
sensors

Article

Membership Function-Weighted Non-Linear Fitting
Method for Optical-Sensing Modeling
and Reconstruction

Shuo Meng, Zhenhui Du * , Liming Yuan, Shuanke Wang, Ruiyan Han and Xiaoyu Wang

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University,
Tianjin 300072, China; mengsh@tju.edu.cn (S.M.); yuanliming@tju.edu.cn (L.Y.);
wangshuanke@tju.edu.cn (S.W.); hanruiyan@tju.edu.cn (R.H.); wangxiaoyu9453@tju.edu.cn (X.W.)
* Correspondence: duzhenhui@tju.edu.cn; Tel.: +86-130-2138-6658

Received: 23 September 2018; Accepted: 1 November 2018; Published: 3 November 2018 ����������
�������

Abstract: Imprecise measurements present universally due to variability in the measurement error.
We devised a very simple membership function to evaluate fuzzily the quality of optical sensing with
a small dataset, where a normal distribution cannot be assumed. The proposed membership function
was further used as a weighting function for non-linear curve fitting under expected mathematical
model constraints, namely the membership function-weighted Levenberg–Marquardt (MFW-LM)
algorithm. The robustness and effectiveness of the MFW-LM algorithm were demonstrated by
an optical-sensing simulation and two practical applications. (1) In laser-absorption spectroscopy,
molecular spectral line modeling was greatly improved by the method. The measurement uncertainty
of temperature and pressure were reduced dramatically, by 53.3% and 43.5%, respectively, compared
with the original method. (2) In imaging, a laser beam-profile reconstruction from heavy distorted
observations was improved by the method. As the dynamic range of the infrared camera increased
from 256 to 415, the detailed resolution of the laser-beam profiles increased by an amazing 360%,
achieving high dynamic-range imaging to capture optical signal details. Therefore, the MFW-LM
algorithm provides a robust and effective tool for fitting a proper physical model and precision
parameters from low-quality data.

Keywords: optical-sensing signal processing; non-linear curve fitting; laser-absorption spectroscopy;
image reconstruction-restoration; sensing modeling and reconstruction

1. Introduction

Curve fitting is one of the most powerful and most widely used analysis tools to pre- and
post-process data [1,2], to remove outliers [3,4], to compare candidate models [5], and to examine
the relationship between one or more predictors [6–8]. The parameterization of curve fitting is
usually realized by minimizing linear or non-linear least-squares residuals [9,10], in which the
Levenberg–Marquardt (LM) algorithm, also known as the damped least-squares method, is popular for
fast convergence [11]. Whether the LM fitting results can reflect physical meaning is highly dependent
on the quality of measured signal. Improving the LM algorithm’s robustness from outliers and
reducing its dependence on the quality of the measured signal are desired.

The LM algorithm for curve fitting was first proposed by Levenberg [12] in 1943 and optimized
by Marquardt [13] in 1963. The idea of weighted fitting was demonstrated in 1959. Asadi et al. [14]
proposed a hybrid intelligent model combination of genetic algorithms and the LM algorithm for
stock-exchange index prediction to cope with the fluctuations of stock-market values. Nawi et al. [15]
proposed an algorithm in which a cuckoo search algorithm was used to provide optimal weights
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for the LM algorithm to obtain better results in training feed-forward artificial neural networks.
Zhang et al. [16] proposed a finite-element analysis-based LM algorithm to extract the features of
the Brillouin-scattering spectrum with different linewidths and signal-to-noise ratios (SNRs). The
weighted LM algorithm had attracted much attention for potentially reducing the effect of outliers.

Outliers present universally due to variability in measurement error, including a transient
malfunction of apparatuses, errors in data transmission or transcription, changes in system behavior,
operation error, instrument error or through natural deviations, and a flaw in the assumed theory.
These outliers always lower the goodness of fit and the precision of fitted parameters. There is no rigid
mathematical definition of what constitutes an outlier; determining whether or not an observation is
an outlier is ultimately a subjective exercise. Outlier detection methods, e.g., Chauvenet’s criterion [17],
Grubbs’ test [18], Dixon’s Q test [19], and Peirce’s criterion [20], are usually graphically or model-based.
Deletion of outliers is a controversial practice frowned upon by scientists because the deletion process
does not make the practice more scientifically or methodologically sound, especially in small sets or
where a normal distribution cannot be assumed. Furthermore, when non-linear fitting is performed
from small numbers of replicated observations, the results of an analysis can be very badly and
unpredictably affected.

