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Abstract: Cervical cancer is a highly prevalent cancer that affects women around the world. With the
availability of new technologies, researchers have increased their efforts to develop new drug delivery
systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research
in systematic and localized drug delivery systems and compared the advantages and disadvantages
of these methods.
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1. Introduction

Cervical cancer is the third most common malignancy among women, with approximately half a
million newly diagnosed cases and over 200,000 deaths annually [1,2]. Although most cases of cervical
cancer can be prevented by routine screening and treatment of precancerous lesions, cervical cancer is
the leading cause of cancer mortality among women in developing countries [3]. Its high number of
deaths is attributable to the extremely low survival rates of patients with advanced cervical cancer at
diagnosis [2].

The treatment of cervical cancer is stage-specific. While early stage disease can be cured
with radiotherapy or surgery, the most effective treatment for locally advanced stage patients is
concurrent chemotherapy and pelvic irradiation [4,5]. Typically, once weekly cisplatin is administered
intravenously while a combination of external beam radiation and brachytherapy is used to treat the
pelvic tumor. Recent findings from large scale genomic sequencing of human cervical tumors has
suggested that targeted therapies may present a better option [6]. Of note, it was recently shown
that addition of angiogenesis inhibitor, bevacizumab, to combination chemotherapy in patients with
recurrent, persistent, or metastatic cervical cancer improved median overall survival [7].

Despites advances in treatment, patients with metastatic cancers and those with recurrent or
persistent disease have limited treatment options [8]. A number of chemotherapeutic agents have
shown activity in advanced and metastatic cervical cancer, including cisplatin [9], carboplatin [10],
paclitaxel [11], ifosfamide [12], and topotecan [13]. The chemical structures of these drugs are
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shown in Figure 1. Among these chemotherapeutic agents, cisplatin is considered the most effective
chemotherapeutic drug for advanced cervical cancer [4]. Its efficacy is due to its induction of
oxidative stress and apoptosis in tumor cells through its direct interaction with DNA forming adducts,
which inhibit gene transcription [14]. However, its clinical use is limited due to tumor resistance and
serious side effects like thrombocytopenia, neutropenia, nephrotoxicity, neurotoxicity, anemia due to
hematological toxicity, and bone marrow depression [15,16].
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Drug delivery approaches can be categorized based on their route of administration (systemic or
localized) and the type of device. Systemic delivery is based on particles (dendrimer, micelle, liposome,
nano/microparticle) with surface features that help target the desired site when injected. In contrast,
localized delivery limits systemic drug toxicities by direct delivery of the drug to the tumor. Based on
depot systems that are implanted either directly into or adjacent to the tumor, the later promotes the
release of drug directly to the cancer site [17,18]. In recent years, numerous studies have been done
with localized drug delivery strategies to treat cervical cancer. Although these strategies could reduce
systemic toxicity, significant improvement in delivery strategies is still necessary to increase patient
compliance and reduce chemotherapy-related side effects. Fortunately, the easily-accessible cervix
permits non-invasive implantation directly into the cancerous tissue at the time of brachytherapy
implant [19].

In this review, we discuss the literature supporting novel drug delivery strategies for cervical
cancer treatment and highlight some of the current advancements in systemic and local drug
delivery systems.

