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1 Gillies McIndoe Research Institute, Wellington, New Zealand, 2 Department of Neurosurgery, Wellington Regional Hospital, 
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aim: To investigate the expression of the renin–angiotensin system (RAS) in cancer stem 
cells (CSCs), we have previously characterized in glioblastoma multiforme (GBM).

Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining for the 
stem cell marker, SOX2, and components of the RAS: angiotensin converting enzyme 
(ACE), (pro)renin receptor (PRR), angiotensin II receptor 1 (ATIIR1), and angiotensin II 
receptor 2 (ATIIR2) on 4 μm-thick formalin-fixed paraffin-embedded sections of previ-
ously characterized GBM samples in six patients was undertaken. Immunofluorescent 
(IF) IHC staining was performed to demonstrate expression of GFAP, SOX2, PRR, ACE, 
ATIIR1, and ATIIR2. The protein expression and the transcriptional activities of the genes 
encoding for ACE, PRR, ATIIR1, and ATIIR2 were studied using Western blotting (WB) 
and NanoString gene expression analysis, respectively.

results: DAB and IF IHC staining demonstrated the expression SOX2 on the GFAP+ GBM 
CSCs. Cytoplasmic expression of PRR by the GFAP+ CSCs and the endothelium of the 
microvessels was observed. ACE was expressed on the endothelium of the microves-
sels only, while nuclear and cytoplasmic expression of ATIIR1 and ATIIR2 was observed 
on the endothelium of the microvessels and the CSCs. ATIIR1 was expressed on the 
GFAP+ CSCs cells, and ATIIR2 was expressed by the SOX2+ CSCs. The expression of 
ACE, PRR, and ATIIR1, but not ATIIR2, was confirmed by WB. NanoString gene analysis 
demonstrated transcriptional activation of ACE, PRR, and ATIIR1, but not ATIIR2.

conclusion: This study demonstrated the expression of PRR, ATIIR1, and ATIIR2 by the 
SOX2 CSC population, and ACE on the endothelium of the microvessels, within GBM. 
ACE, PRR, and ATIIR1 were expressed at the protein and mRNA levels, with ATIIR2 
detectable only by IHC staining. This novel finding suggests that the CSCs may be a 
novel therapeutic target for GBM by modulation of the RAS.
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inTrODUcTiOn

Glioblastoma multiforme, a grade IV astrocytoma, contributes 
to about 50% of all malignant gliomas (1, 2). It almost invariably 
recurs following surgical resection, radiotherapy, and chemother-
apy (3–6). This poor prognosis has been ascribed to the presence 
of cancer stem cells (CSCs) within GBM, which propagate and 
differentiate to form downstream cancer cells that make up the 
bulk of the tumor (7–10).

The CSC concept proposes that a cancer originates from a 
small population of CSCs, which are generated by upregulation of 
certain genes in putative resident stem or progenitor cells (11, 12). 
These genetic alterations confer, upon these cells, the capacity to 
proliferate and differentiate in an uncontrolled manner resulting 
in tumorigenesis (11–14). CSCs can be identified using markers 
associated with embryonic stem cells (ESCs) (15, 16), including 
ESC markers such as transcription factors NANOG, SALL4, and 
OCT4, transcription co-factor SOX2 and signaling molecule 
pSTAT3 (17–21).

Physiologically, the renin–angiotensin system (RAS) is an 
endocrine system involving conversion of angiotensinogen 
(ANG) to angiotensin I (ATI) by renin and then to angiotensin II 
(ATII) by angiotensin converting enzyme (ACE) (22). Renin and 
its precursor (pro)renin can also bind to the (pro)renin recep-
tor (PRR) to activate MAPK signaling cascades and synthesis 
of tissue remodeling proteins such as collagen-1, fibronectin, 
PAI-1, and TGFβ-1 (23–26). Interestingly, the binding of (pro)
renin to the PRR also enables conformational activation of the 
(pro)renin to renin, thereby suggesting the enzyme-like activity 
of PRR (27).

It has been proposed that ATIIR1 and ATIIR2 are mutually 
antagonistic in their actions (28–30). There is evidence indicating 
that ATIIR1 and ATIIR2 play key roles in determining stem cell 
lineages (31, 32). Inhibition of binding of ATII to either ATIIR1 
or ATIIR2 reveals that human hemangioblasts differentiate into 
either hematopoietic or endothelial progenitor cells depend-
ing on whether the signal was transmitted through ATIIR1 or 
ATIIR2 (31), indicating that the RAS can directly influence stem 
cell differentiation patterns.