Optical sensing is often performed in situ or in online applications, where small datasets
are common for the variability of working conditions or fast response time. These results in
outliers buried in observations being more difficult to distinguish from low-quality data distorted by
non-linear transmission, interference, electrical noise, dark current fluctuation (DCF), and dark-current
non-uniformity and photoresponse non-uniformity between pixels for optical image sensors [21–23].
Outliers and distorted signal can be both overly influenced the accuracy of in situ optical sensing
and modeling. There is not any universal or robust algorithm to improve the goodness of fit and the
precision of fitted parameters for outliers-contained optical sensing with small datasets.

In the work described in this paper, we considered the outliers and distorted signal
of optical sensing together as imprecise measurements. Taking the idea of fuzzy logic for
the first time, we devised a membership function for optical-sensing data to evaluate the
observations’ fidelity. Furthermore, we used the membership function as the weighting
function of fitting for signal modeling and reconstruction under expected mathematical model
constraints, i.e., a membership-function-weighted Levenberg–Marquardt (MFW-LM) algorithm.
We demonstrated the MFW-LM algorithm by an optical-sensing simulation and two experiments:
(1) laser-absorption-spectroscopy analysis and (2) laser-beam-profile measurement.

2. Method

2.1. Optical-Sensing Membership Function

We considered the outliers and distorted signal of optical sensing together as imprecise
measurements, which present universally due to three phenomena: (1) imperfect response of
sensing and signal conditioning due to non-linearity, DCF, and performance decline with device
aging; (2) interference from stray light and optical fringe [24,25], power-line interference [26], and
electromagnetic interference; and (3) electrical noise from electronic devices with various processes,
including thermal noise, shot noise, flicker noise, burst noise, and transit-time noise.

Generally, the measurement reliability of optical sensing depends largely on the responsivity of
the adopted photosensor and signal conditioning unit. A typical responsivity of a photosensor usually
exhibits quite good linearity in the middle region of its response curve, while presenting non-linearity
near the two ends of the response curve, as shown in Figure 1a. A slightly different responsivity at the
low-input end and a saturated feature at the up-input end are very common for most photosensors.
The signal conditioning unit of an optical system is usually used to perform amplification for high
resolution and SNR of the input signal, filtering for minor out-band interference, and electrical isolation
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for isolating possible sources of signal perturbations. Practically, a variety of interference and noise
should be reduced to a rather small amount compared with the measured signal.

Therefore, the reliability of measured data is closely related to the signal magnitude for a
well-designed optical system. Random noise is statistical noise having a Gaussian distribution. Thus,
the measurements corresponding to the middle and upper parts of the response curve are more reliable
than those of the two ends of the curve.

We took the idea of fuzzy logic, where a membership function represents the degree of truth as an
extension of valuation [27]. For an optical-sensing dataset [yi] (i = 1,2, . . . , n), we devised a membership
function, denoted µ(yi), mapping from [yi] to the real unit interval [0, 1], for optical-sensing datum yi (i
= 1, 2, . . . , n) to quantify its fidelity:

µ(yi) =


0
(1/y1)× yi
1
(ymax − yi)/(ymax − y2)

yi ≤ ymin, yi ≥ ymax

ymin < yi < y1

y1 ≤ yi ≤ y2

y2 < yi < ymax

(1)

µ(yi) ∈ [0, 1] i = 1, 2, · · · , n (2)

where µ(yi) is the membership degree of an observation yi; ymax and ymin are the maximum and
the minimum of right observation, respectively; y1 and y2 are two critical observations with high
confidence, respectively; and n is the number of observations.

The criteria for the key parameters in the membership function are closely related to system
characteristics. The ymax and ymin are limited values of a sensor’s output range. Any observations
beyond ymax and ymin must be outliers, and we assigned membership degree 0 to them, i.e., their
fidelity is none. y1 and y2 have fuzzy certainty, which is used to determine the range with the
best linearity and make fuzzy optimal selection of observations. These observations between the
two critical points y1 and y2 have the highest confidence, and we assigned membership degree 1
to them, which comprise the core of the membership function. However, the scope of this area is
not strictly defined and can be appropriately adjusted according to different sensor responsivity and
experimental purposes. We assigned membership degree 0 to 1 for the other observations based on
their measurement value. The functions from ymin to y1, and from y2 to ymax are specifically designed
on the basis of the respective major problems to be solved. The signal in the low amplitude interval
is greatly affected by the random noise, so it is necessary to reduce the contribution of the low-SNR
observations; while the signal of the high amplitude interval mainly addresses the difficulties of signal
distortion and saturation caused by the non-linearity of the sensor’s responsivity. A membership
function assigned for a typical responsivity of a photosensor (Figure 1a) is shown in Figure 1b.

