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Abstract: Mortality in the setting of septic shock varies between 20% and 100%. Refractory sep-
tic shock leads to early circulatory failure and carries the worst prognosis. The pathophysiology
is poorly understood despite studies of the microcirculatory defects and the immuno-paralysis.
The acute circulatory distress is treated with volume expansion, administration of vasopressors (usu-
ally noradrenaline: NA), and inotropes. Ventilation and anti-infectious strategy shall not be discussed
here. When circulation is considered, the literature is segregated between interventions directed
to the systemic circulation vs. interventions directed to the micro-circulation. Our thesis is that,
after stabilization of the acute cardioventilatory distress, the prolonged sympathetic hyperactivity is
detrimental in the setting of septic shock. Our hypothesis is that the sympathetic hyperactivity ob-
served in septic shock being normalized towards baseline activity will improve the microcirculation
by recoupling the capillaries and the systemic circulation. Therefore, counterintuitively, antihyper-
tensive agents such as beta-blockers or alpha-2 adrenergic agonists (clonidine, dexmedetomidine)
are useful. They would reduce the noradrenaline requirements. Adjuncts (vitamins, steroids, NO
donors/inhibitors, etc.) proposed to normalize the sepsis-evoked vasodilation are not reviewed.
This itemized approach (systemic vs. microcirculation) requires physiological and epidemiological
studies to look for reduced mortality.

Keywords: septic shock; refractory septic shock; circulation; microcirculation; organ perfusion;
permissive hypotension; vasodilation; vasoplegia; vascular hyporesponsiveness; sympathetic system;
vasopressor; noradrenaline; vasopressin; angiotensin; alpha-2 agonist; dexmedetomidine; clonidine;
beta-blocker; esmolol

To P Huguenard (1924–2006), Hôpital Vaugirard, Paris, forerunner of sympathetic deactivation [1].

1. Introduction

State-of-the-art management of septic shock [2,3] in the critical care unit (CCU) im-
proves the systemic circulation through volume expansion, vasopressors, and inotropes but
forgets to consider the organism as a whole (Figure 1). Indeed, optimization of ventilation,
circulation, renal function, and metabolism does not directly address a dysfunction of the
autonomic nervous system and the microcirculation. Maximal conventional therapy does
not guarantee a reversal of shock and a good outcome unless the micro-circulation is fully
restored [4].
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Figure 1. Integrative-analytical approach in the setting of septic shock. Russian dolls are embedded
within a matryoshka as the various systems within the whole organism. Addressing septic shock
just through circulatory, ventilatory, kidney, and metabolic interventions misses an overall medical
approach (integrative physiology, systems biology vs. thinking in silos). Only during stabilization of
the acute cardioventilatory distress (salvage) does the autonomic nervous system allow one to buy
time and thus may be ignored. However, immediately after stabilization of the acute cardioventilatory
distress, an integrative physiological approach should be the primary focus: prolonged sympathetic
hyperactivity is maladaptive (increased NA overflow with inadequate functioning of target receptors,
i.e., down-regulation). Manipulation of the autonomic nervous system (normalization of sympathetic
activity toward baseline using alpha-2 agonists or beta-blockers) may improve the innate immune
system, lower inflammation, and thus improve ventilation, systemic circulation, and microcirculation
the kidney and the metabolism. The interactions are more complex than suggested by the present
simplistic schema. Nevertheless, each level of integration must be addressed immediately following
stabilization of the acute cardioventilatory distress, including the autonomic nervous system and the
innate immune system, in a thoroughly analytical manner.

In refractory septic shock, given state-of-the-art management, the present thesis holds
that prolonged [5,6] sympathetic hyperactivity beyond stabilization of the acute cardioventi-
latory distress (“salvage”) is deleterious. The hypothesis is that alpha-2 adrenergic agonists
(dexmedetomidine, clonidine) and beta-blockers maintain blood pressure (BP) [7–11],
minimize the sympathetic hyperactivity back towards baseline level (“normalization”),
improve microcirculation, and lower exogenous noradrenaline (NA) requirements and
inflammation. Contra-indications exist, including low heart rate (HR), sick sinus, and a
high degree atrio-ventricular block. To avoid bradycardia, hypotension, and cardiac arrest,
iterative assessment of volemia * is required (Figures 5 and 6 in ref. [12]) before and during
a “start low-go slow” [13] administration of alpha-2 agonist [12,14,15]. In septic shock or
refractory septic shock, avoiding loss of pump priming of the left ventricle (LV) requires
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preemptive loading [5,14–17] then iterative assessment of volemia. Given these caveats,
alpha-2 agonists are first-line sedatives [12,14,15,18] administered immediately following
initiation of non-invasive or invasive ventilation.**

* given the lost autonomic coordination and the lowered venous return in sep-
sis, prevention of hypovolemia is called for before sympathetic deactivation [12,14,15].
Addressing iteratively peripheral and renal perfusion and the response to passive leg
raising (PLR) allows one to maintain SV and avoid hypotension before and during admin-
istration of the alpha-2 agonist in the setting of (refractory) septic shock. Given pre-existing
losses, venous vasodilation, increased intrathoracic pressure caused by positive pressure
ventilation, and loss of hepatosplanchnic squeezing [19] caused by diaphragmatic paralysis,
volume expansion leading to maintained SV is mandatory (Figures 5 and 6 in ref. [9]).
Nevertheless, volume administration should be individualized rather than standardized
(≥30 mL·kg−1) [3] to avoid overload as early as possible during stabilization of the acute
cardioventilatory distress. PLR [20] iteratively assesses the minimal load compatible with
absence of further increase of SV or blood pressure to: (1) lower the central venous pressure.
This increases the microcirculatory driving pressure (precapillary inflow minus venular
outflow pressure: ~30 mmHg min~10 mmHg); microcirculation and kidney perfusion
improve [21]. (2) Minimize lung water [22,23] when septic shock is combined with ARDS.
PLR separates volume-responsive vs. nonresponsive patients but does not separate hy-
povolemic vs. non-hypovolemic patients (Brochard, personal communication). Thus, the
volume-responsive patients are not necessarily hypovolemic and do not necessarily need
volume expansion above that to maintain adequate peripheral perfusion. In this respect,
(a) additional volume translates into increased CO and lowered pulse pressure but does
not lead to a further improvement of the microcirculation [24]; (b) volume improves micro-
circulation only in the first 24 h but not after 48 h of sepsis recognition [25]. Supranormal
CO [26] may lead to excessive volume administration and poor outcome. To sum up, a rule
of thumb (30 mL·kg−1) is useful at 03:00 a.m in the CCU. Nevertheless, the volume load
should be tailored to the pathology (low volume requirement: early lung/urinary sepsis;
high volume requirement: peritonitis, etc.) and adjusted to PLR and indices of peripheral
perfusion (urine, capillary refill time, mottling, lactate, CO2 gap, venous saturation).

** deep conventional sedation is considered in the setting of acute respiratory dis-
tress syndrome (ARDS), increased intracranial pressure, and therapeutic hypothermia
following cardiac arrest [27]. This unproven view is challenged [28,29]. We do not
use conventional sedation in the CCU [8], except to speed up endotracheal intubation.
Controlled mechanical ventilation with paralysis is used only for the shortest time inter-
val to break self-inflicted lung injury (SILI) [30]. Then, the patient switches to adequate
spontaneous breathing [31–33]. Thus, alpha-2 agonists are administered immediately
upon setting up non-invasive [34,35] or invasive ventilation to light cooperative sedation
(defined as −2 < RASS < 0, i.e., stringent restlessness) but without light or deep conven-
tional sedation [36–38], (1) (a) alpha-2 agonists administered up to their “ceiling” effect
(dexmedetomidine: 1.5 µg·kg−1·h−1; clonidine: 2 µg·kg−1·h−1 [39,40] induce cooperative
sedation; (b) when or if the confusion caused by sepsis wanes off, should supplementa-
tion be required, haloperidol or loxapine supplement baseline cooperative sedation or
control brisk agitation (“breakthrough” sedation: haloperidol [41]); (c) rescue sedation
is used, e.g., during nursing (midazolam 0.01–0.05 mg·kg−1 bolus every 10–15 min [42]
to −2 < RASS < 0); (d) after pain assessment, opioid-free analgesia (tramadol + ketamine
+ nefopam) is without opioids. (2) As arterial stiffness [43] and LV impedance [44] are
reduced, alpha-2 agonists improve systolic [45–48] and diastolic [49] function in patients
presenting with CHF. (3) Propofol suppresses sympathetic vasomotor activity centrally [50]
and at the level of the venous capacitance [51]. Thus, severe hypotension occurs when
conventional sedation is combined with an alpha-2 agonist [52].

