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Emotional processing dysfunction is widely reported in patients with chronic schizophrenia and first-episode
psychosis (FEP), and has been linked to functional abnormalities of corticolimbic regions. However, corticolimbic
dysfunction is less studied inpeople at ultra-high risk for psychosis (UHR), particularly during processing prosod-
ic voices. We examined corticolimbic response during an emotion recognition task in 18 UHR participants and
compared them with 18 FEP patients and 21 healthy controls (HC). Emotional recognition accuracy and
corticolimbic response were measured during functional magnetic resonance imaging (fMRI) using emotional
dynamic facial and prosodic voice stimuli. Relative to HC, both UHR and FEP groups showed impaired overall
emotion recognition accuracy.Whilst during face trials, both UHR and FEP groups did not show significant differ-
ences in brain activation relative to HC, during voice trials, FEP patients showed reduced activation across
corticolimbic networks including the amygdala. UHR participants showed a trend for increased response in the
caudate nucleus during the processing of emotionally valencedprosodic voices relative toHC. The results indicate
that corticolimbic dysfunction seen in FEP patients is also present, albeit to a lesser extent, in an UHR cohort, and
may represent a neural substrate for emotional processing difficulties prior to the onset of florid psychosis.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Emotional processing deficits are widely reported in patients with
schizophrenia and first-episode psychosis (FEP). Experimental studies,
using both emotional faces and prosodic voice stimuli, report robust
emotion recognition deficits in patients with schizophrenia and FEP
(Edwards et al., 2002, 2001; Thompson et al., 2012; Tseng et al.,
2013). As in established schizophrenia, deficits in facial and prosodic
emotion recognition have also been demonstrated in UHR populations
(Addington et al., 2012; Amminger et al., 2012a, 2012b; Thompson et
al., 2012) indicating that impairments in emotional recognition and
processing are already apparent in the prodromal phase of the illness.
This is consistentwith the emotional dysfunction, in the form of anxiety
and affective symptoms, that is common in peoplewho are at ultra-high
risk (UHR) for developing psychosis (Yung et al., 2003).
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Dysfunction in brain regions important for emotional processing
may be associated with vulnerability for developing the illness and
may exist before the onset of florid psychosis (Barbour et al., 2012;
Bediou et al., 2007; Eack et al., 2010; Habel et al., 2004). Neuroimaging
studies in patients with schizophrenia and FEP (Lee et al., 2002; Li et
al., 2010; Pinkham et al., 2005; Reske et al., 2009) have identified im-
pairments during facial and prosodic emotional processing in cortical
and limbic structures, including: the fusiform gyrus (FG) for facial ex-
pressions; superior temporal gyrus (STG) for vocal prosodies; amygda-
la; anterior cingulate gyrus and ventral andmedial prefrontal cortex for
both (Bach et al., 2009; Gur et al., 2002; Hempel et al., 2003; Li et al.,
2010; Mitchell and Crow, 2005; Mitchell et al., 2004; Williams et al.,
2004). Dysfunction in these regions is thought to account for patients'
characteristic disturbances in facial and prosodic emotional processing
and recognition (Gur et al., 2002; Williams et al., 2004).

A multi-stage model of emotional perception and recognition has
been proposed by Wildgruber et al. (2009). The model postulates that
in an initial sensory processing stage, the FG and STG extract basic fea-
tures from visual and speech input (stage 1). This emotional informa-
tion is then conveyed to higher order emotional processing areas (i.e.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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amygdala, parahippocampal area, inferior frontal cortex) for evaluation.
Neuroimaging findings in chronic schizophrenia and FEP patients sug-
gest neural dysfunction is present at both stages of the putative model
(Leitman et al., 2007; Li et al., 2010; Mitchell et al., 2004), i.e. in emo-
tional perception and evaluation regions. Structural and functional ab-
normalities in these regions have also been reported in UHR
populations (Broome et al., 2009; Fusar-Poli et al., 2011, 2007;
Mechelli et al., 2011; Seiferth et al., 2008; Smieskova et al., 2010;
Tognin et al., 2014). Furthermore, previous functional imaging studies
in UHR cohorts examining emotional processing explicitly, using face
stimuli, reported altered activation in primary sensory (i.e. lingual, fusi-
form, and middle occipital gyri) and in the prefrontal cortex relative to
healthy controls, but not always in the amygdala (Seiferth et al., 2008;
Wolf et al., 2015). These findings imply that emotional processing dys-
function in UHR participants may arise from the initial information
decoding stage in sensory areas prior to engagement of the amygdala.
However, so far the evidence is equivocal. The incentive salience hypoth-
esis proposes that increased firing of dopaminergic neurons in the
striatum enhances the salience of irrelevant stimuli in patients
with schizophrenia, including emotion-laden stimuli (Heinz and
Schlagenhauf, 2010; Howes et al., 2009; Kapur, 2003; Roiser et al.,
2013). It has been repeatedly demonstrated that striatal dopaminergic ac-
tivity, including dopamine synthesis capacity and stress-induced dopa-
mine release, is increased in the early phase of the illness, including FEP
(Bonoldi and Howes, 2013; Ellison-Wright et al., 2008; Mizrahi et al.,
2012) and UHR stages (Egerton et al., 2013; Howes et al., 2009; Mizrahi
et al., 2012) These alterations are mainly observed in the dorsal striatum.
Furthermore, increased resting perfusion, a marker of neural activity
(Allen et al., 2015), and altered connectivity (Dandash et al., 2014) have
been reported in the dorsal striatum (especially the caudate) in UHR co-
horts. Altered striatal function observed in FEP and UHR individuals may
contribute to altered salience responses (Roiser et al., 2013), including
responses to emotional-laden stimuli (Winton-Brown et al., 2014).