The expression of ANG, (pro)renin, ACE, ATII, ATIIR1, and 
ATIIR2 has been reported in GBM in humans (33), and compo-
nents of the RAS may be present on CSCs within this tumor (31, 
33, 34).

We have recently demonstrated the presence of CSCs by their 
expression of the ESC markers NANOG, OCT4, SALL4, pSTAT3, 
and SOX2 within the GFAP+ GBM tumor samples (35). The aim 
of this study was to investigate if components of the RAS, namely 
PRR, ACE, ATIIR1, and ATIIR2 were expressed by this CSC 
population within GBM.

MaTerials anD MeThODs

Tissue samples
Six previously characterized GBM tissue samples (35) from 3 
male and 3 female patients aged 42–81 years (mean, 64.2 years) 
were sourced from the Gillies McIndoe Research Institute Tissue 

Bank, for this study, which was approved by the Central Health 
and Disabilities Ethics Committee (ref. no. 15CEN28).

histology and immunohistochemical 
staining
Four micrometer-thick formalin-fixed paraffin-embedded sec-
tions of GBM from six patients were used for hematoxylin and 
eosin (H&E) staining confirming the presence of GBM by an 
anatomical pathologist (HDB). Immunohistochemical (IHC) 
staining was performed on the Leica Bond Rx autostainer 
(Leica, Nussloch, Germany) as previously described (36). 
3,3-Diaminobenzidine (DAB) IHC staining for SOX2 (1:500; 
cat# PA094, Thermo Fisher, Scientific, Scoresby, VIC, Australia), 
PRR (1:2000; cat# ab40790, Abcam, Cambridge, UK), ATIIR1 
(1:30; cat# ab9391, Abcam), ATIIR2 (1:2000; cat# NBP1-77368, 
Novus Biologicals, LLC, Littleton, CO, USA), ACE (1:100; cat# 
MCA2054, AbD Serotec, Kidlington, UK) diluted with Bond™ 
primary antibody diluent (cat# AR9352, Leica) was done for 
all tissue samples. Immunofluorescent (IF) IHC staining was 
performed on two representative GBM tissue samples from the 
original cohort of patients used for DAB IHC staining, using 
identical primary antibodies and concentrations. Antibodies 
used for IF IHC detection of PRR and ATIIR2 combinations 
were Vecta fluor Excel anti-rabbit 594 (ready-to-use; cat# 
VEDK-1594, Vector Laboratories, CA, USA) and Alexa 
Fluor anti-mouse 488 (1:500; cat#A21202, Life Technologies, 
Carlsbad, CA, USA). Antibodies for IF IHC staining for ACE 
and ATIIR1 combinations were Vecta fluor Excel anti-mouse 
(ready-to-use; cat# VEDK2488, Vector Laboratories) and Alexa 
Fluor anti-rabbit 594 (1:500; cat# A21207, Life Technologies). 
All IF IHC-stained slides were mounted using Vectashield 
HardSet antifade mounting medium with DAPI (Vector 
Laboratories).

Appropriate positive control human tissues for the primary 
antibodies were placenta for PRR (37), liver for ATIIR1 (38) 
and ACE (39), kidney for ATIIR2 (38), and skin for SOX2 (35). 
A  secondary and tertiary only negative control was performed 
on a GBM sample randomly selected from the original cohort of 
GBM samples used for DAB IHC staining.

image analysis
All DAB IHC stained-slides were visualized with an Olympus 
BX53 light microscope (Tokyo, Japan) and images were captured 
with the CellSens 2.0 software (Olympus). IF IHC-stained slides 
were viewed, and images were captured using an Olympus FV1200 
biological confocal laser scanning microscope (Olympus) with 
images processed using CellSens Dimension 1.11 2D deconvolu-
tion algorithm software (Olympus).