The patient/intervention/comparison/outcome (PICO) question is: in the setting of
septic shock, when comparing state-of-the-art therapy (volume, vasopressor, inotrope) vs.
state of the art plus sympathetic de-activation, would peripheral perfusion (urine output,
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capillary refill, mottling, lactate, CO2 gap, mixed venous O2 saturation) and/or outcome
improve with reduced NA requirements?

This manuscript discusses: (1) the factors limiting recovery from sepsis, i.e., the
microcirculation and the inflammation; (2) minimizing the sympathetic hyperactivity back
toward baseline to reestablish the “coherence” [53] between the systemic and the micro-
circulation. Given space, mitochondrial dysfunction [54], parasympathetic, or venular
involvement are skipped. This review is for the clinician elements of physiology and
pharmacology are in notes at the end of corresponding paragraph.

2. Coordination of Pressor Systems

In the setting of severe essential hypertension* when sympathetic, angiotensin, and
vasopressin systems are suppressed pharmacologically, one after the other, a hierar-
chized response shows a tight coupling between the three pressor systems (“sequen-
tial suppression”) [55] **. A converting enzyme inhibitor (captopril), an alpha-2 ago-
nist (clonidine), or a vasopressin inhibitor lower BP by 15, 10, and 8 mmHg, respec-
tively [55]. These “subtractive” observations [55–57] should be kept in mind when “addi-
tive” combinations are considered in patients heading toward refractory septic shock (i.e.,
NA ± vasopressin ± angiotensin).

* in the healthy resting supine volunteer, the lower brain stem maintains BP:
(1) the vasomotor center (rostral ventrolateral medulla: RVLM) acts through cardiac and
vasomotor sympathetic systems in coordination with vasopressin and angiotensin systems
(Figure 3 in ref. [58], Figure 6 in ref. [59], Figure 1 in refs. [56,57]). Sympathetic premotor
neurons project from the RVLM (“vasomotor center”) to the tractus intermediolateralis
(central column of the spinal cord). (2) The ventrolateral nucleus ambiguous acts through
the cardiac parasympathetic system, which generates the beat-by-beat changes in heart rate
(HR; respiratory sinus arrhythmia, “heart rate variability” evoked by the cardiac “vagal”
activity). The cardiac parasympathetic motoneurons [60]) project from the ventrolateral
nucleus ambiguous to the sinus node. (3) By contrast, the noradrenergic locus coeruleus
(LC) projects rostrally from the upper brain stem through the dorsal noradrenergic bundle
to the cortex and caudally to the dorsal horn but not the intermediolateral cell column.
The LC is not directly involved in BP control.

** this dissection [55] of severe essential hypertension (resistant hypertension) is at
variance with the present usual treatment of essential hypertension: diuretic, losartan,
betablocker, Ca channel blocker.

Vasopressin is deficient in septic shock [61]. It has been used as a second-line agent
to restore its plasma concentration and BP via stimulation of V1 receptors on vascular
smooth muscle cells; this lowers NA requirements [62]. Substitutive treatment of vaso-
pressin administered alone did not lower mortality (<0.04 U·min−1; quoted from [61]).
High-dose vasopressin was associated with cardiac, digital, and splanchnic ischemia
(>0.05 IU·min−1) [61]. However, NA + vasopressin coadministration lowered the mortality
of non-refractory septic shock when compared with NA administered alone (26% vs. 36%;
p = 0.05; NA: 0.21 µg·kg−1·min−1~1 mg·h−1/70 kg; quoted from [61]). Thus, NA combined
with early prescription of vasopressin may be considered [61].

Angiotensin: In normo- or hypertensive supine volunteers, 0.25–2.0 µg angiotensin i.v.
raised the systolic BP (SBP) by up to 30 mm Hg [63]. Angiotensin II increased the relative
efferent arteriolar resistance when compared with the afferent arteriolar resistance and thus
increased filtration fraction [64]; glomerular filtration pressure and glomerular filtration
rate were maintained [64]. Angiotensin reset the lower limit of renal autoregulation to
lower perfusion pressure [65], possibly with a favorable effect in the setting of acute kidney
injury (AKI) [66]. In early sepsis with AKI, angiotensin restored BP and reduced renal blood
flow but increased urine flow and creatinine clearance [67]. Although there is evidence that
angiotensin can be proinflammatory, causes thrombosis, and aggravates vascular leakage
and microcirculatory dysfunction [68], in the setting of AKI, it did not alter the level of the
proinflammatory cytokine interleukin 6 (IL-6) [69]. Clinically, (a) an intravenous converting
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enzyme inhibitor, enalaprilat, administered to patients presenting with sepsis reduced the
markers of inflammation, adrenaline, and noradrenaline requirements and the progression
of sepsis to septic shock (enalaprilat/placebo, n = 20 × 2) [70] (non-retracted paper as of
4 August 2021). (b) Angiotensin supplementation of state-of-the-art treatment in the setting
of septic shock reduced NA requirements and improved mortality (NA requirement ≈ 0.4
µg·kg−1·min−1~1.7 mg·h−1/70 kg reduced by −73%; APACHE ≈ 30, n = 10 × 2 [71]; mor-
tality day 28: angiotensin: 47%, placebo: 70%, p = 0.01 [72]). (c) Angiotensin lowered NA
requirement (−21%) and mortality (ns) in patients presenting with septic shock (placebo
vs. angiotensin: n = 158 vs. 163; APACHE: 29 vs. 27) [73].

Finally, the lack of responsiveness of vascular smooth muscle to pressor drugs in
sepsis is proven [61,74–76]. To address this peripheral component, steroids [77], methylene
blue [78,79], vitamin C [80,81], B12, B1 (thiamine), or nitroglycerin [82] were investigated
(“metabolic resuscitation”), but recent trials are non-conclusive [83–87].

3. How to Decrease Administration of Exogenous Catecholamines in Septic Shock?

Vasopressin and angiotensin were considered above; in turn, the sympathetic system
was considered.

3.1. Short-Term vs. Prolonged Sympathetic Hyperactivity

The autonomic nervous system is a highly differentiated [88] system which coordinates
sleep, rest, exercise, “fight or flight” response, etc. [89]. For example, cardiac parasym-
pathetic activity is preserved in those undertaking ultralong trails [90] or high intensity
exercise [91] with a swift return of the sympathetic activity back to baseline during recov-
ery. Adequate autonomic function allows elite runners to handle hyperthermia, severe
acidosis, and hyperpnea by themselves following rest, cooling, etc. Indeed, the recovering
athlete normalizes the sympathetic hyperactivity immediately. Accordingly, sea mammals
generate a backlog of CO2 and lactate during long dives. Nevertheless, preparing for
the next dive, they rapidly mobilize these stocks [92]. By contrast, patients presenting
with acute respiratory distress syndrome and undergoing extracorporeal membrane oxy-
genation (ECMO) present with low CO2 measured before entering the oxygenator and
high systemic lactate [93]. Are sick patients unable to restore peripheral perfusion despite
resuscitation and ECMO? In the setting of congestive heart failure (CHF), sympathetic
activation is regionalized, e.g., to the kidney and the heart with desensitization of alpha-1
vascular receptors. This is at variance with a sympathetic generalized activation postulated
in hemorrhagic shock [94].

To our knowledge, no such high-quality data exist in the setting of critical care
medicine. In field medicine, in the operation room (OR), or in the setting of septic shock, an
acute compensatory sympathetic hyperactivation is needed up until completion of salvage.
Given this extreme condition, mobilization of sympathetic and circulatory systems allows
one to cope with injury [95]. However, after stabilization, sympathetic hyperactivity [5] over-
stretches the unproven belief of hyperadrenergic states viewed as survival-promoting [96].
After trauma or postoperative complications, endogenous renin and NA concentrations
increase tremendously in non-survivors [97,98]. Prolonged sympathetic hyperactivity and
down-regulation of adrenergic receptors lead to mal-adaptation [5,99–109], especially in
the sickest patients [110,111] (central noradrenergic “overriding” [112]; “allostatic over-
load” [113], Chapter 11.2.1 [114]). Loss of autonomic coordination leads to an exhausted
CCU patient with an “acute” sympathetic hyperactivity lasting for days or weeks at vari-
ance with the recovering athlete. The exhausted CCU patient bears resemblance to “voodoo
death” [102] and sudden death (e.g., burn-out)*.