The dorsal striatum, especially the caudate nucleus, has been shown
to modulate frontolimbic connections during valence-specific emotion-
al processing (Diwadkar et al., 2012; Kotz et al., 2015), particularly in re-
sponse to unpleasant stimuli (Carretie et al., 2009). Misattribution of
emotionally salient stimuli has been reported in patients with schizo-
phrenia during emotional processing (Cohen andMinor, 2010). Togeth-
er, these findings implicate that altered striatal function in psychosis
contributes to the valence misattribution of emotional-laden stimuli. It
is not clear, however, if altered striatal function impacts on emotional
valence judgment in UHR and FEP individuals.

We investigated the neural correlates of emotion recognition in UHR
and FEP subjects using both dynamic facial and prosodic voice stimuli.
In addition to the emotional face stimuli used in previous studies in
UHR populations (Diwadkar et al., 2012; Seiferth et al., 2008), we addi-
tionally included prosodic voice stimuli; as impaired capability to ex-
tract non-verbal emotional information from language is widely
reported in schizophrenia (Bach et al., 2009; Edwards et al., 2002,
2001; Kucharska-Pietura et al., 2005; Leitman et al., 2007) and high-
risk populations (Addington et al., 2012; Amminger et al., 2012a,
2012b). We predicted that (1) relative to HC, FEP patients would
show reduced recognition accuracy for both facial and prosodic voice
stimuli across emotions, and that this would be associated with de-
creased activation throughout corticolimbic regions involved in both
sensory (i.e. FG, STG) and higher order emotional processes (i.e. amyg-
dala and prefrontal cortex). We additionally predicted (2) that relative
to HC, UHR participants would show reduced recognition accuracy
and functional alterations in this corticolimbic network, particularly in
cortical sensory regions (i.e. FG and STG), but to a lesser extent than
that seen in FEP patients. Finally, given the role of the caudate nucleus
in the processing of negative emotional stimuli (Carretie et al., 2009),
we explored bilateral caudate regions and predicted that (3) UHR and
FEP participants would show increased activation in this region relative
to HC during emotional valence judgment.
2. Methods

2.1. Participants

All participants were between 18 and 40 years of age. Eighteen UHR
participantswere recruited fromOutreach and Support in South London
(OASIS) (Broome et al., 2005). The UHR state was defined according to
the Personal Assessment and Crisis Evaluation (PACE) criteria (Yung
et al., 1998) and confirmed using the Comprehensive Assessment of
At Risk Mental States (CAARMS) scale (Yung et al., 2008). In brief,
UHRparticipantsmet at least one of the following criteria: a) attenuated
psychotic symptoms; b) brief limited intermittent psychosis; or c) a sig-
nificant decline in cognitive and social functioning over the past year,
together with either schizotypal personality disorder or a first degree
relative with a psychotic disorder. One of the UHR participants was tak-
ing atypical antipsychotic medication (the chlorpromazine equivalent
was 100 mg/day).

Eighteen FEP patients were recruited to the study through South
London and Maudsley early intervention clinics (http://www.slam.
nhs.uk). FEP was operationally defined as ‘first treatment contact’ plus
an ICD-10 diagnosis of psychosis (codes F20–F29 and F30–F33)
(World Health Organization, 1992a). The clinical diagnosis was validat-
ed by administering the Schedules for Clinical Assessment in Neuropsy-
chiatry (SCAN, World Health Organization, 1992b), and the clinical
states were in partial remission. Ten of the FEP participants were taking
atypical antipsychotic medication (all using second generation antipsy-
chotics, the chlorpromazine equivalent in those FEP participants who
were taking antipsychotic medications was 186.66 ± 118.84 mg/day).

Twenty-one gender-matched healthy control (HC) participants
were recruited via advertisements from the same geographical areas
as UHR/FEP participants. No HC participants met criteria for a DSM-IV-
TR psychiatric disorder, fulfilled the PACE criteria for prodromal symp-
toms, or had a first-degree family history of psychiatric disorders. One
HC was excluded due to incomplete data collection.

Exclusion criteria for all subjects included a history of neurological
disorder, prior head trauma resulting in loss of consciousness and/or
hospitalisation, or any contraindications to exposure to a magnetic
field (e.g. metal implants, or pregnancy). Any participants reporting ex-
cessive use of alcohol (N21 units per week for men and N14 units per
week forwomen) or recent recreational drug use (use of cannabis, stim-
ulants, hallucinogens, or opiates in the two weeks prior to the fMRI
scan) were excluded. None of the participants had received a DSM-IV-
TR diagnosis for substance abuse or dependence.

Written informed consent was obtained from all participants after
detailed explanation of the study protocol. Ethical approval from the
study was granted by the UK National Research Ethics Service Commit-
tee London – Bromley (reference number: 11/LO/0623).

