].

Performance measure

The performance of a clustering approach was determined by how well the resulting partition

matched the gold standard partition. Several clustering similarity measures have been pro-

posed [40–42]. We used the adjusted Rand index (ARI), which is a modified version of the

Rand index (proposed by William Rand 1971) that adjusts for agreement by chance [43].

ARI is calculated as follows. Suppose we have n objects in a set S. Let A = {A1, A2, . . ., Al}

and B = {B1, B2, . . ., Bm} be two partitions of S (one is the gold standard partition and one is

the result from clustering). Then the overlap of A and B can be described by a contingency

table, see Table 2.where nij denotes the count of common objects in Aj and Bi.
The Adjusted Rand Index (ARI) is then obtained as

ARI A;Bð Þ ¼

P
i;j

nij

2
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:

The ARI takes value 1 if the two partitions are identical and has expected value 0 in the case

of a completely random partition. It can yield negative values if the agreement is worse than

expected by chance. The R-function “RRand” in package “phyclust” [44] was used for calcula-

tion of ARI.

The same ARI-value can be obtained by very different partitions of the samples. Hence, the

fact that two cluster outputs yield the same ARI-values compared to the gold standard does

not necessarily imply that the resulting clusters are similar. In addition to quantifying the

agreement with the gold standard, ARI was used to quantify the similarity between different

clustering approaches, by considering the average of the pairwise ARI (apARI).

The agreement between partitions was also evaluated using the distance metric variation of

information [40]. Since the relative results were very similar to those obtained by ARI, we

chose to present only the ARI-values.

Statistical analyses

In the cases where we have subsampled data, the tables contain mean values of the 10 repli-

cates. For comparisons between different settings (e.g. n = 40 versus n = 100) we used the one-
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sample Wilcoxon signed rank test based on the values from the 30 clustering approaches given

in the tables (clustering approaches using 30 PC were omitted for comparisons with sample

size lower than 30). The Wilcoxon rank sum test was used in the case when we compared

apARI for different sample sizes. For each test we report the median of the ARI-differences

(i.e. delta ARI) and the corresponding p-value (p). Note that the figures were obtained in a

slightly different way than the tables. The figures show the result for the 10 replicates, where

each value was obtained by averaging over all 30 clustering approaches. All analyses were per-

formed using the R programming language version 3.4.3 [45].

Results

All data included in this study were derived from tumor samples in cancer patients with

known subtypes. The partition defined by the subtypes served as the gold standard. Brain and

Breast revealed clear separation between the subtypes, see Fig 1. Supervised classification

yielded 99.1% and 91.7% accuracy for Brain and Breast, respectively. The subtypes were less

distinguishable for Stomach and Kidney, with a classification accuracy of 73.6% and 86.9%,

respectively, see Fig 1. Hence, all data sets contain information that distinguish the subtypes

although Brain and Breast appear to be relatively easier clustering problems.

Here we present results on how clustering performance was affected by clustering method,

selection method, sample size, relative distribution of subtypes and the homogeneity of the data.

Clustering approaches

Thirty clustering approaches (six clustering methods combined with five selection methods)

were applied to the four data sets, where the performance was quantified using ARI. The clus-

tering performance varied considerably between the data sets. Breast was relatively easy to

cluster while the other data sets were harder to cluster. The median ARI (taken over all 30 clus-

tering approaches) for Brain, Breast, Kidney and Stomach were 0.10, 0.55, 0.17 and 0.15

respectively. Interestingly, the overall clustering performance for Brain was low while the

obtained accuracy using supervised classification was relatively high. This shows that a simple

classification problem is not necessarily an easy clustering problem.

The choice of clustering method had a large impact on the clustering performance, but the

methods’ relative performance varied between the data sets making it difficult to rank the

methods, see Fig 2A and S1 Table. Furthermore, the performance was often sensitive to the

choice of selection method, e.g. when applying SOM to Breast the ARI ranged from 0.00 (5

PC) to 0.69 (30 PC).

The relative performance of the five selection methods also varied between the data sets,

making it hard to draw general conclusions, see Fig 2B and S1 Table. However, two clustering

approaches, hclust(cor) combined with 5 PC or 30 PC, had relatively low performance for all

data sets, see S1 Table.

Table 2. Contingency table.

Partition A

Partition B
Class A1 A2 � � � Al Sums

B1 n11 n12 � � � n1l b1

B2 n21 n22 � � � n2l b2

..