*decortication in cat induces “rage” (sham rage, pseudo affective state) followed by
death after a few hours due to major sympathetic hyperactivity and reduced blood volume.
Sympathectomy reverses the phenomenon [99,115].
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3.2. Autonomic Dysfunction and Vascular Hyporesponsiveness

Physiology: In the young healthy resting volunteer, upon standing, circulatory coordi-
nation occurs quickly due to fast cardiac parasympathetic withdrawal (brisk tachycardia
within <2 s with short-lasting orthostatic hypotension <15 s) [116]). In the supine resting
volunteer, the cardiac sympathetic system is minimally engaged (Figure 6 in ref. [117]).
Upon standing, a sympathetic cardiac and vasomotor activation occurs (tachycardia, in-
creased venous return). At variance with the fast cardiac parasympathetic withdrawal,
tachycardia and vasoconstriction reach full activation only after 20–60 s [95,118,119].

In the setting of septic or hemorrhagic shock, coordination is lost, and major auto-
nomic dysfunction occurs: (a) cardiac parasympathetic activity is suppressed [120–122];
parasympathetic withdrawal cannot ensue. Thus, at variance with the healthy volunteer
assuming upright position [116], little further tachycardia occurs. (b) A maximally acti-
vated cardiac sympathetic system evokes little further tachycardia, similar to the “fixed
heart rate” observed in CHF, and (c) a maximally activated vasomotor sympathetic system
cannot evoke any further vasoconstriction in the presence of down-regulation of vascular
alpha-1 receptors. This pathophysiological pattern is the equivalent of pharmacological
autonomic denervation (atropine + propranolol + alpha-1 antagonist). To sum up, the
homeostatic ability of the circulatory system to face hypotension is lost.

Pharmacology: The sympathetic system coordinates the circulation via activation of
alpha- and beta-adrenergic receptors [123]. Schematically, the number of receptors ex-
pressed on the cell surface is regulated by the ambient catecholamine concentration [124].
During sleep, rest, etc., receptor density changes rapidly as an inverse function to the
NA concentration. For example: (a) in vitro, a beta-agonist induced a down-regulation of
beta-2 receptors, which was reversed by beta-blockers (regulation back towards baseline).
However, beta-blockers had no effect on their own [125]. The beta-receptor may be upregu-
lated only when previously downregulated. Is the sympathetic system operating close to
maximum sensitivity only under baseline conditions? (b) In healthy volunteers, exogenous
NA infusion or upright standing increased plasma NA concentration with beta receptor
downregulation [126]. (c) In healthy supine volunteers, clonidine lowered plasma NA and
upregulated beta-receptors [127]. (d) During running [128–130], a down-regulation of beta-
2 and alpha-2 receptors occurred but recovered quickly upon rest. (e) During cardiopul-
monary bypass (CPB), increased plasma adrenaline was associated with down-regulation
of beta-receptors. Low cardiac output (CO) and intraaortic balloon pumping were also
associated with such down-regulation [131]. (f) In the perioperative setting and high
plasma NA concentrations, beta [132] and alpha-1 [133] receptors were down-regulated.
This down-regulation was reversed by alpha-2 agonists [132,133]. To sum up, an overall
inverse relationship exists between plasma catecholamines and adrenergic receptors.

Accordingly, in sepsis, the sympathetic hyperactivity is accompanied by down-
regulation of beta- [134] and alpha-1 [135] receptors, and normalization of the sympathetic
hyperactivity returns receptor function back to baseline*. The difference between the
athlete and the sick patient is the prolonged sympathetic activation that is accompanied
by desensitization of adrenergic receptors, altered micro-circulation, and activation of the
metabo-reflex**. In turn, this reflex further increases the sympathetic activity.

* a rough equivalent of the phenomenon would be that hyperinnervation causes de-
sensitization. By contrast, pharmacological or surgical denervation causes hypersensitivity.

** metabolic reflex originating in skeletal muscle “activated when blood flow to
contracting muscles is insufficient to allow both O2 delivery and metabolite washout” [136].

In sepsis, downregulation of beta-receptors leads to a loss of active vasodilation
mediated by beta-receptors. This would reduce the ability to dilate in response to arte-
rial beta-mediated active vasodilation and reduced myocardial contractility. The loss of
the beta-mediated active vasodilation is different from the paralysis of the vasculature
evoked by heterogeneous NO release, leading to a patchy microcirculation (“vasople-
gia”, angioparalysis). Following vascular occlusion in refractory vs. non-refractory septic
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shock [137], the slower hyperemic response is compatible with a loss of beta-mediated
active vasodilation or of NO-mediated vasodilation or both.

3.3. Refractory Septic Shock

Clinical definition: Refractory septic shock is worsening circulatory failure despite
aggressive use of vasopressors and increasing lactic acidosis after 6 h of renal replacement
therapy (RRT) [138]. High vasopressor requirement is linked to vascular hyporespon-
siveness* [74]. Reciprocally, vascular hyporesponsiveness causes refractory septic shock,
defined by high NA requirements [137,139–143]. However, the definition of high NA
requirements is not unified (Table 1).

Table 1. Definition of refractory septic shock as a function of the dose of noradrenaline administered. Evidently, there is no
unified definition of refractory septic shock. Presumably, the cut-off point is >1–2 µg·kg−1·h−1~4–8 mg·h−1/70 kg). Some
authors use simultaneously various vasopressors concatenated into a “noradrenaline-equivalent”.

Author Reference NA Dose
(µg·kg−1·min−1)

NA Dose Referred to a 70 kg
Patient (mg·h−1/70kg)

Annane [139] 2005 >0.25 >1

Donadello [140] 2015 >0.5 >2.1

Annane [141] 2019 >1 4.2

Dargent [142] 2017 1.8–2.2 7.6–9.3

Conrad [137] 2015 2.6 11

Katsaragakis [143] 2006 >4 16

* vasoreactivity opposes two different phenomenons: pressor vs. vascular respon-
siveness: (1) reduced pressor responsiveness: the absence of administration of atropine
and propranolol allows for changes in HR secondary to the involvement of the cardiac
baroreflex. The vasopressor evokes hypertension, which leads to bradycardia. In turn,
the bradycardia reduces the amplitude of the pressor response. Therefore, the changes in
pressure [144] are not linked only to changes within the vessels but also to tachycardia.
(2) Reduced vascular responsiveness: when changes in HR and contractility are suppressed
by atropine + propranolol [145], the hypertension evoked by the vasopressor is linked only
to changes within the vessels [146]).

The high concentrations of exogenous catecholamines superimpose themselves on
high endogenous catecholamines [97,98] with side-effects including:

(1) tachycardia, excessive vascular constriction, myocardial injury, pulmonary hyperten-
sion, pulmonary edema, hypercoagulability [108], increased O2 demand [147];

(2) splanchnic hypoperfusion [148], changes in intestinal microcirculation (quoted from [109]),
inhibited peristalsis [148], hyperglycemia, muscle catabolism, increased lipolysis;

(3) renal medullary ischemia and hypoxia in septic sheep [149];
(4) immunoparalysis [108,148], stimulation of bacterial growth [108].

Outcome: The 28 d mortality in nonrefractory septic shock is 20% (low NA require-
ments ≈ 1 µg·kg−1·min−1~4 mg·h−1/70 kg), whereas mortality in refractory septic shock
is 62% at day 2 and 100% at day 28, respectively caused by early circulatory failure vs. late
multiple organ failure [137].

3.4. Sympatholytics in the Setting of Septic Shock

Counterintuitively, in the setting of experimental septic shock and following sympathetic
inhibition with a neuroleptic or an alpha-antagonist, BP and survival improved (respectively,
chlorpromazine vs. phentolamine (Regitine®) or phenoxybenzamine (Dibenzyline®) [6,150].
The translation to humans [5,151,152] was met with skepticism [6]. The supposedly ben-
eficial effects of sympathetic activation [96] prevail in physicians’ minds. The beneficial
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effects of vasodilators in the setting of cardiogenic shock and beta-blockers in the setting
of congestive cardiomyopathy [153] renewed the interest in sympathetic deactivation in
septic patients. The use of antihypertensive drugs in hypotensive sepsis is counterintuitive
but beneficial (“inverted therapy” [154]: ergotoxine [115], chlorpromazine [6,16,106], phe-
noxybenzamine [5,151,152], beta-blockers [155–161], and alpha-2 agonists [111,162–171]).
On the other hand, a metanalysis [172] concluded an absence of effect of alpha-2 agonists
on outcome. However, this study [172] did not reference the positive trials [111,162–169]
or the meta-analysis [170] and needs reassessment.