Western Blotting
Five snap-frozen samples of GBM of the original cohort used for 
DAB IHC staining were washed in 1× PBS and homogenized in 
RIPA buffer (cat# R0278, Sigma-Aldrich, St Lewis, MA, USA) 
supplemented with Halt™ Protease and Phosphatase Inhibitor 
Cocktail (cat# 1861281, Thermo Scientific, Waltham, MA, USA) 
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and dithiothreitol (DTT) (cat# DTT-RO, Sigma-Aldrich, St 
Lewis, MA, USA). Protein was precipitated using a Calbiochem® 
ProteoExtract® Protein Precipitation Kit (cat# 539180, EMD 
Millipore Corp., Billerice, MA, USA) for 1 h at −20°C, washed 
and re-suspended in 1× Laemmli sample buffer (cat# 161-0737, 
Bio-Rad, Hercules, CA, USA) with 1% DTT. Equal amounts of 
protein were heated at 85°C and separated on Bolt™ 4–12% 
Bis-Tris Plus gels (cat# NW04120BOX, Invitrogen, Carlsbad, 
CA, USA) via electrophoresis. Separated protein was transferred 
to a nitrocellulose membrane (cat# IB23001, Life Technologies, 
Carlsbad, CA, USA) and blocked in 1× TBST containing 2% 
skim milk powder for 90  min at 4°C. Primary antibody prob-
ing for each RAS marker was overnight in TBST at 4°C with 
the following primary antibodies at the given concentrations: 
PRR (ATP6IP2, 1:500, cat# ab40790, Abcam, Cambridge, UK), 
ATIIR1 (AT2R1, 1:500; cat# sc-1173, Santa Cruz, CA, USA), 
ATIIR2 (1:5000; cat# ab92445, Abcam), and ACE (1:200; cat# 
sc-12184, Santa Cruz). Secondary antibody probing was in 1× 
TBST for 1 h at 4°C with goat anti-rabbit HRP (1:10,000; cat# 
A16110, Thermo Fisher) or donkey anti-goat HRP (1:10,000; cat# 
ab97120; Abcam). ACE tertiary cascade used a rabbit anti-goat 
Superclonal™ biotin conjugated secondary antibody (1:20,000; 
cat# A27013, Thermo Fisher) followed by a Pierce™ Streptavidin 
Poly HRP (1:5000, cat# 21140, Thermo Fisher) at 4°C for 10 min. 
β-actin antibody probing was performed with the iBind™ Flex 
device (cat# SLF2000, Life Technologies) using primary mouse 
monoclonal anti-β-actin (1:2000 cat# ab8226, Abcam) and sec-
ondary donkey anti-mouse Alexa fluor 488 (1:2000; cat# A21202, 
Thermo Fisher). Clarity Western ECL (cat# 1705061, Bio-Rad) 
was used as the substrate for visualizing HRP detected protein 
bands, and the Chemi Doc MP Imaging System (Bio-Rad) and 
Image Lab 5.0 software (Bio-Rad) were used for both HRP and 
fluorescent band detection and analysis. Appropriate positive 
controls were human placenta for PRR (37) and ATIIR1 (40), 
PC3 cell lysate for ATIIR2 (41), and mouse lung for ACE (42). 
Negative controls were NTERA2 for ATIIR2, HeLa cell lysate for 
ACE, and no negative tissues or lysates could be found for either 
the PRR or ATIIR1.

nanostring gene expression analysis
Total RNA was extracted from ~20  mg of snap-frozen GBM 
tissue (n  =  6) from the same cohort of patients included in 
DAB IHC staining using the MagJET RNA kit (cat# k2731, 
Thermo Scientific) and the Kingfisher Duo RNA extraction 
machine (Thermo Scientific). All samples were quantitated and 
quality controlled with the NanoDrop 2000 Spectrophotometer 
(Thermo Scientific) and the Qubit 2.0 Fluorimeter (Thermo 
Scientific). The samples with A260/A230  ≥  1.5 and A260/
A280  ~  2 were used for further analyses. The integrity of 
the RNA was assessed by the New Zealand Genomics Ltd. 
(Dunedin, New Zealand) using Agilent 2100 BioAnalyzer 
(Agilent Technologies). The isolated RNA was then subjected to 
NanoString nCounter™ Gene Expression Assay (NanoString 
Technologies, Seattle, WA, USA) as completed by New 
Zealand Genomics Ltd (Dunedin, New Zealand), according 
to the manufacturer’s protocol. Probes for the genes encoding 

the PRR (NM_005765.2), ATIIR1 (NM_000685.3), ATIIR2 
(NM_000686.3), ACE (NM_000789.2) and the housekeeping 
gene, and GAPDH (NM_002046.3) were designed and synthe-
sized by NanoString Technologies. Raw data were analyzed with 
Microsoft Excel using standard settings and were normalized 
against the housekeeping genes.