The membership degree µ(yi) is closely related with the magnitude of the measurement, similar to
the experience using an analog instrument, i.e., one always achieves better accuracy at approximately
two-thirds of the full scale of an instrument by properly selecting its scale range [28]. Therefore,
the interval set by the two critical values y1 and y2 of the membership function is usually chosen to
be near two-thirds of the observations or sensor’s responsivity. A higher membership degree µ(yi)
means a precise measurement, while a smaller µ(yi) implies the poorer fidelity of observations. The
membership function, drawing on the ideology of fuzzy logic, is a novel concept and valuable for
quantitative simple evaluation of observations under the premise that the SNR of the observations is
within a reliable range. The higher the SNR of the observations, the more objective the fitting result of
the MFW-LM algorithm will be.



Sensors 2018, 18, 3762 4 of 14

Sensors 2018, 18, x 3 of 14 

 

Therefore, the reliability of measured data is closely related to the signal magnitude for a well-

designed optical system. Random noise is statistical noise having a Gaussian distribution. Thus, the 

measurements corresponding to the middle and upper parts of the response curve are more reliable 

than those of the two ends of the curve. 

We took the idea of fuzzy logic, where a membership function represents the degree of truth as 

an extension of valuation [27]. For an optical-sensing dataset [yi] (i = 1,2, …, n), we devised a 

membership function, denoted μ(yi), mapping from [yi] to the real unit interval [0, 1], for optical-

sensing datum yi (i = 1, 2, …, n) to quantify its fidelity: 

 
min max

1 min 1

1 2

max max 2 2 max

0 ,

1/
( )=

1

( ) / ( )

i i

i i

i

i

i i

y y y y

y y y y y
y

y y y

y y y y y y y



 


 


 
    





 (1) 

( ) [0,1] 1,2, ,iy i n    (2) 

where μ(yi) is the membership degree of an observation yi; ymax and ymin are the maximum and the 

minimum of right observation, respectively; y1 and y2 are two critical observations with high 

confidence, respectively; and n is the number of observations. 

The criteria for the key parameters in the membership function are closely related to system 

characteristics. The ymax and ymin are limited values of a sensor’s output range. Any observations 

beyond ymax and ymin must be outliers, and we assigned membership degree 0 to them, i.e., their 

fidelity is none. y1 and y2 have fuzzy certainty, which is used to determine the range with the best 

linearity and make fuzzy optimal selection of observations. These observations between the two 

critical points y1 and y2 have the highest confidence, and we assigned membership degree 1 to them, 

which comprise the core of the membership function. However, the scope of this area is not strictly 

defined and can be appropriately adjusted according to different sensor responsivity and 

experimental purposes. We assigned membership degree 0 to 1 for the other observations based on 

their measurement value. The functions from ymin to y1, and from y2 to ymax are specifically designed 

on the basis of the respective major problems to be solved. The signal in the low amplitude interval 

is greatly affected by the random noise, so it is necessary to reduce the contribution of the low-SNR 

observations; while the signal of the high amplitude interval mainly addresses the difficulties of 

signal distortion and saturation caused by the non-linearity of the sensor’s responsivity. A 

membership function assigned for a typical responsivity of a photosensor (Figure 1a) is shown in 

Figure 1b. 

 

 

0

Saturate

b
y

i

0
x

 

0
O

b
se

rv
at

io
n

s 
Be measured

a

 

 

μ(y
i
)

y
max

y
min

y
1

C
o

re

y
2

01

O
b

se
rv

at
io

n
s

Membership degree, μ(y
i
)  

Figure 1. (a) Typical responsivity of a photosensor; (b) assignment of a membership function. ymax, 

ymin, y1 and y2 are the maximum, minimum, and two critical observations, respectively. The two small 

panels in (a) are partial enlargements at the responsivity’s ends. 
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approximately two-thirds of the full scale of an instrument by properly selecting its scale range [28]. 
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Figure 1. (a) Typical responsivity of a photosensor; (b) assignment of a membership function. ymax,
ymin, y1 and y2 are the maximum, minimum, and two critical observations, respectively. The two small
panels in (a) are partial enlargements at the responsivity’s ends.