4. Beta-Blockers

Beta-blockers may be administered as a fixed dose irrespective of the HR. Conversely,
the dose of beta-blockers may be titrated against a target HR. Firstly, in retrospective
studies, continued beta-blockade in sepsis and septic shock decreased 28 and 90 d mortal-
ity (fixed doses of beta blockers irrespective of HR in patients exposed to beta-blockers
prior or during their CCU stay) [158,161,173]. Meta-analyses confirmed the ability of beta-
blockers to reduce mortality [174,175]. Secondly, there is evidence that low-dose esmolol
presents anti-inflammatory activity independently of its bradycardic effect [176]. In this
respect, propranolol reduces muscle catabolism [156], hypermetabolism, and infection
in burned children [157]. Thirdly, in septic shock without LV failure and relatively high
NA requirements, esmolol administration was associated with reductions in HR (target:
80 < HR < 94 bpm for >96 h; esmolol: −28 bpm vs. control: −6 bpm), NA requirements
(≈0.4 µg·kg−1·h−1 i.e.,~1.6 mg·h−1/70 kg; reduction: −29%), acidosis, fluid requirement,
troponin, creatine kinase-MB, 28 d mortality (esmolol: 49%, control: 80%) [160], and im-
proved micro-circulation [177]. The reduction in HR increased diastolic time; it improved
diastolic compliance, arterial elastance, and ventriculo-arterial coupling [159]. Thus, es-
molol reduced arterial elastance, contractility (arterial dP/dt max), and NA requirements
(−18%) and increased SV, while CO and ejection fraction were unchanged [159]. As em-
phasized [160], the positive outcome may be a chance finding—or not—which requires
confirmation (Landi Sep and STRESS-L trials enrolling). Conversely, the high mortality in
the control group may reflect severe septic shock and high NA requirements. Esmolol may
present positive effects only when severe septic shock is considered, as hypothesized for
other sympatholytics [110,111].

5. Alpha-2 Agonists
5.1. Minimization of Sympathetic Hyperactivity toward Baseline Levels

In sepsis, given the postulated damaging effect of prolonged sympathetic hyperactiv-
ity, should it be normalized at once after salvage?

(1) Alpha-2 agonists act on receptors located on non-noradrenergic neurons [178,179]
and on smooth vascular muscle [180] (hetero-receptors or post-synaptic receptors);

(2) Alpha-2 agonists lower NA release through alpha-2 receptors located on central
NA neurons and peripheral sympathetic post-ganglionic neurons (auto-receptor or
pre-synaptic receptor). These alpha-2 receptors prevent central and peripheral NA
hyperactivity [112,181]. In a supine resting hypertensive human, clonidine lowers
the sympathetic activity only when the baseline activity is high (recorded from the
postganglionic sympathetic fibers innervating the vascular smooth muscle of the
striated muscle (peroneal nerve) [182]). In the CCU patient, this is compatible with
a normalization of high sympathetic hyperactivity with a high baseline endogenous
NA plasma concentration. However, this setting is different from the sympathetic
inhibition observed in the healthy supine resting volunteer from low baseline sympa-
thetic nervous activity to lowered activity and from normal baseline endogenous NA
concentration to very low NA concentration.

Monitoring:
Presently, the intensivist uses global peripheral perfusion (urine flow, capillary refill

time, mottling, lactate, venous saturation, CO2 gap, etc.). After administration of alpha-2
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agonists, monitoring the HR is useful: (a) during the first 12–48 h, HR decreases from
100–120 bpm to 70–80 bpm, presumably due to a normalization towards baseline of the
cardiac sympathetic activity; (b) during the next 48 h, the HR may decrease from 70–80 bpm
to 40–50 bpm. This would suggest overdose of alpha-2 agonist (e.g., in the setting of AKI) or
lowered inflammation or cardiac parasympathetic recruitment. After administration of an
alpha-2 agonist, three observations are useful: (a) clinical improvement is obvious only after
3–4 d: extubation may often be considered at this interval (Pichot and Quintin, unpublished
data); (b) procalcitonin decreases very rapidly (Leroy and Quintin unpublished data [183]);
(c) experimental data show a clear-cut differentiation between sympathetically-driven
tachycardia as opposed to inflammation-driven tachycardia*. Therefore, a combination
of global indices and observation of HR helps tailor the timing and the dose of alpha-2
agonist [15].

* in the CCU setting, the causes of tachycardia are multifactorial: (a) pain; (b) ag-
itation; (c) temperature; (d) hypotension leading to cardiac baroreflex-mediated activa-
tion, requiring volume and/or vasopressor; (e) metabo-reflex-mediated mechanisms (the
metabolic reflex originating in skeletal muscle is “activated when blood flow to contracting
muscles is insufficient to allow both O2 delivery and metabolite washout”; optimized
micro-circulation with an alpha-2 agonist could possibly lead to improved tissue acidosis
and hypoxemia, presumably reducing tachycardia); and (f) inflammation, which generates
tachycardia unblocked by a beta-blocker [184]. Thus, tachycardia is partially independent
of the sympathetic system. The clinically unproven implication is that the overall state-of-
the-art treatment normalizes inflammation and suppresses tachycardia over a few days.
Thus, a high-dose alpha-2 agonist, which controls sympathetically mediated tachycardia, is
necessary early to manage inflammation and sympathetic hyperactivity. Subsequently, the
high-dose alpha-2 agonist can become detrimental, leading to bradycardia and low cardiac
output. Therefore, the doses of alpha-2 agonist may be reduced over time as a function
of either normalized inflammation or overdose. Indeed, the dose of an alpha-2 agonist is
titrated to the desired effect.

In the future, given the difficulty of rapidly measuring sympathetic activity, assess-
ment of the sympathetic baseline activity may use (a) lactate as a possible indirect marker of
sympathetic activation [185,186]. Lowering lactate well below 2 mM would be an index of
sympathetic deactivation; or (b) simple beat-by-beat online processing of HR and BP (respi-
ratory sinus arrythmia, heart rate, and blood pressure variability), such as time-series of HR,
Poincaré plot (SD1 vs. SD2), pNN50, slope of the non-invasive cardiac baroreflex [187–189];
or (c) complex techniques such as fast Fourier transform [190], fractal dimension [191], etc.
The intensivist will address online changes in sympathetic and parasympathetic activi-
ties and recoupling the systemic and the micro-circulation. Bedside tools should become
widely available to address sublingual [53] or thenar [137] perfusion.

Resetting of sympathetic activity by alpha-2 agonists: In septic animals ([192]; Figure 2 in
ref. [193]; Figure 2 in ref. [146]), renal sympathetic nerve activity increases. More impor-
tantly, the highly regular burst locked in time with the nadir of DBP (“DBP-locked”) is
lost; sympathetic bursts occur at random throughout the systolic–diastolic cardiac cycle.
This background sympathetic hyperactivity results in increased NA release and a down-
regulation of the alpha-receptors located on arteries and elsewhere. This decreases the
vascular reactivity to the quanta of NA released by the sympathetic bursts. Increased vaso-
pressor requirement follows. The reactivity of the sympathetic system and/or the vascular
reactivity to transient or sustained hypotension is lost. In contrast, in the setting of experi-
mental [146,193] sepsis, clonidine normalized the background sympathetic activity toward
baseline, restored the DBP-locked pattern, increased the vascular reactivity to NA, and
improved BP (Figure 2 in ref. [193]; Figure 2 in ref. [146]). Indeed, in the sepsis + clonidine
group, BP was higher than in the sepsis + placebo group [193]. Schematically, (a) in the
healthy state, lowered BP led to an appropriate increase in sympathetic activity, NA re-
lease, and a restored BP (sympathetic vasomotor baroreflex); (b) in sepsis, lowered BP
led to an inappropriate sympathetic response, a release of NA throughout the cardiac
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cycle, and a down-regulation of receptors with BP unrestored. The pathophysiology of
the sympathoexcitation in sepsis is elusive when analyzed at the organ level. Baroreflex-
mediated restraint of sympathetic activity is lost with the metabo-reflex [136] or systemic
inflammation evoking prolonged sympathetic hyperactivity.

In humans, (a) in elderly hypertensive patients without sepsis, chronic low dose cloni-
dine is associated with better BP preservation during hypovolemia (lower body negative
pressure challenge: baseline: −6 mm Hg; clonidine: −2 mm Hg [194]). (b) Following
clonidine administration before septic shock, the release of endogenous catecholamines
is maintained upon septic shock [195]. (c) Immediately following declamping of a liver
graft in humans [196], clonidine patients present with higher DBP when compared with
control patients [196], a paradoxical finding. To sum up, an alpha-2 agonist partially or
totally restores the vascular [144,146,193] responses to catecholamines and phenylephrine
as well as those to angiotensin [193] and vasopressin [197].

