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INTRODUCTION
The proliferative glomerulonephritis 
(GN) is characterised by glomerular in-
filtration by inflammatory cells, such as 
neutrophils and macrophages, and/or 
proliferation of resident glomerular cells. 
These cells may induce thrombosis, ne-
crosis, and crescent formation, resulting 
in rapidly progressive GN.1 The renal in-

jury includes humoral (B cell activation, 
plasma cells) and/or cellular (T-helper 
cells, mononuclear inflammatory cells) 
immune response. ANCA-associated 
vasculitis (AAV) and Systemic Lupus 
Erythematosus (SLE), and more rarely 
other autoimmune diseases, such as 
primary Sjogren’s syndrome (pSS), 
Rheumatoid arthritis (RA), Scleroderma 
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ABSTRACT
Glomerulonephritis is a common cause of chronic kidney disease, which has emerged as a major 
cause of end-stage renal disease. Autoimmune diseases, such as Systemic Lupus Erythematosus 
(SLE) and ANCA-associated vasculitis (AAV) are often associated with proliferative glomerulonephritis. 
Transforming growth factor-β1 (TGF-β1) is a cytokine with pleiotropic effects in chronic renal diseases, 
based on in vivo and in vitro studies. The Smad-dependent signalling pathway plays an important role 
in the regulation of renal fibrosis (excessive production of extracellular matrix [ECM]) and inflammation. 
However, clinical trials targeting TGF-β1 have presented disappointing results, suggesting that 
the downstream signalling is quite complex. The diversity of the effects may associate with the 
interactions between TGF-β1 signalling and other downstream signalling, as well as the different 
cellular responses, which TGF-β1 promotes. Recently, macrophage chemoattract and epigenetic 
effects have also been identified as new mechanisms, wherefore TGF-β1/Smad signalling mediates 
renal injury. This review provides an overview of the role of TGF-β1/Smad signalling pathway from 
in vivo and in vitro studies in the pathogenesis of glomerulonephritis and particularly in proliferative 
glomerulonephritis, which is associated with autoimmune diseases.
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(SS), are associated with proliferative GN. 
Transforming growth factor-beta 1 (TGF-β1) is a multi-
functional cytokine that regulates cell proliferation, differ-
entiation, apoptosis and adhesion. Recent studies have 
also shown new mechanisms, whereby TGF-β can me-
diate renal injury, such as macrophage chemoattractant 
and epigenetic effects. 2,3 Although, the role of TGF-β1 in 
the pathogenesis of glomerulosclerosis and renal fibrosis 

in patients with podocytopathies, such as focal and 
segmental glomerulosclerosis (FSGS) has been demon-
strated, the signalling is also activated in proliferative GN, 
and correlates with the severity of inflammation. 4,5 
In AAV, probably after exposure to infectious agent, 
TGF-β1 and interleukin (IL)-6 are released from dendritic 
cells and induce differentiation of naïve T cells into T 
helper 17 (Th17) cells. Th17 produce IL-17 and stimulate 
macrophages to produce tumour necrosis factor (TNF)-a 
and IL-1β, which act as major priming factors to neutro-
phils.6,7 Therefore, neutrophils are activated and present 
the MPO or PR3 target antigens. In lupus nephritis, the 
immune complex deposition in glomeruli can activate 
inflammatory response, which can recruit inflammatory 
cells and activate the glomerular cells. Increased levels of 
TGF-β1 have been detected in lupus renal tissue, and a 
positive correlation with histological activity has been re-
ported. 8,9 Recently, in SLE new targets of autoantibodies 
have been confirmed to interact with TGF-β1 signalling, 
such as Smad2 and Smad5 protein.10