2.2. Membership Function-Weighted Levenberg–Marquardt (MFW-LM) Algorithm

The LM algorithm is a well-known damped least-squares algorithm [29], so only a brief review is
given. For an observed data set [yi] (i = 1,2, . . . , n), the expected mathematical model f(x,

→
a ) is often

determined based on previous knowledge. The parameter vector
→
a of the model is approximated

within a trustworthy range (denoted k, where |k| < ε and ε is any positive number) near its initial
value

→
ak to seek an optimal parameter vector

→
a f that minimizes the sum of squared residuals R(

→
a ).

The fitting criteria of the LM algorithm is given by [30,31]:

minR(
→
a ) =

n

∑
i=1

[
yi − yi(

→
ak + k)

]2
, i = 1, 2, . . . , n (3)

where R(
→
a ) is the sum of the squared residuals, yi(

→
ak + k) is the data when the parameter is estimated

as (
→
ak + k), and n is the number of fitted points.

We promoted the fitting quality of optical sensing by using the aforementioned membership
function as a weighting function. The fitting criterion in Equation (3) was weighted by the membership
degree of observations described by Equation (1), namely the MFW-LM algorithm, which is described
as follows:

minR(
→
a ) =

n

∑
i=1

µ(yi)[yi − yi(
→
ak + k)]2, i = 1, 2, . . . , n (4)

where µ(yi) is a membership degree used as a regression weight;
→
ak is the parameter vector of the

expected mathematical model. We substituted the optimal parameter vector
→
a f that meets the improved

fitting criteria [Equation (4)] into f(x,
→
a ) to obtain the fitting result that is in better agreement with the

physical meaning.
We programmed the entire algorithm in OriginPro and LabView software. First, we predicted the

initial values of parameters by the least-squares method or experimental results. Next, we weighted
observations by assigning a membership function. The fitting parameters were continuously involved
in the iterative process until the sum of squared residuals was minimized. Finally, the optimal
parameters were obtained to complete the MFW-LM algorithm. The flowchart of this process is shown
in Figure 2.
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Figure 2. Flowchart of membership function-weighted Levenberg–Marquardt (MFW-LM) fitting process.

From the view of weighted curve fitting, the membership function is a rather simple function
capable of coping with imprecise measurements.

3. Verification of MFW-LM Algorithm

We verified the MFW-LM algorithm by simulating optical-sensing signals, which were
accompanied by random noise, sensor non-linearity, and data distortion. We compared the fitting
results of the proposed MFW-LM algorithm with that of an outliers-excluded LM (OE-LM).

We assumed a laser beam featuring a Gaussian function based on a large number of previous
studies [32–35], which was described by Equation (5) and is shown in Figure 3a:

I = I0 +
(

η/
(

w×
√

π/2
))
× e−2((x−xc)/w)2

(5)

where I0 can be seen as background light; η is a constant; w is the radius at which the intensity
value falls to 1/e2 of the maximum intensity; xc is the offset of the maximum intensity relative to the
horizontal axis; x is the radial distance from the center axis of the beam; all parameters were randomly
generated (in Table 1).

Table 1. Parameters of the Gaussian function in Equation (5).

I0 η w xc

−2.70 × 10−5 2307.40 4.45 −5.26 × 10−18

The laser beam was measured by image sensors with four different response characteristics
as shown in Figure 3c and with random noise shown in Figure 3b. Taking the simulated SNR = 25,
calculated by the amplitude of the simulated signal and the random noise, as an example, we simulated
the measurements. The measured laser beams with four image sensors are shown in Figure 3d, in
which we intended a bigger input to bring about a saturated signal, seriously distorted data, or outliers,
to verify the proposed MFW-LM algorithm.