2.2. Clinical and neurocognitive assessment

Participants' demographic and clinical data and estimated IQ scores
are presented in Table 1. IQ was assessed using the Wide Range
Achievement Test Revised (WRAT-R) (Jastak and Wilkinson, 1984).
Symptoms in UHR and FEP participants were assessed with the Positive
and Negative Syndrome Scale (PANSS) (Kay et al., 1987). The Clinical
Assessment of At Risk Mental State (CAARMS) (Yung et al., 2005) was
administered to UHR and HC participants (Table 1). Lifetime cannabis
use experience was determined by self-report frequency and classified
into four levels: 1-experimental, 2-occasional, 3-moderate, and 4-se-
vere use, while non-users were coded as 0.

2.3. MRI acquisition and processing

Functional images were acquired using a 1.5T MRI scanner (Sigma,
LX-GE, Milwaukee, USA) at the Institute of Psychiatry, King's College
London, UK, using the following parameters: TR = 3000 ms, TE =

http://www.slam.nhs.uk
http://www.slam.nhs.uk


Table 1
Demographic information for participants across diagnostic group and statistical analysis. Means are followed by the standard deviations.

HC (n = 21) UHR (n = 18) FEP (n = 18) F/χ p value

Age (years) 22.91 ± 3.79 24.44 ± 4.12 27.72 ± 5.36 5.86 0.005
FEP N HC

Gender 8M:13F 10M:8F 13M:5F 4.57 0.10
Laterality 21R:1L 17R:1L 17R:1L 0.17 0.99
Years of education 16.71 ± 2.10 14.89 ± 1.94 14.78 ± 3.98 3.03 0.06
Cannabis use 0.76 ± 0.83 2.28 ± 1.02 1.39 ± 1.29 10.10 b0.001

HC = FEP b UHR
Verbal IQ WRAT-R(SS) 110.33 ± 9.78 99.06 ± 15.61 92.11 ± 15.39 8.47 0.001

HC N UHR = FEP
PANSS total – 53.88 ± 11.03 54.56 ± 13.79 0.25 0.88
PANSS positive – 12.60 ± 2.92 13.47 ± 5.29 0.39 0.54
PANSS negative – 14.39 ± 6.24 13.17 ± 5.45 0.04 0.85
PANSS general – 26.73 ± 5.35 27.00 ± 7.36 0.00 0.98
CAARMS total 2.33 ± 3.81 36.29 ± 18.29 – 69.13 b0.001
CAARMS positive 0.57 ± 1.08 7.72 ± 4.87 – 42.97 b0.001
CAARMS emotion 0.05 ± 0.22 2.50 ± 3.02 – 13.87 0.001

HC=healthy controls; UHR= individuals at ultra-high risk state for psychosis; FEP= individualswithfirst episodepsychosis;M=males; F= females; R=predominantly right handed;
L = predominantly left handed; WRAT-R (SS) = Wide Range Achievement Test Revised (Standardized Score); PANSS = Positive and Negative Syndrome Scale.
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40ms, flip angle=90°, slice thickness=2.5mmwith 0.5mmgap, field
of view=24 cm2 and a 64× 64matrix. In total, 46 axial slices parallel to
the anterior commissure–posterior commissure (AC-PC) line were col-
lected for each participant. Four hundred and twenty-seven image vol-
umes were acquired during the task in each participant. Structural data
were acquired using a three-dimensional T1-weighted FSPGR sequence
(voxel size: 1 × 1 × 1 mm3, field of view: 280, 146 slices, TR =
11.092 ms, TE = 4.87 ms, TI = 300 ms, α = 18°) for coregistration
purposes.

2.4. Emotional recognition paradigm

We used emotional stimuli with dynamic and continuous change in
facial geometric configuration (Platt et al., 2010) andwith vocal prosod-
ic characteristics (Nowicki and Duke, 1994) validated in previous stud-
ies. The details for both facial and prosodic tasks are described in the
Supplementary materials. There were 96 dynamic face trials (happy,
sad, fearful and neutral) and 96 high-intensity voice trials (happy, sad,
fearful and their low-intensity comparisons) of variable duration (the
mean trial duration was 4.2 ± 1.37 s). Dynamic emotional stimuli
were created with Abrosoft Fantamorph software (version 4.0). Photo-
graphs were morphed from neutral to the target emotion with increas-
ing intensity within 25 frames during the ‘morph’. A one-second inter-
stimulus interval in which a fixation-cross was presented in the centre
of the screen followed each stimulus. During the emotion recognition
task, face and voice trials were presented interspersed in a pseudo-ran-
dom order and arranged into two sessions. Face stimuli were presented
on a projection screen. A fixation cross was presented during the voice
trials. Participants were instructed to choose between four emotional
categories (happy, sad, fearful, and neutral) via a button box as quickly
as possible before the voice and/or video clips ended. After the
morphing face and voices stopped a black screen with fixation cross
was presented until the end of the trial. During the task, participants' re-
sponse accuracy was recorded.