2. Systemic Drug Delivery Systems

The entrapment of chemotherapeutic drug in nanocarriers has attracted considerable attention
due to their structure, varied composition, and surface modifications [20]. The most common
architectures for targeted drug delivery applications are nanoparticles, liposomes, micelles, and
dendrimers (Figure 2). The size of these particles usually ranges from 10 to 150 nm, which ensures
increased accumulation in the tumor with longer circulation time. Particle sizes of less than 10 nm
would be rapidly cleared by the kidneys, and sizes larger than 150 nm would risk recognition and
elimination by the macrophage cells [20]. Encapsulating chemotherapies in nanocarriers offers a
number of advantages, such as protection from degradation in the bloodstream, enhancement of
drug stability, targeted drug delivery, decreased toxic side effects, and improved bioavailability of
the drug [21,22]. Nanoscale drug delivery systems have been shown to enhance drug specificity,
decrease systemic drug toxicity, improve absorption rates, and provide protection for active agents
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from biological and chemical degradation [23,24]. Moreover, they can be designed as controlled and/or
sustained drug release systems to deliver therapeutics at a predetermined rate, for a specified period
of time. Controlled drug delivery systems could increase patient compliance by reducing the need
for repeated drug administration [25]. Little is known about the effective concentrations of drugs
used with the cervix tissue, however, it is suggested that controlled released formulations with longer
release will increase the local concentration of the drugs and increase efficacy of the chemotherapies.
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Human cancer cell lines are fundamental models, either in vitro as monolayer culture or in vivo
as xenografts in mice, to study the efficacy of therapeutic agents in cancer therapy. Hela was the first
cultured cancer cell line, which was derived from cervical cancer cells taken from Henrietta Lacks in
1951 [26]. Since then, several cervical cancer cell lines including SiHa, CaSki, C-33A, and ME-180 were
established [27]. It is worth to mention that these cell lines do not have equal value as tumor models,
thus the in vitro results of drug efficacy experiments are different. On the other hand, cancer cell lines
in three-dimensional (3D) culture models indicate higher malignancy, invasive characteristic, and drug
resistance than classic two-dimensional (2D) cell culture [28]. Thus, limited success at translating new
drug delivery systems to the clinics could be related to limitations of classic 2D cell culture and drug
screening models [29].

2.1. Inorganic Nanocarriers

Nanoparticles (NPs) of noble metals have proven their efficacy in the clinical field for cancer
therapy due to their unique features such as ease of synthesis, simple surface chemistry and
functionalization, broad optical properties, and high surface-to-volume ratio [30]. Noble metal
NPs are versatile agents with a variety of biomedical applications, including biodiagnostics [31],
imaging [32], photothermal therapy [33], radiotherapy enhancement [34], and gene and drug
delivery [35,36]. Recently, the antitumor potency of NPs against some cell lines has been
reported [37–39]. Their effectiveness comes from their interaction with cells, where cellular uptake
leads to oxidative stress from the generation of reactive oxygen species, as well as their interaction
with intracellular macromolecules like DNA and proteins, since NPs can easily traverse the nuclear
membrane and directly or indirectly interact with DNA, though by a still unknown mechanism [37].
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Noble metal NPs are mostly made by physical and chemical methods; however, this expensive
synthesis can allow toxic substances to be absorbed onto their surfaces [40]. This problem is
overcome by alternative biological synthesis. The green synthesis of NPs is safe, cost-effective, and
eco-friendly [41], without needing elaborate processes like multiple purification steps and microbial
culture maintenance [37].

One of the most promising biomaterials in the field of nanomedicine is silver nanoparticles
(AgNPs) [40,42]; its antitumor potency against cervical cancer cell lines has been recently explored.
Biogenic AgNPs decreased cell proliferation and increased DNA damage, intracellular reactive oxygen
species, and apoptosis, leading to cancer cell death [41]. Other studies demonstrated that particle size,
dose, and time influence their toxicity [37], and that, against HeLa cervical cancer cells, AgNPs loaded
with Moringa olifea extract showed anticancer activity [43].

Unfortunately, silver was shown to be reactive with body tissues, therefore, as a strategy to reduce
the high reactivity and adverse effects of silver, AgNPs were encapsulated in gelatin or polyethylene
glycol to increase the biocompatibility of the surface. However, these coated particles were less effective
than the non-coated ones [44]. In another experiment, silver-core and protein-lipid-shell NPs exhibited
anti-proliferative activity against HeLa cells due to enhanced cell penetration and targeted action [45].

Gold (Au) NPs emerged as a promising scaffold for chemotherapeutic drug and gene
delivery vehicle, due to its high bioavailability and low immunogenicity [46]. AuNPs loaded with
Podophyllum hexandrum exhibited an effective in vitro anti-proliferative activity against HeLa cells
by induction of DNA damage and cell cycle arrest at G2/M. Further results demonstrated that the
mitochondria of AuNPs-treated cells became dysfunctional due to the activation of the caspase cascade,
leading to apoptosis [47]. When conjugated to gallic acid, AuNPs exhibited cytotoxicity in both Human
Papilloma Virus (HPV) negative C33A cervical cancer cells and HPV type 16-positive (CaSki) or HPV
type 18-positive (HeLa) cervical cancer cells, but not in normal cells in vitro [48]. Moreover, Au NPs
loaded with doxorubicin exhibited stronger anticancer activity on human cervical cancer cell lines
compared to free drug [49].