We fitted measurement I (in Figure 3d) with the MFW- and OE-LM algorithms separately.
The fitted curves and preset Gaussian function are shown in the upper panel of Figure 3e and their
deviation in the lower panel of Figure 3e. We then changed the response of image sensors to curves
II–IV (in Figure 3c), which is more non-linear owing to device aging, and fitted the curves I–IV in
Figure 3c with MFW-LM algorithm to verify its universality, as shown in Figure 3g. We simulated 100
signals at different SNRs by adjusting the amplitude of random noise and the sensor’s non-linearity,
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and averaged them to obtain the relative normalized root-mean-square deviation (NRMSD), described
in Equation (6), of the fitted and preset values, as shown in Figure 3f,h, respectively.
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Figure 3. Demonstration of MFW-LM algorithm. (a) Simulated laser-beam profile with Gaussian
distribution; (b) random noise; (c) illustration of various response curves; (d) simulated signals
corresponding to various response curves in c and random noise in b; (e) comparison between
original (a) and fitted values by the MFW- and outliers-excluded (OE)-LM algorithms with response
curve I in c; (f) noise-tolerance comparison of MFW- and OE-LM algorithms with response curve
I in c; (g) comparison of fitted results with various measurements in d; (h) non-linearity tolerance
of MFW-LM algorithm. MFW-LM denotes membership function-weighted Levenberg–Marquardt
algorithm; OE-LM denotes outliers-excluded Levenberg-Marquardt algorithm; NRMSD denotes
normalized root-mean-square deviation.

According to measurements I–IV, we set the parameters of the membership function (in Table 2)
for MFW-LM fitting based on the response curves I–IV in Figure 3c. The ymax and ymin are limited
values of the sensor’s responsivity. y1 and y2 are the two-thirds of the sensor’s responsivity. The
parameter vector

→
a = (I0, η, w, xc) was obtained by LM fitting and was used as the initial parameter

vector of the MFW-LM algorithm. After iteration, the final iteration obtained the optimal parameter
vector, which can minimize the sum of squared residuals R(

→
a ). Substituting it into the Gaussian

function yielded the fitted laser beam profile.

Table 2. Membership function parameters for different measured laser beams.

ymin (a.u.) y1 (a.u.) y2 (a.u.) ymax (a.u.)

I 16 150 150 225
II 3 216 216 324
III 45 163 163 245
IV 1 203 203 305

We compared the deviation between the reconstructed signal and the preset laser-beam profile,
which was quantified by the NRMSD of the relative residuals as follows:

NRMSD =

√√√√ N

∑
i=1

[
(
y′i − y∗i

)
/y′max]

2/n (6)

where y′i and y∗i are the fitted data and the preset value, respectively; y′max is the maximum of y′i; and n
is the number of fitted points.
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The sensor’s non-linearity δ was expressed by Equation (7) and demonstrated in Figure 1a:

δ = ∑|yn − yl |/Y (7)

where yn is the non-linear response data, yl the linear response data, and Y the range of linear response.
The result of the single simulation (Figure 3e) indicates that the relative NRMSD of the OE-LM

and the MFW-LM algorithms were 4.5% and 1.1%, respectively. Multiple simulations at different SNRs
found that the NRMSD of the MFW-LM algorithm was improved by 66.0%–89.7% compared to the
OE-LM algorithm, and that it is always within 5% for different response characteristics when the SNR
is not less than 2.5 or the sensor’s non-linearity is not greater than 31.32.

Therefore, the MFW-LM algorithm is extremely robust and effective in minimizing the
contribution of outliers and distorted signals and accurately reconstructs the laser-beam profile when
dealing with optical sensing with small datasets; that is, the proposed MFW-LM algorithm is suitable
for curve fitting that requires high-precision measurement.

4. Applications

4.1. Optical Absorption Spectroscopy Analysis

To improve the accuracy of optical absorption spectroscopy analysis, which is often frustrated by
imperfect response, interference, and electronic noise [24,25,36–38] in signal acquisition and processing,
we applied the MFW-LM algorithm to molecular absorption line modeling of H2O and compared
the measurement uncertainty of the temperature and pressure calculated by the fitting results of the
MFW-LM and the LM algorithms.