. ..
. ..

. . .
. ..

. ..
.

Bm nm1 nm2 � � � nml bm
Sums a1 a2 � � � al

https://doi.org/10.1371/journal.pone.0219102.t002
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Sample size

Next we investigated how the sample size affected the performance of the clustering, while

keeping the distribution of subtypes fixed at 50%. To our surprise, only limited gain in perfor-

mance was observed when the sample size was increased, see Fig 3 and S2–S5 Tables. In Brain,

a small significant increase in performance (delta ARI = 0.016, p = 0.014) was observed

between the smallest and largest considered sample sizes (n = 40 and n = 110). For Stomach

we found no significant increase in performance (delta ARI = -0.004, p = 0.524) between the

Fig 1. Principal component analysis to visualize separation between subtypes. Figures based on the first two principal components, where the subtypes

are marked in different colors; Breast: ER+(red) and ER-(blue), Brain: IDHnocodel (red) and IDHcodel (blue), Kidney: type 1(red) and type 2(blue),

Stomach: CIN (red) and MSI (blue).

https://doi.org/10.1371/journal.pone.0219102.g001
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smallest (n = 40) and largest (n = 80) sample sizes. This may partially be explained by the fact

that the performance was very low also when the sample size was relatively high, see Fig 3. For

Kidney, there was a modest increase in performance when n was increased from 40 to 100

(delta ARI = 0.091, p<0.0001), but there was no stable trend, see Fig 3. For Breast, no signifi-

cant increase in performance was found between n = 40 and n = 330, (delta ARI = -0.028,

p = 0.529). The trends presented were observed independently on which clustering algorithm

was considered, see S2–S5 Tables.

In addition to consider the balanced distribution with 50% of each of the subtypes, we also

considered a case where 20% of the observations were in the smallest group. Again, it was

observed that the sample size had a limited effect on the performance, see S6–S9 Tables.

Interestingly, although increased sample size had limited effect on the performance it was

evident that the 30 approaches clustered the individuals more similar when the sample size

increased from relatively small (n = 40) to modest (n = 100), see Fig 4. This was most evident

for Breast, where the average pairwise ARI (apARI) was significantly lower at n = 40 than at

n = 330 (delta apARI = 0.204, p<0.001). For all data sets, the agreement between the

approaches was higher than the agreement with the gold standards. Arguably, this indicates

that there are relatively strong signals in the data sets that are not in absolute agreement with

the considered cancer subtypes, see Figs 3 and 4.

Distribution of subtypes

We investigated how the performance was affected when the relative distribution of the two

subtypes was altered. Here the sample size was fixed while the proportion of the smallest sub-

type was altered from 10% (disproportionate data) to 50% (balanced data). It should be

stressed that the relative distribution of the classes in practice are unknown, and cannot be esti-

mated in advance. For Brain, Breast, Kidney and Stomach, the performance was significantly

higher for the balanced data compared to the disproportionate data, (delta ARI = 0.022,

p< 0.001), (delta ARI = 0.481, p<0.0001), (delta ARI = 0.102, p<0.0001) and (delta

ARI = 0.106, p<0.0001) respectively, see Fig 5 and S10–S13 Tables. Somewhat surprisingly,

the highest median ARI-values were found at 40/60 distribution (Brain, Kidney and Stomach)

and at 30/70 distribution for Breast.

Breast was investigated further by considering subtype fractions between 10–90%, see S11

Table. The most disproportionate data, 10% or 90% from subtype ER-, yielded very low perfor-

mance with median ARI-values -0.003 and 0.084, respectively. Less disproportionate data with

20% or 80% performed better, with median ARI-values 0.309 and 0.205, respectively. The fairly

balanced data sets with 30%, 40%, 50%, 60% and 70%, had the best performances with median

ARI-values 0.594, 0.552, 0.474, 0.398 and 0.355, respectively. Almost all of the differences

between the fractions were significant, the exception was the 20% fraction that did not differ

significantly from the 70% fraction.

Investigating the clustering methods with respect to the distribution of the subtypes

revealed that all clustering methods were affected, but for hclust(cor) the differences were less

visible due to the overall low performance, see S1 Fig and S10–S13 Tables.

Analyze genders separately or together?

It is well known that there are widespread gender differences in gene expression [46, 47].