To improve the selective delivery of therapeutic agents to specific cells or tissues, targeting ligands
(i.e., antibodies [50], aptamers [51], peptides [52,53], or small molecules [54]) are attached to the surface
of the nanocarriers; which allows preferential accumulation of the nanocarriers in specific cells or
tissues [55,56]. Au NPs derivatized with rhetinoic acid showed to improve the dug potency and cell
growth inhibition up to 6 times compared to non-targetd Au NPs [57].

Other examples of biomaterials are tea polyphenol-functionalized platinum NPs (TPP@Pt),
which inhibited the proliferation of and induced chromatin condensation and nuclear fragmentation
of SiHa cells [58], and copper(II) complex (LQM402), which exhibited a cytotoxic effect against cell
lines and selectivity for HeLa and CaSki cells, while displaying less cytotoxicity against normal
fibroblasts [59].

2.2. Polymeric Nanoparticles

Biodegradable polymeric NPs have received considerable research interest in anticancer drug
delivery due to their high drug loading capacity, self-stability, high cellular uptake, more desirable
biodistribution, and capability to deliver both hydrophilic and hydrophobic drugs [60,61]. While the
stealth polymers surrounding these NPs prolong circulation time, their dense layer of polymers could
inhibit the ability of target cancer cells to uptake anticancer drugs [24].

Biodegradable polymers, either natural or synthetic, can break down through chemical or
enzyme-catalyzed degradation. Biodegradable polymers offer numerous advantages in the field
of drug delivery: (1) The drug release kinetics can be controlled by degradation rate of polymers,
so a sustained and controlled drug release is possible; (2) the polymeric carrier would degrade into
nontoxic, absorbable subunits that can be metabolized; and (3) there is no need for a follow-up surgical
removal once the drug supply is depleted [62].
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Nanoparticles of various polymers have been tested. One example made of different derivatives
of poly(lactide-co-glycolide) (PLGA) showed sustained and controlled delivery of docetaxel for cervical
cancer treatment both in vitro and in vivo and demonstrated higher cellular uptake efficiency and high
antitumor efficacy [23,61,63–65]. Similarly, the acrylic polymers Eudragit-E and polyvinyl alcohol (PVA)
loaded with Naringenin induced changes in mitochondrial membrane potential, augmented reactive
oxygen species levels, decreased intracellular glutathione levels, produced morphological alterations
in apoptosis, and caused dose-dependent cytotoxicity [66]. In another study, genistein-encapsulated
ε-caprolactone-based NPs exhibited more cytotoxicity and tumor cell growth inhibition compared
with pristine genistein in the subcutaneous HeLa xenograft tumor model in BALB/c nude mice [67].

A potential therapeutic target in cervical cancer is the folate receptor given its overexpression
in human cervical cancer cells [60,68]. NPs that were conjugated with folic acid to
L-tyrosine-polyphosphate [69], gelatin [60], chitosan [70], or chitosan-coated PLGA nanoparticles [71]
and loaded with silver carbene complex, cisplatin, selenocystine, or carboplatin, respectively, increased
the specificity of chemotherapeutic drugs up to 10-fold greater than control NPs without drug in
cervical cancer cells. In vivo antitumor activity results of folate-targeted doxorubicin-loaded NPs
exhibited improved targeting and anti-tumor efficacy in inhibiting tumor cells [68]. In a recent study,
pullulan acetate NPs decorated with folate were used as a carrier for treating cervical carcinoma and
its metastatic hepatocellular carcinoma [72].

2.3. Micelles

Made up of amphiphilic block copolymers, polymeric micelles are colloidal particles that can
assemble themselves [73]. They are important for cancer therapeutic applications due to their in vivo
stability, ability to solubilize water-insoluble drugs, prolongation of blood circulation time, and small
size of 10 to 100 nm [74,75]. For example, polymeric composite micelles, which were targeted with
folic acid and loaded with paclitaxel, inhibited tumor growth and caused cell apoptosis of U14 cervical
cancer tumors both in vitro and in vivo [76].