resUlTs

3,3-Diaminobenzidine 
immunohistochemical staining
3,3-Diaminobenzidine IHC staining for SOX2, PRR, ATIIR1, 
ATIIR2, and ACE was performed on six GBM samples with the 
diagnosis confirmed by H&E staining. SOX2 was widely expressed 
by cells within GBM (Figure  1A, brown). These SOX2+  CSCs, 
that we have previous identified (35), demonstrated cytoplasmic 
expression of PRR, which was also expressed on the endothelium 
of the microvessels (Figure  1B, brown). ACE was expressed on 
the endothelium of the microvessels only, with minimal staining 
seen on the CSCs (Figure 1C, brown). Nuclear and cytoplasmic 
expression of ATIIR1 (Figure 1D, brown) and ATIIR2 (Figure 1E, 
brown) was observed on the endothelium of the microvessels and 
the CSCs within GBM.

Expected staining patterns for SOX2 (Image S1A  
in Supplementary Material, brown), PRR (Image S1B in 
Supplementary Material, brown), ATIIR1 (Image S1C in 
Supplementary Material, brown), ATIIR2 (Image S1D 
in Supplementary Material, brown), and ACE (Image  
S1E in Supplementary Material, brown) were demonstrated in 
the respective positive controls. Staining with the omission of the 
primary antibodies in a GBM sample provided an appropriate 
negative control (Image S1F in Supplementary Material).

immunofluorescent immunohistochemical 
staining
The presence of CSCs within GBM was demonstrated by 
the relatively abundant expression of the ESC marker SOX2 
(Figure  2A, red) on the GFAP+  cells (Figure  2A, green) 
within GBM, as recently reported (35). We then investigated 
the expression of PRR (Figure 2B, red) in GBM, by perform-
ing IF IHC co-staining with GFAP (Figure 2B, green), which 
demonstrated that most of the GFAP+  CSCs within GBM 
expressed PRR. To determine the expression of ACE, we per-
formed dual staining for ACE (Figure 2C, green) and SOX2 
(Figure  2C, red) and showed mutually exclusive expression 
of these markers. Interestingly, ACE was expressed on the 
endothelial cells with erythrocytes evident within the lumina 
of the microvessels. We also showed the expression of ATIIR1 
(Figure 2D, green) on the SOX2+ (Figure 2D, red) CSC popu-
lation. ATIIR2 (Figure 2E, red) was expressed on the GFAP+ 
(Figure 2E, green) CSCs in GBM that were demonstrated to 
express SOX2 (35). Appropriate negative controls, consisting 
of omission of the primary antibodies did not reveal any stain-
ing (Figure 2F).
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FigUre 1 | representative 3,3-diaminobenzidine immunohistochemical stained images demonstrating cytoplasmic expression of sOX2 [(a), brown], 
Prr [(B), brown] by cells within gBM, and the endothelium of the microvessels. ACE [(c), brown] was present only in the endothelium of the microvessels 
with no staining of the cells within the tumor. Cytoplasmic and nuclear staining of ATIIR1 [(D), brown] and ATIIR2 [(e), brown] was observed on the cells within the 
tumor and the endothelium of the microvessels. Cell nuclei were counterstained with hematoxylin [(a–e), blue]. Original magnification: 400×.
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Western Blotting
Western blotting was performed to examine the presence 
of components of the RAS in GBM samples of five patients 
included in DAB IHC staining. PRR (Figure  3A) and ATIIR1 
(Figure 3B) were present in all five samples with bands of ~37 
and 45  kDa, respectively. Bands of ~70  kDa represent PRR 
dimerization (Figure 3A). ATIIR2 was absent in all five samples 
(Figure  3C), while ACE was present, at low levels, in all five 
samples (Figure 3D).

nanostring analysis
NanoString analyses demonstrated that PRR and ACE were 
expressed in GBM samples of all six patients included in DAB 
IHC staining, while ATIIR1 was present in only two samples, and 
ATIIR2 was below detectable levels in all six samples examined 
(Figure 4).