H2O spectral intensity and line shape were used to calculate temperature, and pressure by the
LM algorithm based on wavelength-modulation spectroscopy (WMS) [39]. The fitted mathematical
expression was determined by the center absorption wavenumber ν0, integral absorbance Ai, and
Lorentzian broadening ∆νL [40]. The molecular absorption line modeling M that was used for the
fitting is introduced by Equations (8)–(10):

M =
A

i0 · cos ψ

[
H2 +

i0
2
(H1 + H3) cos ψ

]
, (8)

Hi = −
1
π

∫ π

−π
ϕv(ν + a cos θ, ∆νL , ∆νG ) cos iθdθ, (9)

ϕv(ν− ν0, ∆νv) ≈ cL
1
π

∆νv

(ν− ν0)
2 + ∆νv

+ cG

√
ln 2√

π∆νv
exp

[
− ln 2

(
ν− ν0

∆νv

)2
]

, (10)

where M is the molecular absorption line modeling; A is integral absorbance; i0 = 0.036 and ψ = 1.12π
are parameters of the laser; Hi is the ith harmonic signal; ϕv is the Voigt profile; ν = 2.0× 105 GHz is the
center frequency of the laser; a = 0.065 cm−1 is the modulation amplitude; θ∈[−π, π]; ν is absorption
wavenumber; ν0 is the center absorption wavenumber; ∆νL is the Lorentzian broadening; ∆νG is the
Gaussian broadening; ∆νv is the half width at half maximum (HWHM) of Voigt; cL and cG are weights,
which are related to the absorption lineshape [41].

Gas temperature T was calculated according to the line-strength ratio R = Ai/Aj [Equation (11)],
which is a fourth-order polynomial obtained by fitting the data provided by the HITRAN database [42].
Pressure P can be inferred by combining Equations (12) to (13):

T = g(R) = k1 + k2 × R + k3 × R2 + k4 × R3 + k5 × R4 (11)

∆νL = P ·
[
χH2O · γself +

(
1− χH2O

)
· γmix

]
, (12)

χH2O =
A

P · S · L , (13)
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where T is the gas temperature; k1, k2, k3, k4, and k5 are polynomial coefficients (Table 3); R is
the line-strength ratio; ∆νL is Lorentzian broadening; χH2O is the concentration of H2O; γself and
γmix, calculated by γj(T) = γj(T0)(T0/T)nj , are the self-broadening coefficient of H2O and the
mix-broadening coefficient of H2O with other gas compounds, respectively; γj(T0) is the broadening
factor at the reference temperature; nj is the temperature index, which is typically 0.5; A is integral
absorbance; S is the line strength; and L is the optical path length.

Table 3. The polynomial coefficients of Equation (11).

Polynomial Coefficient 0.227 < R < 0.507 0.507 < R < 2.237 2.237 < R < 7.335 7.335 < R < 62.224

k1 2285.77372 1078.16869 632.97533 417.64245
k2 −10,756.59361 −1126.15794 −129.37278 −12.094
k3 31,321.80162 908.97286 27.12434 0.4159
k4 −44,842.03108 −357.95439 −2.90883 −0.00689
k5 25,134.01199 53.92365 0.1225 4.23798 × 10−5

The temperature of the experimental environment measured by a thermocouple was T = 350 K.
Then, the pressure calculated according to the ideal gas law was P = 1.18 atm. The temperature and
pressure measurement uncertainties obtained by the LM algorithm were 2.6% and 6.8%, respectively.

To weaken the roles of outliers and distorted signals on curve fitting, we used the proposed
MFW-LM algorithm to refit the raw observations. The empirical estimates of ν0, Ai and ∆νL were
regarded as initial parameters. The parameters and weighting functions (the membership functions)
were set for the LM fitting program by Labview software. By repeating multiple iterations, once the
sum of squared residuals R(

→
a ) minimizing, the fitting process will converge to the unique solution, the

optimal parameters, and the molecular absorption lineshape of H2O was obtained by the MFW-LM fit.
Based on the robustness of the MFW-LM algorithm, the observed signals obtained by sensors with
different responsivity can be fitted. Observations and sensor responsivity are one-to-one corresponding,
so the limit values and critical values of the observations can be taken as the key parameters of the
membership function (see Table 4), so that the responsivity of the photodetector (PDA10CS-EC,
Thorlabs Inc., Newton, NJ, USA) used in the experiment is not needed to be tested or corrected. The
parameters of the membership function, following Equation (1), were set based on the molecular
absorption lineshape of H2O collected by this photodetector as shown in Table 4. The ymax and ymin

are limited values of the observations’ amplitude. y1 and y2 are the two thirds of the observations’
amplitude. The variables of the molecular absorption line modeling of H2O are continually updated
and iterated until a set of variables is found to minimize the R(

→
a ) (Equation (4)).

Table 4. Membership function parameters.

ymin (a.u.) y1 (a.u.) y2 (a.u.) ymax (a.u.)