Hence, gender may influence gene expression and the clustering result, suggesting that it

would be relatively easier to cluster data that are homogeneous w.r.t. sex. Furthermore, there is

a possibility that the genomic signal for different subtypes may vary in strength between males

and females. To study how gender influenced the clustering, the data sets (Brain, Kidney and
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Stomach) were used to construct new data sets: only females (Females), only males (Males)

and mixed group with 50% females. The sample size and the relative distribution of the sub-

types were kept fixed. For the mixed group, clustering was performed on all samples but ARI

was calculated in three ways: using all patients (Mixed all), only the females (Mixed females)

and only males (Mixed males), see Methods for further details.

Fig 2. Performance of clustering methods and selection methods. Adjusted Rand index for clustering result compared to gold standard partition.

Figure A shows results for the clustering methods, where each box contains observations from the five selection methods. Figure B shows results for the

selection methods, where each box contains observations from the six clustering methods.

https://doi.org/10.1371/journal.pone.0219102.g002
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Arguably, a relatively high ARI for Females (Males) compared to Mixed females (Mixed

males) suggests that a homogeneous data w.r.t. sex has a positive effect on the clustering per-

formance. The ARI-values for Females and Males were used to compare the strength of the

subtype specific signals.

The clustering performance was higher when the clustering was performed on homoge-

neous data compared to heterogeneous data in all cases but one, see Fig 6 and S14 Table. The

biggest differences were observed for Kidney and Stomach. For Kidney median ARI was 0.049

for Mixed males and 0.159 for Males (225 percentage increase, delta ARI = 0.092, p<0.0001)

Fig 3. Sample size. Boxplots of adjusted Rand index for different number of observations and a symmetric distribution of the subtypes. Each

box contains mean adjusted Rand index values (taken over of all 30 clustering approaches) for 10 replicates.

https://doi.org/10.1371/journal.pone.0219102.g003
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the corresponding numbers for Females were (84 percentage increase, delta ARI = 0.027,

p = 0.042). For Stomach median ARI was 0.095 for Mixed males and 0.183 for Males (93 per-

centage increase, delta ARI = 0.091, p<0.0001) the corresponding numbers for Females were

(20 percentage increase, delta ARI = 0.027, p = 0.032). For Brain the differences between analy-

ses using homogeneous and heterogeneous data were relatively small (delta ARI = 0.033,

p = 0.109) and (delta ARI = -0.016, p = 0.001) for Males and Females respectively. For Brain

and Kidney, Males were considerably easier to cluster than Females (delta ARI = 0.115,

p< 0.0001) and (delta ARI = 0.100, p< 0.0001) respectively. For Stomach, no significant

Fig 4. Similarity between clustering approaches for different sample sizes. Average pairwise adjusted Rand index (apARI) between clustering

approaches for different number of observations.

https://doi.org/10.1371/journal.pone.0219102.g004

Cluster analysis on high dimensional RNA-seq data with applications to cancer research

PLOS ONE | https://doi.org/10.1371/journal.pone.0219102 December 5, 2019 13 / 21

https://doi.org/10.1371/journal.pone.0219102.g004
https://doi.org/10.1371/journal.pone.0219102


difference was observed (delta ARI = -0.002, p = 0.903). An interesting finding is that the

above results hold true for almost all of the considered clustering approaches, see S14 Table.

Discussion

The overall aim with this work was to identify and quantify sources that affect the performance

of the clustering. Arguably, unsupervised classification, where the objective is to discover

novel subgroups, is among the most difficult statistical problems. The two major difficulties

being that we are unable to train our model since the true partitions of the samples is not

Fig 5. Distribution of subtypes. Adjusted Rand index for subtype fractions 10%– 50%. Each box contains mean adjusted Rand index values (taken

over of all 30 clustering approaches) for 10 replicates.

https://doi.org/10.1371/journal.pone.0219102.g005
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known and that the data generally are affected by several factors and not just the factor of

interest, e.g. the factor defining the novel cancer subtypes. For example, patients are diverse

with respect to gender, age, ethnicity, etc. and all factors may contribute to differences in gene

expression. The lack of a true answer makes it hard to validate and evaluate clustering

approaches, which is a serious problem since applying different clustering approaches often

yield very different results. In addition, feature selection is a challenge since class labels are

unknown making it relatively harder to represent a cluster analysis problem in a lower dimen-

sion compared to a supervised classification problem.