Clinical evidence:

(a) administration of clonidine 1 µg·kg−1·h−1 to a patient in refractory septic shock in-
creased SBP (+30–40 mm Hg), lowered NA requirements (−78%), and increased diure-
sis (0.2 to 2.0 mL·kg−1·h−1) despite reduced diuretic requirement [198]. Similarly, in
a neonate presenting with necrotizing enterocolitis, clonidine 1 µg·kg−1·h−1 lowered
NA requirements (−87%) [183];

(b) dexmedetomidine 0.6 µg·kg−1·h−1·for 12 h administered alone was associated with
higher BP and lower NA requirements (−25%) in septic shock patients (APACHE~18,
n = 33*2, placebo: volume infusion 6mL·kg−1·h−1) [11]. This paper [11] solves the
shortcomings of the following references [9,10];

(c) dexmedetomidine 0.7 µg·kg−1·h−1·4 h after withdrawal of propofol (but not remifen-
tanil) lowered NA requirements (−56%) in the setting of septic shock (n = 38) [9].
The cross-over design precludes excluding the withdrawal of propofol as causing
reduced NA requirements;

(d) dexmedetomidine (1.0–1.5 µg·kg−1·h−1) [199] reduced NA and vasopressin require-
ments (−25%) and increased BP from 6 h after the beginning of administration
(n = 83) [10].

These reports are compatible with sympathetic deactivation by alpha-2 agonists
evoking: (a) upregulation of vascular alpha-1 receptors [7,198] and increased pressor re-
sponsiveness to phenylephrine and NA [144,193,200] and non-catecholamine vasopressors
(vasopressin [10], angiotensin [193]); (b) improved microcirculation; (c) reduced inflam-
mation, thus improving vascular hyporesponsiveness. Lowered NA requirements and
disappearance of mottling are observed within 3–6 h [7]. Accordingly, bradycardia and
hypotension occur within the first hours of dexmedetomidine administration [201], and
markers of inflammation are lowered within 24–96 h [183]. Which of the improved, mi-
crocirculation or lowered inflammation, causes recovery? As alpha-2 agonists exert their
effects via the parasympathetic and the sympathetic systems, these “dirty” drugs induce
many effects, which probably account for their clinical usefulness. The difficulty is to
ascribe specific mechanisms to these changes.

Venous return: Sympathetic deactivation in sepsis by alpha-2 agonists leading to an
upregulation of alpha-1 receptors may present paradoxical effects: (a) the resulting greater
responsiveness to sympathetic activation increases venous return. The unstressed volume
is the volume necessary to fill the veins when no sympathetic activation occurs on the
vessel walls; the stressed volume is the volume mobilized by the sympathetic activation.
One third of the regional blood volume is expelled within 30–40 s when sympathetic ner-
vous activity is stimulated using low frequency [95]. Prolonged adrenaline infusion lowers
blood volume, an effect prevented by pharmacological or surgical sympathectomy [115].
NA increases the venous upstream pressure due to venoconstriction and the blood volume
participating to venous return. Accordingly, NA decreases the venous capacitance and
the unstressed volume [202]. This increased upstream venous pressure [202] lowers the
gradient of pressure between arteries and veins and may further contribute to lowered
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capillary perfusion. (b) As a reduction in NA dose reduces venous return and CO [202],
sympathetic deactivation presumably lowers venous return (increased unstressed volume).
(c) Upregulated venous alpha-1 receptors eg. after alpha-2 agonists, presumably increases
venous return if NA administration is delivered without any modification. (d) Alpha-2
agonists may increase venous return via a direct effect on venous alpha-2 receptors [203],
squeezing venous capacitance. In a mixed population of septic and non-septic patients,
dexmedetomidine reduces venous return less that propofol [51], at variance with our
belief [12,14,15]. Nevertheless, in our hands, co-administration of dexmedetomidine and
propofol leads to a higher incidence of severe bradycardia and hypotension.

Limitations: In a large trial using dexmedetomidine in critically ill patients, mortality
improved only in aging and surgical patients [199,204]. Nevertheless, the patients were
included from a general CCU population [199] rather than selected as patients with re-
fractory septic shock and/or high APACHE II score [111]. The hypothesis implies that
alpha-2 agonists may improve mortality only when the sympathetic system [110,111] or
prolonged mechanical ventilation are the limiting factors. However, the patients are allo-
cated to dexmedetomidine added to conventional sedation (propofol, midazolam, opioids)
vs. conventional sedation alone [199]; this does not address how cooperative sedation and
the brain stem control specifically the circulation. Mixing conventional and cooperative
sedation drowned any positive signal into the background noise [36,37,205]. To further the
confusion, alpha-2 agonists were marketed in the 60′s as centrally acting anti-hypertensives
and in the 90′s as CCU sedatives. Thus, not all physicians are aware that alpha-2 agonists
are simultaneously and, for the same dose range, sedatives, sympatholytics, and antihyperten-
sive agents [12,14,206–209]. Alpha-2 agonists lower the baseline activity of the sleep/wake
cycle and circulatory systems but increase their reactivity [122,188,210–213]. In the setting
of septic shock, these sedative and sympatholytic effects of alpha-2 agonists should lead to
conventional sedation being, early on entirely replaced by cooperative sedation [12,14,15]
and, simultaneously, a lowering of NA requirements. Contrary to a previous design [10,199],
the alpha-2 agonist is not to be added to the state-of-the-art (conventional sedation) but
used as a stand-alone sedative and sympatholytic [14,36–38,205,214,215]. As cooperative
sedation does not suppress the activity of the respiratory generator [216], the patient
breathes spontaneously; this improves circulation, minimizing volume, vasopressor, and
inotropic requirements.

To sum up, in animals, an analytical design should test one drug after the other. By con-
trast, in humans, the intervention(s) should be tested against a state-of-the-art group [217].
Mechanistic [38] studies would prove a harmful effect of prolonged sympathetic hyperac-
tivity on the microcirculation and the innate immune system. Larger randomized studies
should compare an alpha-2 agonist or beta-blocker vs. conventional sedation on physiolog-
ical end-points vs. mortality. This approach should be assessed in the setting of refractory
septic shock where most benefits are expected, with iterative assessment of volemia during
introduction of the alpha-2 agonist (Figures 5 and 6 in ref. [12]). The Helsinki declaration
(§ 35, 2008)* gives a framework for pilot trials in the setting of refractory septic shock.

* unproven interventions in clinical practice: in the treatment of an individual pa-
tient, where proven interventions do not exist or other known interventions have been
ineffective, the physician, after seeking expert advice, with informed consent from the
patient or a legally authorized representative, may use an unproven intervention if in the
physician’s judgment it offers hope of saving life, re-establishing health, or alleviating
suffering. This intervention should subsequently be made the object of research, designed
to evaluate its safety and efficacy. In all cases, new information must be recorded and,
where appropriate, made publicly available.

5.2. Pressure vs. Flow: Microcirculation and the Autonomic Nervous System

Pressure vs. flow [218–222]: In the setting of septic shock, the current gold standard is an
MAP = 65 mm Hg [2] with BP as a function of CO and vasomotor tone. As vasomotor tone
cannot be directly measured, a surrogate is to calculate systemic vascular resistance (pres-
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sure = output × resistance). Reversal of hypotension may occur with increased vasomotor
tone (e.g., following NA infusion or improved sepsis leading to reduced vasodilation) or
increased CO (e.g., adequate preload and/or inotropism) or a combination. Thus, adequate
CO and adequate microcirculation may be observed despite hypotension (MAP < 65 mm Hg).
Given adequate CO and peripheral perfusion, a higher NA dose to achieve a higher MAP
may be useless or detrimental [221]. To our knowledge, no study has shown improved
survival as a function of increasing BP when adequate peripheral perfusion is present.
Achieving a higher MAP only reduces the need for RRT in hypertensive patients [223].
The experimental evidence favoring MAP = 65 mm Hg is non-existent [221], and by focus-
ing on BP, restoration of peripheral perfusion is forgotten [218,221,224,225]. That low BP is
associated with poor outcome demonstrates only that rigorous studies with different levels
of MAP are needed and nothing more [221]. Overall, NO synthesis inhibition may worsen
peripheral perfusion; this evokes the question of whether septic maladaptive vasodilation
should be overtreated [221]. Circular reasoning shows up: the severity and the dura-
tion of hypotension and dose of noradrenaline-equivalent are associated with mortality
(NA equivalent: 0.02 µg·kg−1·min−1: mortality 15%; NA equivalent: 2.25 µg·kg−1·min−1:
mortality 61%; in line with Table 1). After volume expansion, when mortality is assessed as
a function of vasopressor administration, patients receiving vasopressors exhibit higher
lactate and mortality [221]. How to disentangle the severity of septic shock itself from
the iatrogenic process? Would alpha-2 agonists only lower NA requirements or reduce
mortality as well?