Polymeric micelle of candesartan-g-polyethyleneimine-cis-1,2-cyclohexanedicarboxylic anhydride
polymer loaded with paclitaxel has negative surface charges and a diameter of about 100 nm;
showed strong antitumor efficacy by mediating amidase-responsive drug-release manners and quick
endosomal escape [77].

2.4. Liposomes

One of the most studied nano-carriers is liposomes [78], which are single lipid bilayer vesicles
that encapsulate water-soluble drugs in an aqueous core while the lipidbilayer entangles lipid-soluble
drugs [74].

Liposomes were used to deliver anticancer agents including bleomycin sulfate [79], cisplatin [80],
and curcumin to treat cervical cancer and could enhance bioavailability, stability, and cancerous cellular
uptake of encapsulated chemotherapeutic agents [81].

Liposomal cisplatin exhibited potent antitumor activity on ME-180, R-ME-180 (ME-180
cisplatin-resistant clone), and HeLa cells. Compared to free cisplatin, liposomal cisplatin actively
inhibited cell proliferation and decreased the spheroid-forming ability of R-ME-180 cells in tumors
and in nude mice, in a dose-dependent manner [80].

Transferrin-targeted liposomes where shown to be more specific in delivery of paclitaxel to
cervical cancer cell lines, compared to non-targeted liposomes [82]. Moreover, in vitro studies in
human cervical carcinoma cell line (HeLa) showed liposomes targeted with folic acid and transferrin
had higher cell association, penetration and efficacy of delivering doxorubicin compared to either of
the single-ligand targeted liposomes, or non-targeted liposomes [83].
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2.5. Dendrimers

Dendrimers are spherical, highly symmetric, and greatly branched, macromolecules with
a well-defined structure, surface charge, and molecular size that display a high degree of
monodispersity [84,85]. Their structure permits the attachment and presentation of antigen molecules
at their periphery, causing them to be exceedingly multifunctional. Drugs can be loaded into cavities
in their cores by chemical linkages, hydrophobic interactions, hydrogen bonds, or conjugation to
the polymer scaffold [86]. For example, they can be used to overcome the poor immunogenicity of
peptide-based vaccines against cervical cancer as shown by a study that developed a polyacrylate
star-polymer conjugated to HPV E7 protein. It was shown that these conjugates alone and after a
single immunization were able to diminish tumor growth and eliminate E7-expressing TC-1 tumors in
mice [87].

Doxorubicin loaded dendrimer was conjugated with two of cancer cell targeting moieties,
IL-6 antibody and RGD (Arginyl-glycyl-aspartic acid) peptide and the drug loading capacity
and release profile as well as their targeting efficiency were compared. Drug loaded dendrimers
decorated with IL-6 antibody exhibited higher cellular internalization, lower IC50 value, higher
drug loading, faster drug release rate and more cytotoxicity compared to RGD-conjugated one in
HeLa cells. This could be probably because of the higher multivalent ligand density on the surface
of the IL6-conjugated dendrimers, which cause better drug delivery through receptor-mediated
endocytosis [88].

2.6. Self-Emulsifying Drug Delivery Systems

Another approach to improve the delivery of highly lipophilic drugs is by self-emulsifying
drug delivery systems (SEDDS) [89]. SEDDS are complex formulations consisting of oil, surfactant,
co-surfactant, cosolvent, and drug; upon contact with aqueous medium these isotropic preconcentrates
spontaneously generate coarse emulsions, or fine nano-emulsions, referred to as self-nanoemulsifying
drug delivery systems (SNEDDS) [90]. SEDDS offers numerous advantages including quick onset
of action, enhancing bioavailability, minimizing side effect, control of delivery profiles, ease of
manufacturing, and protection of sensitive therapeutics such as peptides, which are prone to enzymatic
hydrolysis [91–93]. A few studies have shown the application of SEDDS in cervical cancer treatment;
SEDDS containing antitumor agents (bleomycin, cisplatin and ifosfamide) exhibited an increase in
the inhibitory effect of the drugs in a concentration-dependent manner on Hela cells [94]. In another
study, SEDDS formulation was used to enhance water-solubility and bioavailability of curcumin.
Oral bioavailability studies in male Wistar rats exhibited 26-fold more absorption of curcumin via its
delivery through SEDDS [95].