3. Data analysis

3.1. Behavioural data analyses

Clinical and demographic data were analysed using chi-square tests
(gender, handedness) and analyses of variance (ANOVA) (other demo-
graphic and clinical data) in IBM SPSS 19. Separate analyses were per-
formed for the face trials and the voice trials. Accuracy scores were
analysed using repeated measures analyses of covariance (RM-
ANCOVAs)with age included as a covariate of no interest. Emotional cat-
egory (happy, sad, fearful, neutral) was entered as the within-subjects
variable.Diagnostic groupwas entered as the between-subjects variable.
In addition, we explored the frequency of valence misrecognition be-
tween groups i.e. positive emotion (happy dynamic faces and prosodic
voices trials)misrecognised as negative emotion (sad or fearful dynam-
ic faces and prosodic voices trials). Following the detection of significant
main effects or interactions, post-hoc t-tests or F-tests were employed
and inferences were made at p b 0.05.

3.2. Functional MRI analyses

Functional images were pre-processed using SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm) running underMatlab 7.1 (MathWorks, Na-
tick, MA, USA). The full preprocessing procedures are detailed in Sup-
plementary materials.

Images of both sessions were realigned to the obtained structural
image. The remaining images were then realigned to the first image of
their respective session and resliced with sinc interpolation. Movement
parameters were calculated and images with excessive movement (N
1.5 mm of translation and 1 degree of rotation in any axis) and the ad-
jacent images were examined and removed if the imagewas corrupted.
Interpolation between the images adjacent to the corrupted imageswas
performed to replace the removed images. Subjects who had N10% of
data corrupted were considered as having excessive movements and
were excluded from the subsequent analyses. One UHR participant
and one FEP participant were thus excluded. Images were segmented
and spatially normalized (Friston et al., 1995) to a standard MNI-305
template using nonlinear-basis functions and spatially smoothed with
a Gaussian kernel 8-mm full width at half maximum isotropic.

A standard event-related first-level analysis of regional responses
was performed; onset times (i.e. of the onset of the facial expressions
or voice clips) and associated durations were convolved with a canoni-
cal haemodynamic response function. To exclude low frequency drifts a
high-pass filter was applied using a set of discrete cosine basis functions
with a cutoff of 128 s, and an AR(1) model was applied to account for
temporal auto-correlation intrinsic to the fMRI time-series. The move-
ment parameters were entered as separate regressors of no-interest in
the first level analyses.

For first level statistical analysis, ten experimental regressors were
defined: 1) Happy Face 2); Sad Face; 3) Fearful Face; 4) Neutral Face;
5) High-intensity Happy Voice; 6) Low-intensity Happy Voice; 7)
High-intensity Sad Voice; 8) Low-intensity Sad Voice; 9) High-intensity
Fearful Voice; and 10) Low-intensity Fearful Voice. Five first level con-
trasts of interest were then computed for dynamic face and prosodic
voice stimuli: 1) Happy – Comparison; 2) Sad – Comparison; 3) Fearful
– Comparison; 4) All emotions – Comparison; and 5) Positive emotion
(Happy) – negative emotion (Fearful + Sad). For dynamic face

http://www.fil.ion.ucl.ac.uk/spm
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contrasts, neutral faces acted as the comparison condition. For prosodic
voice trials, since the validated stimulus set (DANVA-2-AP) did not con-
tain neutral voice stimuli, low-intensity voice trials served as the com-
parison condition (i.e. high versus low intensity for the same prosodic
emotion).

Second-level analyses were performed using two approaches:
whole brain voxel-wise analyses for exploration of the effect of emo-
tional processing, and region of interest (ROI) analyses (Li et al., 2010;
Witteman et al., 2012) based on a visual and auditory emotional pro-
cessingmodel in schizophrenia (Tseng et al., 2015). Whole brain analy-
sis was performed using ANCOVA and independent samples t-tests
(conducted within the SPM ANCOVA framework) with age as a covari-
ate of no interest. Other confounding factors (i.e. IQ, cannabis use and
antipsychotics use) were not included in the analyses as supplementary
correlational analyses between these factors and peak activation in all
ROIs were non-significant within each group of participants. Statistical
inferences were made at p b 0.05 after FWE cluster-level correction for
multiple comparisons.When the group comparison omnibus F-contrast
did not reach significance, additional exploratory pair-wise analyses
were performed to compare FEP versus HC, UHR versus HC and FEP ver-
sus UHR, with a corrected threshold at p b 0.017 (Bonferroni corrections
for 3 contrasts), except for the exploratory hypothesis examining bilat-
eral caudate regions during emotional valence judgment. For ROI anal-
yses, a search sphere with a radius of 16 mm (twice the smoothing
kernel) was applied to the centre of each ROI using the small volume
correction function in SPM8 (described below). Coordinates were de-
scribed according to the standard Montreal Neurologic Institute (MNI)
system.

Four ROIs, identified in ameta-analysis (Li et al., 2010) of facial emo-
tion recognition studies, were used to examine group effects during dy-
namic face trials. These were the bilateral FG (left, −39, −65, −13;
right, 40,−52,−14), left amygdala (−21,−7,−8) and right lentiform
gyrus (22, −3, −5). For the prosodic voice trials, primary facial
decoding areas (bilateral FG) were replaced by primary prosodic
decoding areas (bilateral STG; left,−62,−22, 1; right, 49,−23, 6); co-
ordinates were selected from the meta-analysis by Witteman et al.
(2012). To test our valence-specific hypothesis an ROI in the caudate
nucleus (Carretie et al., 2009), was chosen in the left (−18, −2, 24)
and right caudate body (16, 4, 18) (Carretie et al., 2009). Spheres were
then constructed in MarsBaR toolbox for SPM (Brett et al., 2002). A sin-
gle inclusive mask containing all ROIs was applied, and statistical infer-
ences were made at p b 0.05 with FWE correction for multiple
comparisons at the voxel-level after applying small volume correction
(SVC).