Permissive hypotension: When brain injury, carotid or aortic valve, renal artery, or
left coronary stenosis, or pulmonary hypertension/right ventricular failure are present,
high BP is necessary to achieve flow. Elsewhere, “permissive hypotension” was proposed
(SBP~90–100 mm Hg [226]; MAP at levels at least 20 mm Hg below pre-shock levels [227];
45 < MAP~50 mmHg [218])*. Iterative assessment of pre-load and peripheral perfusion
is needed (respectively, collapsibility of vena cava vs. urine output, capillary refill time,
mottling, pulse pressure variation, arterial lactate, superior vena cava/mixed venous
saturation, and CO2 gap (PvaCO2)). The inadequacy of two or more of these indices
suggests continuing resuscitation (with volume or restoring microcirculation or both).
When all indices are appropriately restored, relatively low BP (45 < MAP ≤ 50 mm Hg)
may be achieved with lower vasopressors requirements. After achieving adequate global
perfusion**, NA is increased to achieve adequate kidney perfusion and urine output [218]
unless RRT is needed.

* in the setting of traumatic shock, a critical SBP~80 mm Hg was observed as evok-
ing peripheral hypoperfusion and acidosis [224]. Accordingly, hypotensive resuscitation
(SBP~80–90 mm Hg) is used in the field up to thorough hemostasis [228].

** “damming the blood in the arterial portion of the circulatory system when the
or-ganism is suffering primarily from a diminished quantity of blood, obviously does
not improve the volume-flow in the capillaries; a higher arterial pressure is not the de-
sideratum in the treatment of shock, but a higher pressure which provides an increase in the
nutritive flow through the capillaries all over the body (italics by Cannon, ref. [224], 1923).
This can be obtained only by increase of the volume-flow. It cannot be ac-complished by
medication. the use of vasoconstrictor drugs, such as .adrenalin[e], practically disappeared
during the course of the [world war 1]”. Written for war injuries in a previously healthy
man, this applies to septic shock only if global perfusion is achieved after volume expansion.
Capillary hypoperfusion may be as a progressive phenomenon, time-wise and pathology-
wise, from few capillaries un-der- or un-perfused in the setting of early cardiogenic shock
to a thorough capillary absence of perfusion in the setting of late hemorrhagic shock, with
septic shock being between these two patterns. No generalized sympathetic activation
should be postu-lated from a highly differentiated coordinating sympathetic system. Rather,
studies should look for differential involvement of the various branches of the sympathetic
and parasympathetic systems.
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Coronary perfusion pressure: In septic shock, NA infusion is to be started early when dias-
tolic pressure (DBP) is low [219] and associated with normal or elevated HR [219]. Low DBP
is an index of reduced LV afterload especially when HR is high [219,222]. The goal of early
NA administration is an adequate LV coronary and cerebral perfusion pressure. Two issues
are at stake:

(a) increased coronary flow is observed in septic shock without coronary disease and
compatible with lost autoregulation. By contrast, the lowest MAP (thus diastolic
pressure) is associated with decreased coronary perfusion pressure, flow, lactate
uptake, and myocardial hypoxia in septic shock patients [229]. The patients with
the lowest MAP and diastolic pressure are the patients with the lowest coronary
flow (219). However, reduced coronary reserve or flow does not necessarily imply
myocardial ischemia, ST changes, and regional dysfunction;

(b) restoring diastolic pressure is a rescue treatment to avoid circulatory collapse; it does not
restore peripheral perfusion [218]. NA increases right and LV contractility. LV ejection
fraction increased from 36% to 44% despite increased afterload (target MAP = 65 mm Hg;
NA requirement = 0.23–0.40 µg·kg−1·min−1 i.e., ~1.7 mg·h−1/70 kg) [230]. When refrac-
tory septic shock is adequately managed, CO is relatively preserved. Exogenous NA
exerted a weak beta agonist effect [230,231] and squeezed the hepatosplanchnic blood
into the right atrium [202,231]. A reanalysis suggests that NA increases SVR by ~24%
and CO by ~10% [221] but increased pressure does not necessarily mean increased
peripheral perfusion.

To sum up, in the setting of septic shock, no direct evidence links low diastolic pressure
to myocardial ischemia and outcome. Nevertheless, physiology [219] suggests using NA
early when diastolic pressure is low. Such a cautious approach should go hand in hand
with improving global perfusion.

Local control: Indirect evidence suggests an important role for the autonomic nervous
system in controlling the microcirculation [6,95]. The link between the systemic circula-
tion and the microcirculation is loose [232]. The microcirculation is under sympathetic
control by the central nervous system. At the local level, the flow shifts constantly from
one territory to the next [233]. This intrinsic “autoregulation” is due to the appropriate
functioning of the endothelial layer, a homogeneous release of nitric oxide (NO) [76] and
waxing and waning of most vascular beds in the healthy resting volunteer. By contrast,
in the setting of septic shock, the autoregulation is lost with massive but heterogeneous
NO release [234]. Is the delicate balance between perfused and non-perfused areas ob-
served in the healthy volunteer overrun by the septic shock, by the vasopressor(s), or
by both? For example, despite preserved ejection fraction, adenosine dilatation of the
coronary circulation is reduced [219] and linked to tissue acidosis and diastolic dysfunc-
tion [235]. Continuously fully open capillary beds exist next to continuously fully closed
ones. The end result is that ~50% of the capillary beds are not perfused irrespective of
restored BP [234]. This equivalent of convective arterio-venous shunts evokes a patchy
and disperse distribution of O2 supply (distributive shock leading to heterogenous O2
supply, reduced O2 diffusion, and local underperfusion) [234]. Preserved capillary density
(e.g., open capillaries, Figure 3b in ref. [236]) coexists with sluggish flow or no flow areas,
distant by only a few microns (capillaries present but closed, Figure 3a in ref. [236]; the
areas predisposed to become the first dysoxic areas when O2 supply is limited are called
“weak” units and are located on the venular side of capillaries; quoted from [237]). Briefly,
overall excessive NO production requiring NO synthase inhibition may be irrelevant, as
it suppresses NO release everywhere, including in areas in which dilation is preserved.
Appropriate NO synthesis or synthesis inhibition is necessary only in constricted areas.
In this respect, alpha-2 agonists evoke NO release [238] and centrally normalize sympa-
thetic activity only where required. Can NO synthesis or release be achieved only where
appropriate with an alpha-2 agonist in the setting of septic shock?

Autonomic control: Post-ganglionic skin sympathetic neurons (T2-L1) control skin
blood flow, sweat, and mottling. The sympathetic skin vasoconstriction is noradrenergic
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when acral skin, e.g., hands and feet, is considered. By contrast, the sympathetic skin
vasodilation is cholinergic when hairy regions are considered (nonacral skin; Figure 6 in
ref. [239]). In the setting of septic shock, topical acetylcholine totally and immediately
reverses the sublingual microcirculatory defects observed under high doses of NA in septic
shock patients with poor outcome (up to 1.2 µg·kg−1·min−1 i.e., 5 mg·h−1/70 kg) [240].
As (a) the sublingual mucosa approximates the splanchnic mucosa [241] and (b) skin
perfusion closely relates to visceral perfusion [242], this observation is relevant to septic
shock caused by peritonitis. However, does this hold for other vascular beds? Thus,
the skin microcirculatory defects observed in septic shock are possibly modified by the
cholinergic skin sympathetic vasodilatory system counteracting the noradrenergic skin
sympathetic vasoconstriction—but how to clinically use this observation [240] remains
a question.

Receptors: The amplitude of the sympathetic vasoconstriction is largest in the most
distal arteriolar branches [233]. Capillaries do not have adrenergic receptors [25]. Arterioles
(diameter: 5–100 µm) present a thick layer of smooth muscle cells and are located between
arteries and capillaries. Large and small arterioles are controlled by alpha-1 and alpha-2
receptors, respectively [180,243]. Thus, down-regulation of alpha-1 and alpha-2 receptors
would lower responsiveness to exogenous NA and an escalating NA requirement upstream
to the capillaries. Nevertheless, in humans, a causal relationship between sympathetic acti-
vation and lost capillary perfusion [244] has not been demonstrated. To our knowledge, the
effect of acetylcholine on the sublingual microcirculation [240] is the only direct argument
for a major involvement of skin sympathetic hyperactivity in generating sepsis-induced
microcirculatory disorder.