Interestingly, recent studies have demonstrated the 
involvement of TGF-β/Smad signalling in pSS salivary 
glands (SG) as a mediator of the epithelial-mesenchy-
mal transition (EMT) activation. Furthermore, pSS SGs 
biopsy specimens were characterised by an elevated 
expression of TGF-β1 in the glandular epithelium, and 
TGF-β1, pSMAD2/3, and SMAD4 proteins were widely 
expressed in the pSS tissue in patients.11 In RA TGF-β/
Smad3 signalling was markedly activated in synovial 
tissues, which was associated with the loss of Smad7, 
and enhanced Th17 and Th1 immune response.12 TGF-β 
signalling also participates in the progression of fibrosis 
in SS. High levels of TGF-β1 and its regulated genes 
have been detected in skin biopsies and were positively 
correlated with the severity of SS.13 
In this review, we present an image of the role of TGF-β 
signalling in the pathogenesis of glomerular injury, es-
pecially in proliferative GN associated with autoimmune 
diseases.

TGF-β1 and Smad pathway
While in the normal human kidney TGF-β1 is negligibly 
expressed, under pathological circumstances it is 
synthesised by many renal cells and contributes to glo-
merular filtration barrier alteration, fibrosis, sclerosis, and 
tubule degeneration.11 Many factors, such as high level 
of glucose, oxidate stress, and cytokines can stimulate 

transcription of the TGF-β1 gene. Furthermore, activated 
T and B cells, macrophages, neutrophils, immature 
hematopoietic cells, and dendritic cells also produce 
TGF-β1 and/or are sensitive to its effects.14 
There are three isoforms of TGF-β present in mammals. 
Among them, TGF-β1 has reported as an important 
and crucial mediator in the pathogenesis of progressive 
renal fibrosis. 15-17 TGF-β1 is synthesised as a part of a 
biologically inactive complex and after proteolytic cleav-
age becomes available to bind to receptor complexes 
(TGFβRI) (Figure 1). Then, the canonical Smad signalling 
is activated.18 The Smad2 and Smad3 are phosphory-
lated and their complex translocate into the nucleus to 
modulate the transcription levels of target genes.19-21 

Therefore, TGF-β1 induces transcription of several miR-
NA species, with some miRNAs showing profibrotic and 
other antifibrotic effects.21-23 Smad7 can compete with 
Smad2 and Smad3 for binding to activated TGFβR1 and 
thus serves as negative feedback inhibitor of TGF-β1/
Smad canonical signalling.
Clinical trials in diabetic nephropathy, septic acute kidney 
injury and focal segmental glomerulosclerosis have ex-
amined the direct targeting of TGF-β1 with disappointing 
results, highlighting the diversity and complexity of 

TGF/SMAD IN PROLIFERATIVE GLOMERULONEPHRITIS

Figure 1. TGF-β1 binds TβRII and activated Smad2 
and Smad3, resulting in formation of a complex with 
Smad4. The Smad2/3/4 complex then translates into the 
nucleus and binds to the target genes to induce fibrosis 
and inflammation. TGF-β, transforming growth factor β; 
TβRI, TGF-β receptor type I; TβRII, TGF-β receptor type 
II (modified24)
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TGF-β1 signalling in renal fibrosis and inflammation. 24 
However, targeting downstream signalling by specifically 
inhibiting or overexpressing Smad3-dependent non-cod-
ing RNAs or rebalancing Smad3/Smad7 may be a better 
approach.24

Renal Fibrosis and TGF-β1
It is well accepted that TGF-β1/Smad signalling is a 
major pathway for renal fibrosis, synthetizing extracellular 
matrix (ECM) protein in both the glomerulus (glomeru-
losclerosis) and the tubulointerstitial tissue (interstitial 
fibrosis). Initials studies focused on this growth factor’s 
effects on fibroblasts via promoting activation of myofi-
broblasts.25 However, its role also includes proliferation, 
differentiation, hypertrophy, apoptosis, angiogenesis, 
cell cycle control, chemotaxis, and haematopoiesis. 
In experimental and human kidney diseases with renal 
fibrosis, regardless the initial cause of chronic kidney 
disease (CKD), TGF-β1 signalling is activated, such as 
diabetic nephropathy,26-28 obstructive kidney disease,29 ⅚ 
nephrectomy,30 hypertensive nephropathy,31 and glomer-
ular diseases (IgA nephropathy, FSGS, lupus nephritis, 
crescentic GN). Transgenic mice with increased circu-
lating levels of TGF-β1 developed glomerulosclerosis 
and those with increased tubular production of TGF-β1 
developed tubulointerstitial fibrosis in the absence of 
any additional injury.32 Furthermore, the role of Smad3 
in renal fibrosis is supported, because genetic inhibition 
of Smad3 reduced ECM in unilateral ureteral obstruction 
(UUO).33