4. Results

4.1. Demographic and clinical data

Demographic and clinical data for each group are reported in Table 1.
Therewere significant age differences (F=5.86, df=(2, 54), p b 0.005)
with FEP patients being older than HC. There were significant estimated
IQ differences (F = 8.47, df = (2, 54), p = 0.001) with HC showing
higher IQ scores than UHR and FEP. There were also significant differ-
ences in cannabis use (F=10.10, df=(2, 54), p b 0.005)with UHRhav-
ing more cannabis use experience than HC and FEP.

4.2. Dynamic face trials

4.2.1. Recognition accuracy
Mean accuracy scores are shown in Fig. 1(A). Therewas a significant

main effect of emotional category (F = 14.86, df = (3, 159), p b 0.001).
Across all participants, recognition accuracy was greatest for happy rel-
ative to sad (t = 8.22 df = 56, p b 0.001) and fearful trials (t = 6.62,
df = 56, p b 0.001). There was a trend towards an effect of diagnostic
group (F = 2.65, df = (2, 53), p = 0.08) with HC showing greater
accuracy than FEP patients across all emotional conditions (post-hoc
pairwise comparison: HC N FEP, F = 5.74, df = (1, 36), p = 0.022).
The group × emotional category interaction was non-significant (F =
0.42, df= (6, 159), p = 0.87).

The effect of diagnostic group formisrecognition of positive emotion-
al faces (i.e. happy) as negative (i.e. sad or fearful) was also non-signif-
icant (F = 1.49, df= (2, 53), p = 0.24).

4.2.2. Functional MRI
Themain effect of task (emotionalN comparison trials) is reported in

the Supplementary material. The main effect of group (emotional N
neutral trials) was non-significant for both whole-brain and ROI analy-
ses (Table 2). However, exploratory pair-wise group tests (conducted
within the SPM ANCOVA framework) revealed trends towards signifi-
cance in the right FG. In this region both FEP (t = 3.62, df = 51, p =
0.04 SVC) and UHR groups (t = 3.62, df = 51, p = 0.04 SVC) (Table 2,
Fig. 1(B)) showed reduced activation during emotional face trials rela-
tive to HC. However, the effects did not survive after correction for mul-
tiple comparisons (corrected threshold p b 0.017). The difference
between UHR and FEP groups did not approach significance. The
group × valence (positive vs. negative emotions) interaction was non-
significant in the caudate ROI.

4.3. Prosodic voice trials

4.3.1. Recognition accuracy
Mean accuracy scores for prosodic voice trials are shown in Fig. 2(A).

The main effect of emotional category was non-significant (F = 1.028,
df= (3, 159), p= 0.38). The main effect of diagnostic groupwas signif-
icant (F = 7.96, df = (3, 159), p = 0.001) across all emotional catego-
ries, driven by greater overall accuracy in HC relative to UHR (F =
4.30, df = (1, 36), p = 0.045) and FEP (F = 23.69, df = (1, 36),
p b 0.001) groups. The group × emotional category interaction (F =
1.035, df = (6, 159), p = 0.41) and group × valence interaction for
misrecognition were non-significant (F= 2.22, df= (2, 53), p= 0.11).

4.3.2. Functional MRI
Themain effect of task (high intensity prosodic voices N low intensi-

ty prosodic voices) is reported in Supplementary material. Whole-brain
analysis revealed a trend towards a significant group effect in the left
amygdala extending to left insula (Table 3, Fig. 2(B)). Pair-wise group
comparisons revealed reduced activation in FEP patients relative to HC
in the left amygdala, STG, medial orbital frontal gyrus, lingual gyrus
and left angular gyrus (whole brain corrected, cluster-level) (Table 3).
The difference between UHR and FEP groups was non-significant. ROI
analyses confirmed the group effect in left amygdala (F = 15.08, df =
(2, 51), p = 0.009; SVC) and in the left STG (F = 12.79, df = (2, 51),
p = 0.03 SVC; see Table 3 and Fig. 2(C)). Pair-wise group tests also
showed that the FEP patients had significantly lower activation than
the HC group in the left amygdala (t = 5.46, df = 51, p = 0.002 SVC)
and left STG (t = 5.05, df= 51, p = 0.003 SVC; see Table 3).

The group × valence interaction were non-significant (F = 9.31,
df= (2, 51), p= 0.17) in the caudate ROI. Pair-wise group comparison
showed a trend group × valence interaction between HC and UHR in
the left dorsal caudate. In this region, HC showed greater activation for
negative relative to positive emotions but the opposite pattern was
seen in UHR participants (positive N negative) (t = 4.31, df = 51, p =
0.02; see Fig. 3). However, this did not survive a Bonferroni corrected
threshold of p b 0.017. The group × valence interactions between FEP
and HC groups, and between FEP and UHR groups in the caudate ROI
were non-significant (Table 4).