Pathophysiology:

(1) increased BP: when NA increases mean BP from 65 to 85 mm Hg, (a) the patients with
preserved microcirculation and the highest capillary density present with the largest
reduction in capillary density. Schematically, NA is harmful. (b) Conversely, the
patients with the most altered microcirculation present with a small improvement in
capillary density (Figure 6 in ref. [245]). In this subgroup, NA is modestly beneficial.
Indeed, when perfusion is more severely altered at baseline, the microcirculatory
improvement is more important [246];

(2) beta-adrenergic vasodilation: the beta-agonist, dobutamine (5 µg·kg−1·min−1), in-
creases capillary perfusion without changing capillary density or a relationship to CO
or BP [246]. Therefore, a postulated beta-mediated dilatation of large arterioles [246]
bears no relationship with either the increased driving pressure evoked by NA or the
vasoconstriction of large or small arterioles or to the skin sympathetic system;

(3) lactate: oxygenation vs. sympathetic hyperactivity? Lactate concentration decreases
as capillary perfusion increases [246]. Very low lactate concentration appears related
to better outcome in the setting of septic shock [247]. If lactate is not a marker of hy-
poxia or poor perfusion but a function of beta-2 mediated sympathetic activation [186],
then normalization of the sympathetic hyperactivity is important immediately after
salvage. To sum up, lowered lactate concentration is a marker of improved micro-
circulation, presumably a consequence of sympathetic deactivation rather than of
improved oxygenation.

A post-mortem study showed many unresolved septic foci (lung, peritoneum, etc.) [248].
Is ongoing infection a consequence of poor micro-circulation and poor antibiotic diffusion
or to immunoparalysis and lethal secondary infections [248]? Either mechanism calls for a
minimization of sympathetic hyperactivity.

To sum up, irrespective of a restored systemic circulation, the intensity of the alteration
of the microcirculation in sepsis is inversely related to outcome (marker of severity vs.
prognostic factor [249]), but the mechanisms causing the disturbed microcirculation are
unclear. Currently, therapies to recouple the microcirculation to the systemic circulation
are elusive.
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Alpha-2 agonists: Heterogeneous NO release evoked by sepsis leads to a patchy mi-
crocirculation. A stimulation of NO release by the alpha-2 agonist [238] should level a
patchy microcirculation and minimize local acidosis. Accordingly, in experimental sepsis,
dexmedetomidine improves systemic acidosis and micro-circulation (reduced leukocyte
rolling and adhesion, greater functional capillary density, improved base excess) [244].
Dexmedetomidine increases lactate clearance in septic shock [250] and lowers plasma lac-
tate concentrations [196,251]. In addition, alpha-2 agonists reduce vascular leakage [252],
thus reducing the consequences of inflammation.

5.3. Sympatho-Immune Interactions and Inflammation

Anti-inflammation is beneficial if inflammation in the cytokine storm should be reg-
ulated. Inflammation is beneficial only if restricted spatially and temporally, at vari-
ance with a cytokine storm. On the other hand, persisting anti-inflammation leads to
immuno-paralysis.

Sympathetic hyperactivity leads to pro-inflammation and late immunoparalysis.
Thus, does sympathetic deactivation inhibit sympathetic immuno-suppressant pathways
and improve immune function via specific pathways? Conversely, does sympathetic de-
activation improve the microcirculation and consequently improve immune function?
There is evidence that the sympathetic nervous system activates early pro- and anti-
inflammation [253]; is this early sympathetic activation deleterious or beneficial?

In intact (sham) sheep, intravenous administration of E. coli caused a high circulating
bacteremia and a moderate pro-inflammatory response. In animals with cut splanchnic
nerves, there was a stronger pro-inflammatory response, a faster resolution of the bac-
teremia, and more rapid recovery of the animals (higher plasma TNF and pro-inflammatory
IL-6, lower anti-inflammatory IL-10; Figures 2 and 3 in ref. [254]). Here, early pro-
inflammation is beneficial. In this respect, IL-10 is anti-inflammatory but also impedes
pathogen clearance [255]. Thus, surgical sympathectomy would lower IL-10 (Figure 2
in ref. [254]) and increase pathogen clearance, as in Figure 3 in ref. [254]). In the setting
of mild experimental sepsis, early sympathetic suppression enhanced the limited pro-
inflammatory response and improved recovery in sheep. By contrast, in the CCU patient,
the extent to which pharmacological normalization of the sympathetic nervous system can
reduce the late immuno-paralysis is unclear. Indeed, alpha-2 agonists are associated with
anti-inflammatory effects in animals [256,257] and humans [183,258–261] with improved
outcome [262].

This study raises questions regarding beneficial and detrimental effects of sympathetic
activation and the effects on inflammation.

(1) Time course: Sheep were sympathectomized before E. coli administration [254],
whereas a patient is often admitted with much delay* to the CCU in septic shock and
fighting against a much higher focal load (e.g., peritonitis). Then, it is to be determined
whether the patient has gone through:

(a) firstly, early beneficial sympathetic activation and pro-inflammatory response
(beneficial but undocumented in the clinical setting?)?

(b) secondly, late prolonged sympathetic hyperactivity and immunoparalysis (detri-
mental but documented)?

* the response to septic shock is different when treatment occurs almost immediately
after the beginning of symptoms vs. days, as observed with poor health care. Restoring
capillary perfusion may be impossible even if maximal therapy is aggressively used from
CCU admission onwards (source control, invasive ventilation with paralysis, optimized
systemic circulation, early renal replacement therapy, etc.). Indeed, volume improves
microcirculation only in the first 24 h but not after 48 h of sepsis recognition [263].

(2) Do alpha-2 agonists lead to a loss of the early beneficial sympathetic activation? An alpha-2
agonist is sympatholytic and should produce the equivalent of sympathetic splanchnic
surgical inactivation with enhanced pro-inflammation. The cytokine profile (low IL-6,
high IL-10) evoked by the alpha-2 agonists in humans [183,258–262] suggests that an early
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beneficial pro-inflammation observed following surgical sympathetic suppression in sheep
is lost; thus, alpha-2 agonists may present detrimental effects. Here, the intensivist is facing
a contradiction: alpha-2 agonists should lead to detrimental effects (e.g., lowered early
pro-inflammatory response and delayed bacterial clearance). Surprisingly, clinically, they
lead to beneficial effects [183,262]. Is this linked to late sympathetic deactivation preventing
immunoparalysis? Chronic SNS activation in CHF patients desensitizes lymphocytes
beta-2 receptors, altering immune function [94]. Conversely, in the setting of septic shock,
would an alpha-2 agonist normalize plasma catecholamines concentrations and restore
beta-2 receptor function to baseline with improved innate immunity?

(3) Parasympathetic system: To address this contradiction, a parasympathetic activation
by alpha-2 agonists [264] is the only solution left, but discussion of this is beyond the
scope of this manuscript. Indeed, in experimental septic shock, vagus nerve stimulation
lowered NA requirement and minimized organ failure and lactate concentration [265].
Despite our previous emphasis on the parasympathetic system [122,189,264,266,267], our
present approach is one-sided in considering only sympathetic de-activation.

Schematically, in the experimental animal, early sympathetic surgical inactivation
was associated with faster elimination of bacteria and recovery (Figure 3 in ref. [254]).
Limited pro-inflammation was beneficial. By contrast, in the CCU patient, alpha-2 ago-
nists were associated with normalized sympathetic activity and improved outcome [262].
Clinically, lowered inflammation [183,258–261] was beneficial. This contradiction suggests
studying further the detrimental effect of prolonged sympathetic hyperactivity (postulated
in this review) and beneficial effect of sympathetic deactivation.

Inflammation: The literature does not demonstrate [268] a negative relationship be-
tween sympathetic hyperactivity, poor peripheral perfusion, inflammation, and outcome.
Moreover, to our knowledge, there is no demonstration of lowered inflammation causing
improved outcome. High NA requirements or high lactate are associated with microcircu-
latory abnormalities (respectively, >0.3 µg·kg−1·min−1~1.3 mg·h−1/70 kg; >4 mM) [268].
The microcirculation may be shut down by the systemic inflammation or the high dose NA
or both. Thus, the high mortality may be secondary to inflammation itself or the use of a
high-dose of NA or both. A randomized double-blind trial to modify the sympathetic sys-
tem, regulation of alpha- and beta-receptors, microcirculation, inflammation, and outcome
would address causality [268].