2.7. Antibody–Drug Conjugates

Targeted delivery of drugs by conjugating them to monoclonal antibodies, which can bind
specifically to tumor-associated target antigens is an innovative approach in cancer treatment that gains
considerable research interest. Antibody–drug conjugates (ADCs) can selectively deliver therapeutics
to tumor cells and provide sustained clinical benefit to cancer patients with less systemic toxicity [96].
Furthermore, ADCs allow more delivery of the drug over repeated cycles of therapy, and consequently
improving the therapeutic index, or ratio of efficacy to toxicity of the drug [97]. Although ADCs
approaches are promising, a few of them are approved for clinical use such as Brentuximab vedotin
(Adcetris®) and ado-trastuzumab emtansine (Kadcyla®) [98,99]. Insufficient understanding of ADCs
mechanism of action, inadequate knowledge of the management and understanding of ADCs
off-target toxicities, and difficulties in the selection of suitable clinical settings such as patient selection,
dosing regimen are some possible explanations for the slow clinical translation of new ADCs [97].
TF-011-MMAE (HuMax-TF-ADC), an antibody drug conjugate targeting tissue factor-specific cells,
exhibited excellent antitumor activity in patients with advanced solid cancers, including cervical
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cancer [100]. Another new clinical trial of ADCs is IMMU-132, which is targeting the TROP-2 antigen
and expressed by many human solid tumors including breast, colon and rectum, lung, pancreas, ovary,
prostate, and cervical cancers [101,102].

3. Localized Drug Delivery Systems

Localized delivery of chemotherapeutic drugs to the cervix offers a number of advantages
compared to systemic delivery such as its avoidance of systemic chemotherapeutic drug circulation,
which leads to less drug waste and decreased side effects and delivery of high dose of the active
agent in the cervix which improves the efficacy of the treatment [18] (Figure 3). The use of local drug
delivery systems for the treatment of metastatic cervical tumors may be inefficient, where the disease is
disseminated in distant organs, which implies the need of a more systemic approach. However, recent
reports show that less than 20% of the cases appear with distant metastasis [103], which emphasizes
that most of the cervical cancer cases would benefit from localized drug delivery systems.
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This direct delivery is possible due to the easily reachable location of the cervix through the
vagina [104]. Presently, different drugs in various forms such as gels, rings, fibers, and tablets are
delivered through the vagina for purposes such as contraception or the treatment of fungal, bacterial,
and sexually transmitted infections [105–107]. Many of these methods have already been studied
for use in chemotherapeutic localized delivery, and, with such a wide range of formulations, patient
treatment can be individualized by type and dosing of the drug regimen. Improving the overall quality
of patients’ lives, localized delivery helps patients recover more quickly and reduces the number of
hospital presentations and admissions, decreasing global healthcare system costs [19].

3.1. Intra-Vaginal Rings

As flexible and torus-shaped delivery systems, intra-vaginal rings can provide both sustained and
controlled drug release, lasting for several weeks to several months [108]. Recently, intra-vaginal rings
have been used for the localized delivery of a chemotherapeutic drug to the cervix with the potential to
reduce the need for surgical intervention. Poly(ethylene-co-vinyl acetate) ring device incorporated with
cisplatin for local treatment of cervical cancer were recently reported. The intra-vaginal rings were
found to be effective against both HPV positive and HPV negative cervical cancer cells in vitro [104].
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Other thermoplastic vaginal rings were shown to hold and release disulfiram, an anticancer drug,
at levels far beyond the IC50 value for HeLa cells [108].