In this work the gold standard partitions were defined by two known subtypes. Although

our ambition was to select as relevant subtypes as possible it is clear that there are several alter-

native partitions that could have been considered for validation. Here, the focus was to exam-

ine the relative effect of applying different clustering approaches and to study the impact

sample size, disproportionate cluster size and data heterogeneity had on the performance.

Arguably, this makes the definition of the gold standard less important although the choice of

the golden standard may influence the relative performance of different methods. The gold

standards were chosen based on knowledge, availability within TCGA and having a strong

“genetic signal”, i.e. high accuracy when applying supervised classification. An alternative

approach would be to define the gold standard by several factors, e.g. cancer type, gender and

age (young and old), resulting in eight classes. Challenges with this approach is that not all

underlying factors are known, that misclassification with respect to all factors will be penalized

equally, and that a large number of classes are likely to result in low ARI values.

Supervised classification suggested that there was a strong genetic signal (i.e. the subtypes

could be predicted) in all four data sets. Despite this, the clustering resulted in relatively low

performance for Brain, Kidney and Stomach, although higher than expected by chance. This

may suggest that the data are strongly affected by factors that are not necessarily related to the

considered subtypes. Arguably, clustering homogeneous data should be easier than clustering

heterogeneous data. This was confirmed when the genders were analyzed separately, where

the performance was substantially higher when the clustering was based on only one sex com-

pared to a mixed population. Splitting the samples into more homogeneous sets inevitably

leads to fewer samples, which may have a negative effect on the clustering performance. To

our initial surprise, increasing the sample size had little influence on the performance. We did

get similar performances independently if we used 40 or 300 samples. However, the perfor-

mances of the clustering approaches became more similar when the sample size increased.

Arguably, this suggest that sample size has some importance, but that increasing the sample

size per se may not solve the clustering problem. These findings were also observed in a simu-

lation, where heterogeneous data in comparison with homogeneous data showed very little

gain in performance when adding samples, see S2 Fig. It should be stressed that we did not

study how the performance was affected when very small samples (n> 20) were considered.

Even though there are recognized gender differences in both cancer survival and treatment

response, it is not common that the clustering of subtypes are made separately for males and

females [48]. Based on our findings we believe that many omics cluster analysis studies would

benefit from analyzing smaller but more homogeneous data sets. In addition, clear gender dif-

ferences were observed. For Brain and Kidney, the male data were considerably easier to clus-

ter than the female data, suggesting a gender specific genetic signal or that the male group is

more homogeneous.

Although the primary aim was not to evaluate clustering algorithms, but to investigate

other sources contributing to the variations in performance, we made some findings. In partic-

ular, hclust(cor) often yielded lower performance than the other methods, especially when the

selection method involved principal components. We included a set of principally different
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clustering methods that are commonly used, but the included methods only cover a fraction of

the available algorithms. Further studies are needed to ensure that our findings are valid also

for other methods.

The clustering performance was sensitive to the relative distribution of the subtypes, where

data with heavily disproportionate distributions turned out to be difficult to cluster. The distri-

bution of the subtypes is not known in advance, but if the subtypes are believed to be associ-

ated with difference in survival (or some other variable), it may be possible to use survival data

to get an idea of the subtype distribution.

Fig 6. Gender difference. Adjusted Rand index for Brain, Kidney and Stomach when dividing samples by gender. All data sets had a symmetric

distribution (i.e. 50% of each subtype).

https://doi.org/10.1371/journal.pone.0219102.g006

Cluster analysis on high dimensional RNA-seq data with applications to cancer research

PLOS ONE | https://doi.org/10.1371/journal.pone.0219102 December 5, 2019 16 / 21

https://doi.org/10.1371/journal.pone.0219102.g006
https://doi.org/10.1371/journal.pone.0219102


Conclusions

Clustering high-dimensional gene expression data is a challenge. Even with a strong genetic

signal, cluster analysis approaches may fail to identify the partition of interest. One important

reason for this is that gene expression data are influenced by several factors, which may or may

not be known to the researcher. Furthermore, the optimal clustering approach depends on the

data and general recommendations are therefore difficult to give. However, the results suggest

data characteristics may influence the clustering performance. Interestingly, increasing the

sample size may not enhance the performance of the clustering although it makes the cluster-

ing approaches more similar. If the distribution of the subtypes is disproportionate, clustering

can be very difficult. Finally, the result shows that homogeneous data are easier to cluster than

heterogeneous data. Together this suggests that it may be beneficial to analyze the genders sep-

arately. The gain of obtaining a more homogeneous data outweighs the possible drawback of

having fewer samples.