Renal Inflammation and TGF-β1
The role of TGF-β1 in inflammation after renal injury is 
more complex.  It is generally accepted that renal in-
flammation serves as the initial event of renal fibrosis in 
CKD, and the persistent activation of inflammatory pro-

cesses promotes fibrogenous responses. Despite this 
pro-inflammatory role, TGF-β1 also possesses anti-in-
flammatory responses. Firstly, this was demonstrated, 
because mice that lack TGF-β1 develop uncontrollable 
systemic inflammation and die 3 weeks after birth.34 

Furthermore, the protective role of TGF-β1 was reported 
in immune-mediated kidney disease in transgenic mice 
by administering the sheep anti-mouse glomerular base-
ment membrane (GBM) antibody. Interestingly, mice with 
experimental crescentic GN, which had increased levels 
of latent, but not active, TGF-β1 in plasma and kidney 
tissue, and upregulation of renal Smad7 in keratinocytes, 
preserved renal function and were protected against 
renal fibrosis.35 Likewise, a recent study showed that it is 
possible to dissociate the fibrotic effect of TGF-β1 from 
its anti-inflammatory effect, by preventing the cross-talk 
interaction with the Wnt/β-catenin pathway.36

TGF-β1 signalling and inflammatory cells (Figure 2)
T cells
There is increasing evidence supporting the role of 
TGF-β1 in inflammation, both pro- and anti-inflammatory 
effect. On one hand, TGF-β1 can induce activation of 
Foxp3+, regulatory T cell subset (Treg), which suppress-
es renal injury and on the other hand can induce T cell 
differentiation to T17 subtype (Th17), which plays a 
significant role in inflammation in some forms of GN.37 

These cells are called Th17 cells because they produce 
the interleukin (IL)-17 cytokine. Th17 cells also promote 
autoimmune anti-MPO-mediated GN through the secre-
tion of IL-17a. 

Macrophages
Recent investigations have also explored the role of 
TGF-β signalling in macrophage differentiation during 
inflammation. Macrophage-myofibroblast transition 

Figure 2. TGF-β1 signalling and inflammatory cells.
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(MMT) is a newly identified phenomenon driven by 
TGF-β1 signalling as a direct mechanism of macrophage 
for promoting myofibroblast generation under unre-
solved renal inflammation.38 The macrophage infiltration 
has been shown to correlate with the severity of renal 
injury.39 Macrophages are divided into two types: the 
proinflammatory M1-type (classically activated) and the 
anti-inflammatory M2-type (alternatively activated). In 
acute kidney injury, in the early phase, there is recruit-
ment of macrophage, which polarized into M1-type by 
various inflammatory mediators, including Th17 cells. 
This differentiation is induced from TGF-β1, indicating the 
role as a macrophage chemoattractant. Subsequently, in 
the repair phase of acute kidney injury TGF-β1 signalling 
can induce a M2 macrophage polarization, which may 
suppress inflammation, but the uncontrolled activation 
can promote fibrosis. However, selective deletion of 
TGF-β1 from macrophages did not alter fibrosis in animal 
model.40,41

Platelets
Platelets secrete vasoactive, chemotactic, and mitogenic 
substances that interact with mediators generated by 
renal resident or inflammatory cells and could contribute 
to glomerular injury.  It is believed that growth factors, 
such as TGF-β1, are released from platelets and play an 
important role in this process.