3.2. Nanofibers

Nanofibers have various applications, one of which is drug delivery, especially in local
chemotherapy. Their attractive characteristics for electrospinning used in drug delivery are high
encapsulation efficiency, ease of operation, cost-effectiveness, high loading capacity, and simultaneous
delivery of various therapies [109]. Recently, drug-loaded ultrafine fibers have been used in local
chemotherapy of cervical cancers. Biodegradable polylactide fiber mats loaded with paclitaxel showed
strong inhibition of xenograft U14 cervical cancer [110]. At the same drug level, the in vivo trials of
cisplatin-loaded biodegradable poly(ethylene oxide)/polylactide composite electrospun nanofibers
demonstrated more antitumor efficacy with better systemic safety than the IV injection group [2],
indicating the benefits of localized delivery over systematic delivery.

3.3. Vaginal Films

Vaginal films made are promising delivery systems that could achieve better patient compliance
and therapeutic efficacy. Curcumin-hydroxypropyl cyclodextrin complex vaginal films were shown
to be retained in the vaginal mucosa for up to six hours, making it a potentially effective therapy for
HPV-induced cervical cancer [111].

3.4. Gels

As proven and accepted therapeutics, vaginally-applied gels have drugs and active ingredients
which can restore physiological pH, moisturize and lubricate, be a contraceptive or labor
inducer, and/or have microbicide activity [106]. In regards to treatment of HPV-induced
cervical cancer, a vaginal gel using the biodegradable thermosensitive polymer Pluronic®

F127 combined with 5-fluorouracil and alternative mucoadhesive polymers like Carbopol 934,
hydroxypropylmethylcellulose, and hyaluronic acid was created. Cytotoxicity studies with HeLa cells
showed that complexes of 1% 5-fluorouracil and b-cyclodextrin or hydroxypropyl-b-cyclodextrin were
just as effective as free 5-fluorouracil. These results indicate that a lower dose of this anticancer drug
can achieve better therapeutic efficacy and increased patient compliance [112]. Although gels are
tolerated more than other dosage forms, they can easily leak out of the vagina [2].

3.5. Cervical Patches

Another approach to the cervical delivery of a cytotoxic agent is using bioadhesive cervical
patches [113]. In one study, a patch containing 20 mg of 5-fluorouracil was paired with cervical tissue
samples for a 24-hour period. After this exposure, the tissue concentration of 5-fluorouracil was found
to be 100 times that of the determined cytotoxic drug concentration. This outcome shows that for areas
of the cervical stroma where pre-cancerous lesions can occur, the patch delivery system could provide
clinically effective drug concentrations [114]. However, the turnover of the mucosal lining limits these
patches [104].

3.6. CerviPrep™

Hodge et al. developed a new cervical delivery instrument (CerviPrep™) that consisted of a
tubular applicator with a cervical cap on one end. When the cervical cap was positioned over the
patient’s cervix, this device coulddirectly apply pharmaceuticals to the cervix with limited exposure
to and absorption by the adjacent vaginal tissue. The results of clinical studies with the CerviPrep™
delivery device showed limited systemic exposure and no toxicities [115].
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4. Conclusion and Future Direction

Inorganic, lipidic and polymeric nanocarriers are promising candidates for the development
of systemic delivery systems in cervical cancer chemotherapy. Experimental results show great
potential for the widespread adoption of nanocarriers in cervical cancer treatment over conventional
chemotherapy. Their attractive properties include biocompatibility, low toxicity, lower clearance rates,
the ability to target specific tissues, and controlled release of chemotherapeutic agents. However,
the toxicology of nanocarriers in humans still needs to be fully studied. On the other hand, localized
delivery of chemotherapeutic drugs to the cervix offers a number of advantages such as increased
efficacy and decreased side effects due to direct delivery to the site of cancer, which avoids systemic
circulation of chemotherapeutic drugs. However, the local drug delivery systems are not effective in
metastatic tumors. The therapeutic use of these drug delivery devices and formulations would vary
depending on the patient’s cancer stage. Any vaginal drug delivery device or formulations could
be used to provide local delivery of a chemotherapeutic drug to the cervix, and each has its own
advantages like improved patient compliance and disadvantages like expensive production. Although,
localized delivery of chemotherapeutic drugs directly to the cervix will improve the patient’s overall
quality of life and reduce hospital presentations and cost, more research needs to be performed
characterizing the local accumulation and efficacy of drugs in the cervix.
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