5. Discussions

We investigated the neural correlates of emotional processing in re-
sponse to emotional stimuli in two sensorymodalities (visual, auditory)



Fig. 1.Dynamic face trials. (A) Graph showingmean accuracy for group by emotional category. (B) Statistical Parametric Map (SPM) showing activation differences (HC N UHR, FEP; p=
0.04 and 0.04, respectively) within right FG. The effects did not survive after correction for multiple comparisons. The left side of the brain is on the left side of the image. (C) Graph
showing peak BOLD activation level in right FG for each group during emotional dynamic faces contrasted against neutral dynamic faces, MNI coordinates (36, −50, −6). HC: healthy
control group. UHR: ultra-high risk group. FEP: first-episode psychosis group.
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in FEP patients, UHR andHC individuals. In linewith our hypothesis, FEP
patients showed reduced recognition accuracy compared to HC during
dynamic face and prosodic voice trials. During dynamic face trials, over-
all recognition accuracy for UHR participants was intermediate to HC
and FEP patients but did not differ significantly from either group. Dur-
ing prosodic voice trials, however, UHR participants showed significant-
ly reduced recognition accuracy relative to HC, while significantly
reduced accuracy for fearful voice trials in UHR was observed
(Fig. 2(A)). Of note, the vocal fear recognition rate was relatively low,
whichmight reflect its higher ambiguity (i.e. lower accuracy and longer
reaction times, see Edwards et al., 2002; Tseng et al., 2013) and thus sus-
ceptible to both time-urgent design (requiring participant to respond as
soon as possible before the clip ended) and the backgroundnoise during
Table 2
Dynamic face trials.
Whole brain voxel-wise analyses and ROI analyses using small volume correction for dynamic
voxel level, p b 0.05.

ANCOVA group contrasts for Dynamic Face trials No. of voxels x

1) F-test (whole-brain)
No clusters reach threshold

2) F-test (ROIs)
No voxels survive correction

t-Tests: group contrasts for Dynamic Face trials No. of voxels x

3) t-Test whole-brain (HC vs FEP)
No clusters reach threshold

4) t-Test ROI (HC vs FEP)
Right fusiform gyrus, HC N FEP 7 36

5) t-Test whole-brain (HC vs UHR)
No clusters reach threshold

6) t-Test ROI (HC vs UHR)
Right fusiform gyrus, HC N UHR 21 34

7) t-Test whole-brain (UHR vs FEP)
No clusters reach threshold

8) t-Test ROI (UHR vs FEP)
No voxels survive correction

All p-values reported for ROI analyses are FWE corrected at the voxel level.
image acquisition. Nevertheless, these factors affected all three groups
and the results remain consistent with previous studies (Amminger et
al., 2012a; Hoekert et al., 2007; Kohler et al., 2010; Thompson et al.,
2012) that show impaired emotion recognition in people at clinical
high-risk for schizophrenia before the full expression of psychotic
illness.

Themajority of previous studies in schizophrenia (Lee et al., 2002; Li
et al., 2010; Pinkham et al., 2005; Reske et al., 2009) report reduced
amygdala activity in patients with schizophrenia. However, contrary
to previous findings and our hypotheses, we did not find a significant
group difference in brain activation during dynamic face trials. Using a
relatively low magnetic field scanner (1.5T rather than 3T) may have
contributed to the lack of differences in activation between groups.
faces. Results reported for whole brain F-tests and ROI analyses are FWE corrected at the

y z Maximum F values Z p value

y z Maximum T values Z p value

−50 −6 3.62 3.40 0.039

−48 −6 3.62 3.40 0.039
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We used a low-field scanner to mitigate the loud noise generated by
high-field scanners, whichmay interferewith the processing of acoustic
stimuli. Nevertheless, the lack of activation differences in response to
emotional face stimuli is consistent with a small number of previous
studies that did not find clear amygdala activation differences in schizo-
phrenia relative to healthy controls (Sachs et al., 2012; Swart et al.,
2013). Our findings may suggest that relatively intact facial emotional
processing is also seen in early and prodromal stages of psychosis.

Despite that the group comparison of brain activation during dy-
namic face trials did not reach statistical significance, exploratory pair-
wise ROI analysis of functional MRI data showed a non-significant
trend of reduced right FG activation in FEP patients relative to HC. Dur-
ing prosodic voice trials, a more widespread pattern of reduced activa-
tion was apparent in FEP patients relative to HC, involving both
sensory (STG) and emotional processing regions (amygdala andmedial
orbital prefrontal cortex), and also left temporal-parietal-limbic regions,
including left MTG, left insula, and left thalamus. Dysfunction in cortical
and limbic brain regions that are involved in sensory (i.e. FG, STG), in-
formation relaying and modulation (i.e. basal ganglia/caudate), and
higher order emotional processes (i.e. amygdala and prefrontal cortex)
in patients with schizophrenia has been established robustly (Lee et al.,
2002; Li et al., 2010; Tian et al., 2011). Ourfindings complement those of
schizophrenia studies, and confirm previous studies reporting function-
al changes in these corticolimbic regions, involved in both early
decoding and emotional recognition/interpretation, in FEP population
(Reske et al., 2009, 2007).