C5b-9 (membrane attack complex)
The sublytic effects of C5b-9 on podocytes not only lead 
to proteinuria (mainly in membranous glomerulopathy) 
and produce hydrogen peroxide, but also increase the 

expression of TGF-β1 and its receptors, leading to 
overproduction of extracellular matrix resulting in GBM 
thickening.42

TGF-β1 mediated renal pathology  
It has been demonstrated that TGF-β1 affects various re-
nal cells, including mesangial, endothelial cells, epithelial 
cells (podocytes), and tubular epithelial cells.  (Figure 3)

Mesangial cells
TGF-β1 stimulates the mesangial cells to synthetizing 
type I, III and IV collagen, laminin, fibronectin and hep-
aran sulphate proteoglycans, as well as plays a role in 
mesangial hypertrophy. Therefore, TGF-β1 is a major 
contributor to glomerular ECM accumulation by stimulat-
ing mesangial cells.43

Epithelial cells (podocytes)
The podocytes play a critical role in maintaining the glo-
merular integrity and function. They also synthesise most 
components of the GBM. It has been shown that podo-
cytes with highly expression of TGF-β1 lead to apopto-
sis. In addition, in these damaged podocytes Smad7 
expression is strongly expressed.44,45 Furthermore, in 
vitro experiments have shown that TGF-β1 induces ep-
ithelial-to-mesenchymal transition (EMT) after podocyte 
injury.46

Endothelial cells
It has also been demonstrated that TGF-β1 is a central 
inducer of endothelial-to-mesenchymal transition (EntMT) 
of these cells, cell proliferation and apoptosis. These 

Figure 3. TGF-β1 mediated renal pathology.

TGF/SMAD IN PROLIFERATIVE GLOMERULONEPHRITIS
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changes contribute to proteinuria, inflammation, and glo-
merulosclerosis. A recent study reported that endothelial 
cells react differently in Smad3 deletion compared with 
podocytes. Hence, changes to glomerular endothelial 
cells, such as swelling, fenestrations and basement 
membrane reduplication were Smad3 dependent.47

Tubular epithelial cells
The expression of TGF-β1 has also been associated 
with tubular apoptosis.48 However, recently it has been 
shown a beneficial effect of TGF-β1 in proximal tubule. 
One study in animal CKD model reported that selective 
deletion of proximal tubular TβRII deteriorated tubular 
apoptosis. This may be reported in part through reduced 
β-catenin activity or through beneficial effect of TGF-β1 
on autophagy. Likewise, recent evidence showed that 
TGF-β1 signalling reduced expression of Klotho, which 
is produced in proximal renal tubule.49

Fibroblast-type cells
TGF-β1 signalling can also induce proliferation and myo-
fibroblast transition to intrinsic renal fibroblast-type cells, 
including interstitial fibroblasts and pericytes. It has also 
been demonstrated that damaged tubular epithelial cells 
secrete TGF-β1, which induce myofibroblast transition to 
the adjacent pericytes. 50

Expression of TGF-β1/Smad signalling in Proliferative 
glomerulonephritis 
TGF-β1/Smad signalling is activated and highly ex-
pressed in progressive forms of human kidney disease 
(Figure 4).51-53  TGF-β1 has been reported to serve as a 
critical mediator in the pathogenesis of glomerulosclero-
sis in glomerular diseases, including lupus nephritis and 
crescentic GN.52-54 Although the upregulation of TGF-β1 
has been proved its role in the pathogenesis of renal fi-
brosis, glomerular immunoreactivity for TGF-β1 isoforms 
is also correlated with the severity of proliferative lesions, 
especially in lupus nephritis.54 Significant upregulation of 
the three TGF-β1 isoforms as well as TGFβRI and TGFβRII 
have been demonstrated in the glomerular, tubular, and 
interstitial area in kidney diseases. Furthermore, the 
urinary TGF-β1 level is increased and correlated with the 
severity of tubular-interstitial fibrosis.55 In TGF-β1 trans-
genic mice, an acute and massive increase in plasma 
levels of TGF-β1 results in severe GN with crescents.48-49 

TGF-β1 expression is also strong in the cellular cres-
cents.56 In disorders with abnormal glomerular and tu-
bulointerstitial matrix accumulation, including crescentic 
GN and diffuse proliferative lupus nephritis, were noted 
significant increases in the immunoreactivity of all three 
TGF-β isoforms in glomeruli (p<0.025) and tubulointersti-
tium (p < 0.025).57