Nevertheless, how can this putative vicious circle be broken if improved CO and
improved mean BP are not sufficient? When patients are heading toward refractory septic
shock and high NA requirements, the literature suggests using (a) angiotensin [71,73]
and/or vasopressin [61]; (b) peripheral tools (“metabolic resuscitation”: steroids, methy-
lene blue [78,79], vitamin C [80,81], B12, B1 (thiamine), nitroglycerin [82], prostacyclin);
and/or (c) antihypertensive agents: alpha-2 agonists, beta-blockers or a converting en-
zyme inhibitor [70]. The need to normalize the sympathetic hyperactivity toward baseline
and improve circulatory status and outcome may extend to normalize angiotensin and
vasopressin systems as well, bearing in mind their close coordination.

5.4. Alpha-2 Agonists and Acute Kidney Injury

(1) Physiology: AKI is reflected by increased serum creatinine with reduced urine
output. There is evidence that renal sympathetic nerve activity is increased in cases of AKI
induced by ischemia/reperfusion or sepsis [192,269]. Increases in renal sympathetic nerve
activity cause renal vasoconstriction, decrease glomerular filtration rate, and reduce the
autoregulatory range of renal blood flow and glomerular filtration rate [270] and thus may
contribute to the development of AKI. Thus, there is evidence that inhibition of sympathetic
nerve activity or renal denervation attenuates the development of ischemia/reperfusion-
induced AKI [269,271,272]. However, in ovine sepsis, renal denervation did not reduce
the development of AKI, although it led to a greater BP decrease [273]. Thus, in ovine
sepsis, the development of septic AKI does not depend on the increased renal sympathetic
nerve activity.
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Sepsis accounts for ~50% of patients with AKI and is associated with a high mortality.
Recent studies showed that AKI is not a disease of the systemic circulation resulting
from global renal ischemia, cellular damage, and tubular necrosis. Indeed, AKI can
develop in the presence of preserved or increased renal blood flow in animals [274–276]
and humans [276–278]. In ovine sepsis, renal blood flow and plasma creatinine increase,
while creatinine clearance and urine output decrease [279]. In sepsis, it was proposed that
increased renal blood flow and lowered glomerular filtration rate may be related to greater
dilation of the efferent rather than the afferent arteriole [280]. In this respect, angiotensin
constricts the efferent arteriole, increases the glomerular perfusion pressure [64], reduces the
dose of NA required to maintain BP, and improves the outcome when human septic shock
is complicated by AKI requiring RRT [72]. Thus, global systemic circulatory modification
does not cause AKI; AKI may be due to the renal microcirculatory defects observed during
septic shock [66,275] which replicate in the kidney changes seen elsewhere in the body [234].

Therefore, treating AKI through the systemic circulation with crystalloid (salt, water)
and increased perfusion pressure is not optimal but requires additional tools (e.g., possibly
non-catecholamine vasopressor or alpha-2 agonist). Restoration of BP with NA worsened
renal medullary ischemia and hypoxia despite preserved global renal flow and kidney
O2 consumption [149]. In contrast, restoration of BP in experimental sepsis with non-
catecholamine vasopressors (angiotensin II, vasopressin) preserved intrarenal perfusion
and oxygenation [69,281].

(2) Pharmacology [66]: Clonidine evokes increased free water clearance and urine flow
in anesthetized dogs [282] and water and sodium diuresis (anti-antidiuretic hormone:
ADH [283–285]), a large increase in urine output and the anti-inflammatory cytokine IL-10,
and a lowering of the pro-inflammatory cytokine IL-6 in septic sheep [197] without changes
in creatinine clearance or sodium excretion. Low dose clonidine (0.25 µg·kg−1·h−1) elicited
vasodilation and increased CO (presumably increased SV) [197], a lowering of plasma renin
activity, and sodium and weight loss [286] in hypertensive patients. In animal models,
dexmedetomidine was protective against AKI induced by sepsis [287–289].

Antidiuresis: Following clonidine administration, overhydrated CCU patients pre-
sented massive weight loss over 2–4 days despite lowered furosemide requirement (Quintin,
unpublished data). In the setting of CHF [48], cirrhosis [290–292], and CCU [293], alpha-2
agonists lowered the requirement of furosemide. Overhydration past 72 h of admission
in septic patients was associated with higher mortality [294], which may be related to
lowered urine output secondary to AKI itself or to antidiuresis secondary to sympathetic
hyperactivity leading to ADH secretion. Such antidiuresis would be suppressed by the
anti-ADH effect of alpha-2 agonists [48,283,290–293]. In the setting of coronary artery
bypass graft (CABG) surgery with CPB, clonidine was associated with lower creatinine
concentration [295]. In the setting of CABG + CPB, clonidine (4 µg·kg−1) increased urine
output and prevented the decrease in creatinine clearance [296]. In addition, clonidine
(20 µg·kg−1 × 4 days) suppressed protein catabolism following esophagectomy in alco-
holic patients [297], possibly minimizing RRT [298].

Retrospectively, in the post-CPB setting, dexmedetomidine reduced the incidence
of AKI (26% vs. 34%), especially in patients without pre-existing chronic kidney disease
(23% vs. 33%) [299], and this was associated with reduced mortality (2% vs. 5%) (299).
This was confirmed prospectively in the setting of valve replacement (lower urea, creati-
nine; incidence of AKI: 8% vs. 25%, n = 36 × 2) [300]. A meta-analysis reported a reduced
incidence of AKI trending toward lowered mortality (p = 0.13) [171]. In the setting of
septic shock, dexmedetomidine was associated with lower creatinine, preserved creatinine
clearance, lowered incidence of AKI, RRT, and shortened CCU stay (AKI: 38% vs. 60%;
RRT: 9% vs. 14%; stay: 14 vs. 19 d, n = 100 × 2) [298]. To sum up, following alpha-2
agonists, animal [149] and clinical data suggest an improvement of the renal microcir-
culation. The mechanisms may involve renal sympathetic nerve deactivation, decreased
inflammation, and increased NO release.
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6. Conclusions

This overview shows that many questions remain open with few answers. Back to
the present thesis, extensive indirect evidence suggests a detrimental effect of prolonged
sympathetic hyperactivity and a benefit of a normalized sympathetic activity in the setting
of septic shock [3]. Immediately after stabilization of the acute cardioventilatory distress,
the intensivist should address the microcirculation [25] and the immunoparalysis [248].
Immediately after intubation and stabilization of the acute cardioventilatory distress,
conventional sedation should not be used; rather, cooperative sedation should be used
to achieve lowered NA requirements. As a benefit comes at a price, contra-indications
and caution delineated earlier (Figures 5 and 6 in refs. [12,14,15]) are emphasized in
the introduction.

In sepsis, beta-blockers or alpha-2 agonists minimize the inflammation [183,262], the
systemic vasodilation [9–11,183,196,198], the emergence delirium [301], the delayed emer-
gence from conventional sedation, the duration of controlled mechanical ventilation [302],
the CCU stay [172,298,303], and the mortality [111,162–171].

Mechanistic and epidemiological studies should compare the alpha-2 agonists used as
stand-alone sympatholytics and sedatives [12,14] vs. conventional sedation, ascertaining
sympathetic deactivation, microcirculation, inflammation, and outcome.
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Abbreviations and Glossary

ADH antidiuretic hormone, vasopressin
AKI acute kidney injury
BP blood pressure
bpm beats per min
cardiac parasympathetic activity cardiac vagal activity projecting to the sinus node
cardiac sympathetic activity sympathetic activity projecting to the sinus node and ventricles
CHF congestive heart failure
CO cardiac output
CPB cardiopulmonary bypass

Conventional sedation
sedation evoked by e.g., propofol + opioid
or midazolam + opioid, etc.

Cooperative sedation rousable, arousable sedation evoked by an alpha-2 agonist
d day
DBP diastolic blood pressure
ECMO extracorporeal membrane oxygenator
FCD functional capillary density
LV left ventricle
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HR heart rate
MAP mean arterial pressure
NA noradrenaline
NO nitric oxide
OFA opioid free analgesia
PLR passive leg raising
RRT renal replacement therapy
Salvage stabilization of acute cardioventilatory distress
SILI self-inflicted lung injury
SBP systolic blood pressure
SV stroke volume

unstressed volume
volume necessary to fill the veins without inducing
stress on the vessel walls

Vasomotor sympathetic activity
sympathetic activity projecting to veins (“capacitance”)
and arteries
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