0.0 1.4 1.4 2.1

The molecular absorption lineshape of H2O and the fitting results of the LM and the MFW-LM
algorithms are shown in Figure 4 and Table 5.
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Table 5. Comparison of fitting results and measurement uncertainty of gas temperature and pressure
from using LM and MFW-LM algorithms.

Algorithm NRMSD (%)
Temperature Pressure

Value 1

(K)
Value 2

(K)
Relative

Error
Value 1

(atm)
Value 2

(atm)
Relative

Error

MFW-LM 1.0 350.00 347.21 0.8% 1.18 1.16 1.4%
LM 0.9 350.00 341.02 2.6% 1.18 1.10 6.8%

1 Value is the truth value. 2 Value is the calculated value.

The integral absorbance ratio (i.e., R) was obtained from the two absorption peaks 1 and 2 of H2O.
Substituting it into Equation (11), we can calculate the gas temperature T. In Equations (12) and (13),
the parameters other than the pressure P and H2O concentration χH2O are constants or the known
parameters obtained by the fitting signal. Therefore, the pressure P and H2O concentration χH2O can
be obtained by combining Equations (12) and (13). The calculated results and uncertainty analysis of
the gas temperature T and pressure P are shown in Table 5.

We then took the measurement results from 50 repeated experiments under the same experimental
conditions to compare them with the truth values, as shown in Figure 5.
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where vi is the calculated value, vb the truth value, and N the number of data points. 
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The relative standard deviation (RSD) was used to represent the calculation error of
key parameters:

RSD =

√
n
∑

i=1
(vi − vb)2

vb
√

n− 1
× 100% (14)

where vi is the calculated value, vb the truth value, and N the number of data points.
It can be seen that while the MFW-LM algorithm resulted in a slightly lower NRMSD of the signal

line profile, it reduced the relative error of the gas temperature and pressure calculated from the fitting
result by 42.9% and 61.8%, respectively. The RSDs of the temperature and pressure of the 50 repeated
experiments calculated by the LM and the MFW-LM algorithms were reduced from 2.4% to 1.1% and
from 3.4% to 1.7%, respectively; that is, the measurement uncertainties of temperature and pressure
calculated by the MFW-LM algorithm were dramatically reduced by 53.3% and 43.5%, respectively,
compared with that calculated by the LM algorithm.

4.2. Reconstruction of Laser-Beam Profile

We used the MFW-LM algorithm to reconstruct a laser-beam profile from heavily distorted
observations to capture more optical signal details lost in the unsaturated laser-beam profile obtained
with a neutral density filter or a beam splitter in front of the image sensors.

Laser-beam profile is usually measured by image sensors to improve detection efficiency.
At present, the analog-to-digital converter of an image sensor is mostly 8- or 10-bit, which means that
the dynamic range (DNR) of a sensor is only 256 or 1024. In order to avoid image sensor saturation,
the usual practice is to pick off a small fraction of the beam with a neutral density filter or a beam
splitter in front of the image sensors, resulting in the serious loss of laser-beam profile details and the
inaccurate reflection of laser-beam spatial characteristics. For example, due to the pixel resolution
of the image sensor, only a few intensity points can be resolved within the dramatically changing
range of the laser-beam profile, and the analysis of the laser-beam profile based on a small amount
of data is considered to be unreliable. If we do not do this, even if it causes slight saturation on the
laser-beam profile, the MFW-LM algorithm has been simulated and verified to accurately reconstruct
the laser-beam profile, so that more intensity points of the laser-beam profile can be distinguished,
giving us a chance to mine hidden information (as shown in Figure 6).
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Figure 6. Comparison of the detail resolution of laser-beam profiles obtained by reducing laser intensity
with usual means and reconstructing saturated laser-beam profiles with the MFW-LM algorithm, which
are characterized by black and red curves, respectively. Data falling into the purple area have very low
quality, and are represented by smaller points than those used to represent high-quality data. The solid
curves represent raw signals and the dashed curves represent fitted signals.

When measuring the laser-beam profile, we increased the incident-laser intensity (or the
integration time) beyond the DNR but below the damage threshold of the image sensor to reflect the
low intensity in details, which inevitably results in saturation and distortion. We then completed a
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high-precision reconstruction of the laser-beam profile by using the MFW-LM algorithm, which was
proved to solve these problems.