Figure 4. A, B, C Lupus nephritis (arrows indicating the positive immunostaining). Immunohistochemical evaluation 
of pSmad3 (A), Smad7 (B), TGF-β1 (C). D, E, F ANCA-associated glomerulonephritis (arrows indicating the positive 
immunostaining). Immunohistochemical evaluation of pSmad3 (D), Smad7 (E), TGF-β1 (F).53
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The effect of Smad pathway in proliferative (including 
pauci-immune GN and lupus nephritis III, IV) and 
non-proliferative GN was examined and demonstrated 
that pSmad 2/3 was increased in all glomerular cells 

and was positively correlated with serum creatinine level 
and interstitial inflammation in both GN.58   A recent study 
evaluated the role of Smad3 as an important mediator 
of glomerulosclerosis and interstitial fibrosis in a model 

TGF/SMAD IN PROLIFERATIVE GLOMERULONEPHRITIS

Table 1. Selected studies demonstrating expression of TGF-β1/Smad signalling in autoimmune disease- associated 
glomerulonephritis.

Ref Disease model Molecule Urine/
plasma/
tissue

Correlation with 
histopathological 
characteristics

Correlation 
with clinical 
characteristics

35 Crescentic GN
 mouse model

Latent TGF-β1 Plasma/ renal 
tissue

Protection against crescent 
formations and T cells and 
macrophage infiltration

Preservation of renal 
function
Reduction of 
proteinuria

49 Crescentic GN
mouse model

Smad3 Renal tissue Glomerulosclerosis,
Interstitial fibrosis
Glomerular endothelial 
cells (loss of fenestrations, 
swelling, and basement 
membrane reduplication)

Proteinuria

57 GN with proteinuria 
(including lupus 
nephritis)
human model 

TGF-β1 Renal tissue/
urine/
plasma

Tubular epithelial cells
Interstitial expression
Lower expression in glomeruli
Interstitial inflammation/
fibrosis
Tubular atrophy

Proteinuria

58 Crescentic GN 
mouse model

TGF-β1 Renal tissue Cellular/fibrous cellular 
crescents

N/A

60 GN 
human model

TGF-β1
TGF-βLAP

Renal tissue Increase of mesangial matrix 
and 
matrix components of GBM
Immune deposits in glomeruli

serum 
N/A

61 Crescentic GN
mouse model

Smad7 gene 
therapy

Renal tissue Attenuation of renal fibrosis 
and inflammation
Inhibition of interstitial 
mononuclear cell infiltration, 
crescent formations and 
glomerulosclerosis

Reduction of 
proteinuria
Improvement of renal 
function

62 Lupus nephritis 
human model

Mir-150 Renal tissue Glomerulus sclerosis
Fibrous crescents
Tubular atrophy
Interstitial fibrosis

Chronicity index 
[CI]≥4

63 Lupus nephritis
mouse model and 
renal glomerular 
endothelial cells

Mir-183
TGF-βRI

Renal tissue Mir-23 is reduced in LN 
Overexpression of Mir-23 
inhibits inflammatory cell 
infiltration and renal fibrosis
TGF-βR1 highly expressed 
in LN

Overexpression 
of Mir-23 reduced 
proteinuria
TGF-βRI: renal fibrosis

Continued in next page
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of proliferative crescentic GN. SMAD3-/- mice had only 
transient proteinuria, and the glomerular endothelium 
demonstrated transient injury, which was temporally 
correlated with proteinuria.47 Interestingly, the effect of 
Smad3 deletion was different between the glomerular 
cells. 
Further evidence indicated that blocking TGF-β1 signal-
ling by overexpression of Smad7 may have a therapeutic 
effect in a mouse model of autoimmune crescentic GN. 
Results showed that overexpression of Smad7 blocked 
both renal fibrosis and inflammatory pathways in terms 
of Smad2/3 and NF-B activation, respectively (p<0.01). 
Severe histologic damage (glomerular crescents and 
tubulointerstitial injury) and functional parameters, includ-
ing proteinuria, were significantly improved (all p<0.05). 59