Supporting information

S1 Table. Performance for different clustering approaches. Adjusted Rand index for differ-

ent data sets and 30 clustering approaches (combination of clustering method and selection

method).

(XLSX)

S2 Table. Performance for different sample sizes in the Brain data set. Average adjusted

Rand for different sample sizes (n) a 50/50% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S3 Table. Performance for different sample sizes in the Breast data set. Average adjusted

Rand for different sample sizes (n) and a 50/50% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S4 Table. Performance for different sample sizes in the Kidney data set. Average adjusted

Rand for different sample sizes (n) a 50/50% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S5 Table. Performance for different sample sizes in the Stomach data set. Average adjusted

Rand for different sample sizes (n) a 50/50% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S6 Table. Performance for different sample sizes in the Brain data set. Average adjusted

Rand for different sample sizes (n) for a 20/80% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S7 Table. Performance for different sample sizes in the Breast data set. Average adjusted

Rand for different sample sizes (n) for a 20/80% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S8 Table. Performance for different sample sizes in the Kidney data set. Average adjusted

Rand for different sample sizes (n) for a 20/80% distribution of subtypes. The table shows the
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mean values based on 10 random sub-sampled data sets.

(XLSX)

S9 Table. Performance for different sample sizes in the Stomach data set. Average adjusted

Rand for different sample sizes (n) for a 20/80% distribution of subtypes. The table shows the

mean values based on 10 random sub-sampled data sets.

(XLSX)

S10 Table. Performance for different subtype distributions in Brain data. Average adjusted

Rand index for 10 random samplings for different proportions of subtypes in the Brain data

set.

(XLSX)

S11 Table. Performance for different subtype distributions in Breast data. Average adjusted

Rand index for 10 random samplings for different proportions of subtypes in the Breast data

set.

(XLSX)

S12 Table. Performance for different subtype distributions in Kidney data. Average

adjusted Rand index for 10 random samplings for different proportions of subtypes in the Kid-

ney data set.

(XLSX)

S13 Table. Performance for different subtype distributions in Stomach data. Average

adjusted Rand index for 10 random samplings for different proportions of subtypes in the

Stomach data set.

(XLSX)

S14 Table. Performance for genders with even subtype distribution. Average adjusted Rand

index for 10 random samplings when keeping the subtypes fixed at 50%.

(XLSX)

S1 Fig. Performance for different subtype distributions and clustering methods. Adjusted

Rand index for 10 random samplings and 5 gene selection methods.

(TIF)

S2 Fig. Simulation study. Thousand features (genes) were simulated for n patients (n = 40, 80,

160), where the patients were categorized with respect to gender, age (old or young) and can-

cer type (A or B). Fifty percent of the patients were male, 50% were young and 50% had type A

such that the samples were divided in eight equally sized homogeneous groups. Twenty of the

genes were affected by gender, 20 by age and 20 by cancer type and the remaining 940 genes

were not affected by any factor. The expression values from the non-affected genes were simu-

lated from a normal distribution with mean zero and standard deviation one (i.e. N(0,1)). The

expression values of the affected genes were simulated from N(-1,1) if male/young/type A and

N(1,1) if female/old/type B. Three hundred simulations were made for each considered sample

size. Hierarchical clustering using the Manhattan distance and complete linkage was applied

to each simulated sample. The resulting dendrogram was cut so that the samples were clus-

tered into two groups and the results were compared to the partition defined by cancer type

(i.e. the gold standard) using the adjusted Rand index. The clustering was made using all genes

(All), excluding genes affected by either gender or age (Without) and including only the 20

genes affected by cancer type (Only). Here “All” relates to the problem when the data are

affected by three factors, “Without” to the situation when the data are affected by a single fac-

tor, while “Only” relates to the ideal situation when only the cancer genes affect the clustering.

Cluster analysis on high dimensional RNA-seq data with applications to cancer research

PLOS ONE | https://doi.org/10.1371/journal.pone.0219102 December 5, 2019 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0219102.s016
https://doi.org/10.1371/journal.pone.0219102


Here the performance improvement when increasing the sample size was considerably lower

for the complex problem (All) compared to the easier problem (Without).

(TIF)

Author Contributions

Conceptualization: Linda Vidman, David Källberg, Patrik Rydén.