DiscUssiOn

Cancer stem cells have been identified in many cancer types 
(43–48) and were first characterized in GBM by Singh et al. (8, 
49). These findings support the CSC concept of cancer proposing 
that a tumor originates from a small population of cells imbued 
with the properties of infinite self-renewal and capacity to differ-
entiate into multiple cellular lineages (11–13, 50). Components 
of the RAS have also been previously identified in GBM (33) and 
other cancers (34, 51, 52). Additionally, inhibition of the RAS 
leads to reduced tumor growth indicating a role for the RAS in 
cancer progression (53–56). We have recently characterized the 
CSC population within GBM using the ESC markers pSTAT3, 
SOX2, SALL4, OCT4, and NANOG and demonstrated their 
relative expression to the GFAP+ cells within GBM tissues (35). 
Here, we have shown the expression of PRR, ATIIR1, and ACE 
within GBM tumors at the protein and mRNA levels.
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FigUre 2 | representative immunofluorescent immunohistochemical stained images demonstrating the expression of sOX2 [(a), red], Prr [(B), 
red], and aTiir2 [(c), red] on gFaP+ cscs [(a–c), green] and expression of ace [(D), green] and aTiir1 [(e), green] on sOX2+ cscs [(D,e), red]. 
Negative control was a GBM tissue section with omission of the primary antibody (F). Cell nuclei were counterstained with 4′, 6′-diamidino-2-phenylindole [(a–F), 
blue]. Scale bars: 20 μm.
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It is intriguing that DAB and IF IHC staining demonstrated 
the presence of ATIIR2, but this finding was not confirmed by 
WB and NanoString analyses. This may suggest non-specific 
binding of the antibody used in DAB and IF IHC staining or, 
potentially, the splice variants we used did not fully cover ATIIR2. 
This remains a topic of further investigation.

We have shown that components of the RAS were expressed by 
the CSCs that we have demonstrated to express SOX2 (35). This 

finding is particularly interesting when considering the proposed 
non-angiogenic actions of the RAS. Hemangioblasts are derived 
from ESCs and are capable of differentiating into either endothe-
lial/vascular or hematopoietic stem cells (57) – an ability directly 
modulated by differential ATII signaling through either of two 
receptors, namely ATIIR1 and ATIIR2 (31). The expression of 
ACE on the endothelium of the microvessels within GBM pre-
sented in this report may suggest a putative primitive endothelial 
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FigUre 4 | relative expression of mrna transcripts of the 
components of the ras in six gBM samples, depicted as a ratio over 
the gUsB housekeeper. PRR and ACE were expressed in all six samples. 
ATIIR1 was present in two and ATIIR2 was below detectable levels out of the 
six GBM samples examined.

FigUre 3 | Western blots demonstrating the expression of Prr (~38 kDa) (a) and aTiir1 (~45 kDa) (B) in all five gBM samples. ATIIR2 was not 
detected in any of the samples (c). ACE was detected in four out of the five GBM samples examined (D).
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phenotype, similar to the expression seen in hemangioblasts (49), 
and may possibly account for the vascular mimicry previously 
reported in GBM (58), although this remains the topic of further 
investigation.

This report demonstrates that components of the RAS are 
putatively expressed on CSCs within GBM and may dictate cel-
lular commitment to a particular lineage. We and others have 
proposed a phenotype of the CSCs, similar to ESCs, in GBM (12, 
13, 35). This investigation confirms previous reports of expression 
of components of the RAS in GBM (33). However, based on our 
recent report of the CSCs in GBM (35), it is noteworthy that the 
putative CSCs in GBM express certain components of the RAS.

In this report, we show abundant expression of the ESC marker 
SOX2 on the GFAP+ GBM population, denoting a putative CSC 
phenotype. Furthermore, we demonstrate the expression of PRR, 
ATIIR1, and ATIIR2 on most of the GFAP+  CSC population 
within GBM, with ACE being expressed on the endothelium of 
the microvessels.

Although this is a relatively small study, the results offer novel 
insights into the role of the RAS in GBM. It is exciting to speculate 

http://www.frontiersin.org/Surgery/
http://www.frontiersin.org
http://www.frontiersin.org/Surgery/archive


7

Bradshaw et al. Renin–Angiotensin System in Glioblastoma Multiforme

Frontiers in Surgery | www.frontiersin.org September 2016 | Volume 3 | Article 51

that further studies may lead to CSCs in GBM being identified 
as a potential therapeutic target by modulating the RAS using 
existing medications.
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iMage s1 | DaB ihc stained images of positive control human samples 
using placenta for sOX2 [(a), brown] and Prr [(B), brown]; liver for 
aTiir1 [(c) and brown]; kidney for aTiir2 [(D), brown] and ace [(e), 
brown]. A GBM tissue section stained in the absence of primary antibody, was 
used as an appropriate negative control (F). All slides were counterstained with 
hematoxylin to illustrate cell nuclei (blue). Original magnification: 400×.
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