Although this research field in human tissue is limited, 
a recent study from our research group demonstrated 
that TGF-β1/pSmad3/Smad7 was upregulated in hu-
man GN, including AAV and lupus nephritis.51 TGF-β1 
was correlated with glomerulosclerosis and interestingly 
indicated as independent risk factor for progression to 
chronic kidney disease. Another noteworthy point was 

that the concomitant glomerular expression of high 
Smad7 and medium pSmad3 was associated more 
with renal inflammation, such as cellular crescent and 
interstitial inflammation, than fibrosis.51

Comparing the miR expressions in renal biopsies of 
lupus nephritis, it was identified that miR-150 was re-
lated to higher chronicity level (chronicity index [CI] ≥4), 
suggesting as biomarker of specific histologic manifes-
tations of lupus nephritis.60 Furthermore, miR-183 could 
mediate the TGF-β1/Smad pathway, in mice with lupus 
nephritis (LN) and in human renal glomerular endothelial 
cells (HRGECs).61  

CONCLUSION
TGF-β1 plays a central role in renal fibrosis and inflam-
mation via its downstream Smad signalling. Most cell 
types, including immature hematopoietic cells, activated 
T and B cells, macrophages, neutrophils, and dendritic 
cells, produce TGF-β1 and/or are sensitive to its effects. 
Overexpression of this pathway has been closely linked 
to the pathogenesis of GN, including the proliferative 
one, which is associated with autoimmune diseases. 

Ref Disease model Molecule Urine/
plasma/
tissue

Correlation with 
histopathological 
characteristics

Correlation 
with clinical 
characteristics

53 GN (including 
crescentic and 
Lupus nephritis) 
human model

TGF-β1
SMAd7
pSMad3

Renal tissue TGF-β1: glomerulosclerosis, 
tubulitis
pSmad3: interstitial 
inflammation, cellular 
crescents
Smad7: cellular crescents, 
interstitial inflammation

TGF-β1: creatinine 
level at diagnosis, risk 
factor for CKD

64 Crescentic GN 
mouse model 

TGF-β1
TGF-β1-RII
p-Smad3

Renal tissue/
plasma

Smad3 expressed in tubular 
and glomerular cells
TGF-β1expressed in and 
around tubular epithelial cells

Deficiency of Smad3 
protects against 
crescentic nephritis

59 GN (including 
Crescentic and
Lupus nephritis)
mouse and human 
model

TGF-β1,
TGF- β2,
TGF-β3

Renal tissue All isomorphs were increased 
in severe proliferative lesions 
(crescentic)
Larger extent in 
tubulointerstitial than in 
glomerular

N/A

65 GN (including 
crescentic and 
Lupus nephritis) 
human model 

TGF-β1, 
pSmad2/3,
p57

Renal tissue Increased expression in 
all glomerular cells and 
hyperplastic lesions.

Higher creatinine 
level,
More intense 
interstitial 
inflammation

GN: glomerulonephritis; CKD: chronic kidney disease; N/A: not applicable.

Table 1. Selected studies demonstrating expression of TGF-β1/Smad signalling in autoimmune disease- associated 
glomerulonephritis. Continued from previous page
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However, the role of TGF-β1 signalling is demonstrated 
from few studies, in vivo and in vitro. The current evidence 
from human renal tissue is limited and concerns only to 
GN, which is associated with lupus nephritis or AAV from 
the autoimmune diseases. While the TGF-β1 signalling 
could be a potential target of treatment, direct inhibition 
of TGF-β1 has provided negative results. Recently, new 
mechanisms and new interactions of TGF-β signal-
ling have been demonstrated to mediate renal injury. 
Therefore, a better understanding of the specific role 
of the downstream signalling in pathogenesis of GN, 
preferably in human tissue, is appropriate for conducting 
potent results for renal prognosis and novel therapeutic 
strategies.
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