Formal analysis: Linda Vidman.

Funding acquisition: Patrik Rydén.

Methodology: Linda Vidman, David Källberg, Patrik Rydén.

Project administration: Patrik Rydén.

Software: Linda Vidman, Patrik Rydén.

Supervision: Patrik Rydén.

Visualization: Linda Vidman.

Writing – original draft: Linda Vidman, Patrik Rydén.

Writing – review & editing: Linda Vidman, David Källberg, Patrik Rydén.

References
1. Aure MR, Vitelli V, Jernström S, Kumar S, Krohn M, Due EU, et al. Integrative clustering reveals a novel

split in the luminal A subtype of breast cancer with impact on outcome. Breast cancer research: BCR.

2017; 19(1):44–. https://doi.org/10.1186/s13058-017-0812-y PMID: 28356166.

2. Zhao L, Zhao H, Yan H. Gene expression profiling of 1200 pancreatic ductal adenocarcinoma reveals

novel subtypes. BMC Cancer. 2018; 18(1):603. https://doi.org/10.1186/s12885-018-4546-8 PMID:

29843660

3. Shachar SS, Muss HB. Internet tools to enhance breast cancer care. NPJ Breast Cancer. 2016;

2:16011. https://doi.org/10.1038/npjbcancer.2016.11 PMID: 28721377.

4. Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early stage breast cancer.

Nature Reviews Clinical Oncology. 2017; 14:595. https://doi.org/10.1038/nrclinonc.2017.74https://

www.nature.com/articles/nrclinonc.2017.74#supplementary-information. PMID: 28561071

5. Nguyen MN, Choi TG, Nguyen DT, Kim J-H, Jo YH, Shahid M, et al. CRC-113 gene expression signa-

ture for predicting prognosis in patients with colorectal cancer. Oncotarget. 2015; 6(31):31674–92.

PMC4741632. https://doi.org/10.18632/oncotarget.5183 PMID: 26397224

6. Xu G, Zhang M, Zhu H, Xu J. A 15-gene signature for prediction of colon cancer recurrence and progno-

sis based on SVM. Gene. 2017; 604:33–40. https://doi.org/10.1016/j.gene.2016.12.016 PMID:

27998790

7. Abdul Aziz NA, Mokhtar NM, Harun R, Mollah MMH, Mohamed Rose I, Sagap I, et al. A 19-Gene

expression signature as a predictor of survival in colorectal cancer. BMC Medical Genomics. 2016; 9

(1):58. https://doi.org/10.1186/s12920-016-0218-1 PMC5016995. PMID: 27609023

8. Matondo A, Jo YH, Shahid M, Choi TG, Nguyen MN, Nguyen NNY, et al. The Prognostic 97 Chemore-

sponse Gene Signature in Ovarian Cancer. Scientific Reports. 2017; 7:9689. https://doi.org/10.1038/

s41598-017-08766-5 PMC5575202. PMID: 28851888

9. Cheon D-J, Tong Y, Sim M-S, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene signature reg-

ulated by TGFβ signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin-

ical cancer research: an official journal of the American Association for Cancer Research. 2014; 20

(3):711–23. https://doi.org/10.1158/1078-0432.CCR-13-1256 PMC3946428. PMID: 24218511

10. Adib TR, Henderson S, Perrett C, Hewitt D, Bourmpoulia D, Ledermann J, et al. Predicting biomarkers

for ovarian cancer using gene-expression microarrays. British Journal of Cancer. 2004; 90(3):686–92.

https://doi.org/10.1038/sj.bjc.6601603 PMC2409606. PMID: 14760385

11. Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor

principle in personalized medicine. Expert review of molecular diagnostics. 2012; 12(6):621–8. https://

doi.org/10.1586/erm.12.46 PMID: 22845482.