The experimental setup was part of the research on mid-infrared laser-transmission characteristics
in hollow waveguides (HWGs). The laser beam emitted from an interband cascade laser was collimated
with an aspheric lens and coupled into a HWG by an off-axis parabolic mirror. An infrared camera
(FLIR ThermoVision A40, Wilsonville, OR, USA) was used to measure the laser-beam profile near
the waist.

To ensure that the laser-beam profile in the experiment could be described by a Gaussian function,
we obtained the intact laser-beam profile with a neutral density filter or a beam splitter in front of the
infrared camera and described it with two- and three-dimensional images, as shown in Figure 7. In our
numerous verification experiments, fitting degrees of the laser-beam profile and Gaussian function
were all greater than 95.3%. Therefore, a Gaussian function was used to fit the laser-beam profile.
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Figure 7. (a) Experimental curve of laser-beam profile; (b) three-dimensional laser-beam profile;
(c) two-dimensional laser-beam profile; (d) HE11 model.

We increased the DNR of the infrared camera equivalently by reducing the attenuation of laser
intensity via an attenuation device and used the proposed MFW-LM algorithm to fit the observations,
as shown in Figure 8. The dotted solid curve in the upper panel of Figure 8 is the raw data and the
dashed blue curve is the curve fitted by the MFW-LM algorithm. The parameters of the membership
function, following Equation (1), were set as in Table 6.
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Table 6. Membership-function parameters.

ymin (a.u.) y1 (a.u.) y2 (a.u.) ymax (a.u.)

0 2 200 255

The bottom panel of Figure 8 shows the fitting residuals. The data in the areas marked by the
red rectangles have the highest fidelity. The relative NRMSD of the MFW-LM algorithm in the red
rectangular areas was as low as 4.1% [Equation (7)].

The laser-beam profiles measured and reconstructed in the case in which the DNR of the infrared
camera was increased equivalently were compared using a neutral density filter or a beam splitter in
front of the image sensors for signal measuring, as shown in Figure 7. The larger points represent the
data with high quality and credibility, while the smaller points indicate that the data had low quality
in the purple area. From Figure 6, we note the following clarifications:

• After reconstructing the heavily distorted laser-beam profiles, the detected laser intensity at the
edge of the spot was closer to 0, while the detected laser intensity in other areas was significantly
increased, resulting in a significant improvement of the data’s quality.

• The number of high-quality points used to study the laser-beam profile increased from 5 (larger
points on the black fitted curve) to 23 (larger points on the red fitted curve), making the detail
resolution of the laser-beam profile study significantly improved by 360% and the fitting results
more accurate, which can provide more extracted information for the study of the spatial
characteristics of the laser beam.

As the DNR of the infrared camera increased from 256 to 415 with the proposed MFW-LM
algorithm, the detail resolution of the laser-beam profiles increased by an amazing 360%. Moreover,
the MFW-LW algorithm ensured that the deviation between the fitting result and the raw data in the
most reliable region was as low as 4.1%. Therefore, the MFW-LM algorithm achieved high-precision
measurement and high dynamic-range imaging (HDRI) to capture optical signal details.

5. Conclusions

In the work reported in this paper, we devised a membership function from fuzzy logic for
the first time to evaluate the fidelity of optical sensing. The membership function was further
used as a weighting function for the Levenberg–Marquardt algorithm. We verified the robustness
and effectiveness of the proposed MFW-LM algorithm through simulation and practical sensing
applications. The MFW-LM algorithm dramatically improved the NRMSD by 66.0%, more than the
OE-LM algorithm for distorted optical sensing. We leveraged the great advantages of the MFW-LM
algorithm in optical sensing under expected mathematical model constraints by reducing the effect of
outliers and distorted signals: (1) the measurement uncertainty of temperature and pressure calculated
by the molecular spectral line modeling was reduced dramatically, by 53.3% and 43.5%, respectively,
compared with the LM algorithm; (2) the detailed resolution of the laser-beam profiles increased by an
amazing 360% by reconstructing the laser-beam profile with the method, achieving HDRI to capture
optical signal details. Therefore, the proposed method is suitable, particularly for in situ and online
sensing under expected mathematical model constraints, for cases in which small datasets cannot
imply a normal distribution and the deletion of any outliers and distortion would not be practical.
The MFW-LM algorithm provides a useful tool for optical processing from outliers and distorted
signal and has great potential for processing optical signals without depending on the quality of the
measured signal.
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