In FEP patients the deactivation (negative contrast estimates) indi-
cate greater activation to neutral rather than emotional stimuli in
corticolimbic regions (Figs. 1(C) and 2(C)), and could be interpreted
as hyperactivation to neutral or subtle emotional stimuli as previously
reported in schizophrenia populations (Aleman and Kahn, 2005; Hall
et al., 2008; Modinos et al., 2015; Seiferth et al., 2008). This functional
change would be consistent with the notion that non-emotional infor-
mation is more salient in FEP and at-risk states. Such abnormalities
are thought to contribute to the social cognition and social functioning
deficits apparent in emerging psychotic disorders (Amminger et al.,
2012b).

Relative to HC, despite a showing a non-significant trend for reduced
activation in the sensory cortex (right FG) during emotional versus
neutral dynamic face trials, UHR participants did not show significant
difference in either face or voice modalities. Similarly, intermediate
BOLD response between HC and FEP was observed in UHR participants
in those areas showing decreased activation in the FEP group during
prosodic voice trials, albeit the difference between HC and UHR did
not reach statistical significance. This task-related subtle functional
changes in the brain in the UHR participants is consistent with previous
studies (Dutt et al., 2015). We speculate that these trends may reflect
early subtle changes in primary sensory emotional processing regions,
which may manifest in vulnerability states before the full-blown onset
of psychosis. However, this requires testing in a larger sample.

Interestingly, although the majority of studies in patients with
schizophrenia report corticolimbic dysfunction during the presentation
of emotional face stimuli, our findings in FEP patients suggest dysfunc-
tion that ismore evident during the presentation of prosodic voice stim-
uli instead of facial stimuli. The reasons for this are not entirely clear but
it is possible that as the emotional information carried in prosodic voices
delivers more subtle interpersonal social cues than faces, voice stimuli
may provide a more sensitive method to investigate functional alter-
ation related to emotional recognition deficits in FEP and UHR cohorts.
Our results support the findings of previous studies that reported re-
duced accuracy for prosodic emotional recognition in FEP and UHR
groups (Amminger et al., 2012a) and suggest that prosodic emotional,
rather than facial, stimuli may be better able to reveal the subtle emo-
tional processing deficits associated with early psychosis and vulnera-
bility states.

The FG and the STGhave been hypothesized to extract facial features
and acoustic properties from visual and speech input, respectively, dur-
ing stage 1 of themodel proposed byWildgruber et al. (2009). Although
the current findings do not unequivocally support an impairment in
these primary sensory processing areas in UHR, early subtle changes
may have presented at the initial perceptual stage and impact on emo-
tion recognition accuracy. By contrast, during both dynamic face and
prosodic voice trials, activation in cortical regions (i.e. amygdala and
OFC) involved in emotional recognition and interpretation was not sig-
nificantly reduced in UHR participants relative to HC. This supports the
view that corticolimbic hypoactivation (particularly in the amygdala)
during the processing of emotion is related to the disease, rather than
vulnerability states (Rasetti et al., 2009) and is constant with previous



Table 3
Prosodic voice trials.
Whole brain voxel-wise analyses and ROIs analyses using small volume correction for pro-
sodic voices. Results reported for whole brain F-tests and ROI analyses are FWE corrected
at the voxel level, p b 0.05. Results reported for whole brain t-tests are FWE corrected at
the cluster level, p b 0.05; clusters formed at p b 0.001 (minimum cluster size = 293).

ANCOVA group contrasts for
Prosodic Voice trials

No. of
voxels

x y z Maximum
F values

Z p
value

1) F-test (whole-brain)
No clusters reach
threshold

2) F-test (ROIs)

Left amygdala

4
−
32

−
2

−
18 15.08 4.34 0.009

4
−
20

−
2

−
14 12.57 3.97 0.036

Left superior temporal gyrus 4
−
54

−
26

−
10 12.79 4.00 0.032

t-Tests: group contrasts for
Prosodic Voice trials

No. of
voxels

x y z Maximum
T values

Z p
value

3) t-Test voxel wise (HC vs FEP)
HC N FEP

Left amygdala 458 −
32

0 −
18

5.62 4.93 0.009

−
20

−
2

−
14 4.99 4.48

Left superior temporal
gyrus

416 −
54

−
26

−
10

5.00 4.49 0.013

Medial orbital frontal
gyrus

599 −
2

54 −
6

4.93 4.44 0.003

293 16
−
60

−
36 4.66 4.23 0.044

Left lingual gyrus 1004 −
2

−
40

40 4.30 3.96 b0.001

Left angular gyrus 338 −
22

−
62

−
36

4.20 3.87 0.028

4) t-Test ROI (HC vs FEP)
HC N FEP

Left amygdala 76 −
32

−
2

−
18

5.46 4.82 0.002

−
20

−
2

−
14 4.95 4.45 0.005

Left superior temporal
gyrus

63 −
54

−
26

−
10

5.05 4.53 0.003

5) t-Test voxel wise (HC vs UHR)
No clusters reach
threshold

6) t-Test ROI (HC vs UHR)
No voxels survive
correction

7) t-Test voxel wise (UHR vs FEP)
No clusters reach
threshold

8) t-Test ROI (UHR vs FEP)
No voxels survive
correction

All p-values reported for voxel-wise whole brain group analyses are FWE corrected at the
voxel level, p b 0.05.
All p-values reported for whole brain pair-wise comparisons are FWE corrected at the
cluster level, p b 0.05; cluster size ≥ 293. Clusters are formed at p b 0.001, uncorrected.
All p-values reported for ROI analyses are FWE corrected at the voxel level, p b 0.05.
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neuroimaging studies in UHR cohorts that also failed to detect amygdala
dysfunction in the context of emotional recognition (Seiferth et al.,
2008).