Cluster analysis on high dimensional RNA-seq data with applications to cancer research

PLOS ONE | https://doi.org/10.1371/journal.pone.0219102 December 5, 2019 19 / 21

https://doi.org/10.1186/s13058-017-0812-y
http://www.ncbi.nlm.nih.gov/pubmed/28356166
https://doi.org/10.1186/s12885-018-4546-8
http://www.ncbi.nlm.nih.gov/pubmed/29843660
https://doi.org/10.1038/npjbcancer.2016.11
http://www.ncbi.nlm.nih.gov/pubmed/28721377
https://doi.org/10.1038/nrclinonc.2017.74
https://www.nature.com/articles/nrclinonc.2017.74#supplementary-information
https://www.nature.com/articles/nrclinonc.2017.74#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/28561071
https://doi.org/10.18632/oncotarget.5183
http://www.ncbi.nlm.nih.gov/pubmed/26397224
https://doi.org/10.1016/j.gene.2016.12.016
http://www.ncbi.nlm.nih.gov/pubmed/27998790
https://doi.org/10.1186/s12920-016-0218-1
http://www.ncbi.nlm.nih.gov/pubmed/27609023
https://doi.org/10.1038/s41598-017-08766-5
https://doi.org/10.1038/s41598-017-08766-5
http://www.ncbi.nlm.nih.gov/pubmed/28851888
https://doi.org/10.1158/1078-0432.CCR-13-1256
http://www.ncbi.nlm.nih.gov/pubmed/24218511
https://doi.org/10.1038/sj.bjc.6601603
http://www.ncbi.nlm.nih.gov/pubmed/14760385
https://doi.org/10.1586/erm.12.46
https://doi.org/10.1586/erm.12.46
http://www.ncbi.nlm.nih.gov/pubmed/22845482
https://doi.org/10.1371/journal.pone.0219102


12. Sotiriou C, Neo S-Y, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and

prognosis based on gene expression profiles from a population-based study. Proceedings of the

National Academy of Sciences of the United States of America. 2003; 100(18):10393–8. https://doi.org/

10.1073/pnas.1732912100 PMC193572. PMID: 12917485

13. Ren Z, Wang W, Li J. Identifying molecular subtypes in human colon cancer using gene expression and

DNA methylation microarray data. International Journal of Oncology. 2016; 48(2):690–702. https://doi.

org/10.3892/ijo.2015.3263 PMC4725456. PMID: 26647925

14. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling iden-

tifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences

of the United States of America. 2004; 101(3):811–6. https://doi.org/10.1073/pnas.0304146101

PMC321763. PMID: 14711987

15. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, et al. Gene Expression

Profiling Identifies Molecular Subtypes of Inflammatory Breast Cancer. Cancer Research. 2005; 65

(6):2170–8. https://doi.org/10.1158/0008-5472.CAN-04-4115 PMID: 15781628

16. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expres-

sion patterns. Proceedings of the National Academy of Sciences of the United States of America. 1998;

95(25):14863–8. PMC24541. https://doi.org/10.1073/pnas.95.25.14863 PMID: 9843981

17. Fujikado N, Saijo S, Iwakura Y. Identification of arthritis-related gene clusters by microarray analysis of

two independent mouse models for rheumatoid arthritis. Arthritis Research & Therapy. 2006; 8(4):

R100–R. https://doi.org/10.1186/ar1985 PMC1779393. PMID: 16805906

18. Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics.

1982; 43(1):59–69. https://doi.org/10.1007/BF00337288

19. Kaufman L, Rousseeuw PJ. Partitioning Around Medoids (Program PAM). Finding Groups in Data:

John Wiley & Sons, Inc.; 2008. p. 68–125.

20. Ester M, Kriegel H-P, #246, Sander r, Xu X. A density-based algorithm for discovering clusters a den-

sity-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining; Portland, Oregon.

3001507: AAAI Press; 1996. p. 226–31.

21. Oyelade J, Isewon I, Oladipupo F, Aromolaran O, Uwoghiren E, Ameh F, et al. Clustering Algorithms:

Their Application to Gene Expression Data. Bioinformatics and Biology Insights. 2016; 10:237–53.

https://doi.org/10.4137/BBI.S38316 PMC5135122. PMID: 27932867

22. Yu X, Yu G, Wang J. Clustering cancer gene expression data by projective clustering ensemble. PLOS

ONE. 2017; 12(2):e0171429. https://doi.org/10.1371/journal.pone.0171429 PMID: 28234920

23. Jaskowiak PA, Costa IG, Campello RJGB. Clustering of RNA-Seq samples: Comparison study on can-

cer data. Methods. 2017. https://doi.org/10.1016/j.ymeth.2017.07.023.

24. de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A. Clustering cancer gene expression

data: a comparative study. BMC bioinformatics. 2008; 9:497. Epub 2008/11/29. https://doi.org/10.1186/

1471-2105-9-497 PMID: 19038021; PubMed Central PMCID: PMCPMC2632677.
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