In line with our exploratory hypothesis, UHR participants showed a
trend towards an interaction in the caudate nucleus relative to HCwhen
processing the valence of prosodic voices. In HC, caudate activation was
greater for negative relative to positive valence trials, consistent with
finding from a previous study by Carretie et al. (2009). The opposite pat-
tern of activation was seen in UHR participants suggesting altered cau-
date function during emotional processing. Altered striatal activation in
UHR populations has been reported previously during a salience pro-
cessing task (Roiser et al., 2013) and may be related to elevated
dopamine synthesis capacity in the associative striatum (Howes et al.,
2009). Inappropriate activation in the caudate during the presentation
of emotional stimuli could result in confusion regarding the salience
and/or valence of emotional stimuli, although this was not seen at a be-
havioural level in UHR participants.

6. Limitations

The main limitation of the present study is the relatively small sam-
ple size: our findings will need to be replicated in larger FEP and UHR
cohorts. The age difference between HC and FEPwas another limitation.
However, we included age as a covariate in all analyses to address this
issue.

Several potential confounding factors needs further discussion. First,
the three groups were not matched for estimated pre-morbid IQ and
our experimental task required explicit emotion recognition under a
time constraint which may have been cognitively demanding (Phan et
al., 2002). However, to our knowledge, although performance of emo-
tion recognition may be associated with specific cognitive deficits
(Bryson et al., 1997), there is no evidence that general intelligence sig-
nificantly affects emotional processing (Coan and Allen, 2007). Further-
more, we chose not to control for IQ in themain analysis since this may
remove important variance (Edwards et al., 2002) between groups, as
low IQ is a phenotypic characteristic of psychosis (Mesholam-Gately
et al., 2009). A supplementary correlation analyses showed that the
peak activation in all ROIs did not correlate with IQ within any of the
groups, suggesting that IQ was not a major confounding factor for emo-
tional processing.

A further limitation is that one UHR participant and a number of FEP
patients that participated in the studywere taking low doses of antipsy-
chotic medication. Although most studies in patients with schizophre-
nia suggest that medication is not a major confounding influence on
emotional recognition accuracy (Fusar-Poli et al., 2007; Navari and
Dazzan, 2009), the influence of antipsychotic medication on hemody-
namic responses during emotional processing remains unclear. Never-
theless, supplementary correlation analyses showed that the peak
activation in all ROIs did not correlate with chlorpromazine equivalent
dose in our FEP participants. Likewise, the higher lifetime experience
of cannabis use in the UHR cohort, relative to both FEP and HC groups
is also a potential confounder, given that chronic heavy cannabis use
may affect emotional recognition accuracy (Hindocha et al., 2014;
Platt et al., 2010). However, none of our UHR cohort reported concur-
rent heavy cannabis use nor met the DSM-IV diagnostic criteria for nei-
ther cannabis abuse nor dependence. A supplementary correlation
analyses showed that the peak activation in all ROIs did not correlate
with cannabis use within any of the groups, supporting the view that
cannabis use did not affect the results.

Another potential limitation is using low-intensity emotional pro-
sodic stimuli as the contrast instead of neutral ones. It is arguable that
the contrast of high versus low intensity for voice stimuli may reflect
an intensity or arousal effect rather than emotion itself. In our study de-
sign itwould not be possible to differentiate these two effects. However,
as intensity is an important dimension of emotional information, these
contrasts should still evoke the neural correlates of emotional process-
ing, independent of their low-level acoustic properties (Ethofer et al.,
2006).

7. Conclusions

In summary, FEP patients showed emotional recognition deficits and
functional alterations in corticolimbic regions consistent with deficits
across a multi-stage emotional processing model, mainly in the voice
modality. By contrast, while UHR participants also showed emotional
recognition deficits behaviourally, we only observed a trend towards
an interaction in the neural processing of emotional stimuli in caudate
nucleus, with a non-significant decrease of activation in early sensory
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processing regions. Our results highlight the need to investigate behav-
ioural and neural vulnerability biomarkers in psychosis-prone high-risk
populations in larger samples, and to expand the etiological under-
standing of psychosis and consequently provide insights for preventive
strategies. Future longitudinal studies are needed to fully understand
the chronology of emotional and corticolimbic dysfunction in the devel-
opment of psychosis.
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Table 4
ROI analyses of caudate area.
Caudate ROIs analyses for valence-specific hypothesis. Results are FWE corrected at the
voxel level, p b 0.05.

ROIs x y z Maximum T values Z
p value
FWE corrected

Positive valence Faces ≥ Negative valence Faces, UHR N HC
No voxels survive
correction

Positive valence Voices ≥ Negative valence Voices, UHR N HC
Left caudate body −18 −2 24 4.31 3.96 0.02

All p-value reported for ROI analyses are FWE corrected at the voxel level.
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