
cancers

Perspective

Reactive Oxygen Species: A Promising Therapeutic Target for
SDHx-Mutated Pheochromocytoma and Paraganglioma

Katerina Hadrava Vanova 1,2 , Chunzhang Yang 3 , Leah Meuter 1, Jiri Neuzil 2,4 and Karel Pacak 1,*

����������
�������

Citation: Hadrava Vanova, K.; Yang,

C.; Meuter, L.; Neuzil, J.; Pacak, K.

Reactive Oxygen Species: A

Promising Therapeutic Target for

SDHx-Mutated Pheochromocytoma

and Paraganglioma. Cancers 2021, 13,

3769. https://doi.org/10.3390/

cancers13153769

Academic Editor:

Krystallenia Alexandraki

Received: 28 June 2021

Accepted: 24 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
katerina.hadravavanova@nih.gov (K.H.V.); lmeuter@stanford.edu (L.M.)

2 Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, 252 50 Prague West, Czech Republic;
jiri.neuzil@ibt.cas.cz or j.neuzil@griffith.edu.au

3 Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, MD 20892, USA; chungzhang.yang@nih.gov

4 School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia
* Correspondence: karel@mail.nih.gov; Tel.: +1-(301)-402-4594

Simple Summary: Pheochromocytoma and paraganglioma are rare neuroendocrine tumors that
arise from chromaffin cells of the adrenal medulla or their neural crest progenitors located outside
the adrenal gland, respectively. About 10–15% of patients develop metastatic disease for whom
treatment options and availability are extremely limited. The risk of developing metastatic disease is
increased for patients with mutations in succinate dehydrogenase subunit B, which leads to metabolic
reprogramming and redox imbalance. From this perspective, we focus on redox imbalance caused by
this mutation and explore potential opportunities to therapeutically target reactive oxygen species
production in these rare tumors.

Abstract: Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors
derived from neural crest cells. Germline variants in approximately 20 PHEO/PGL susceptibility
genes are found in about 40% of patients, half of which are found in the genes that encode succinate
dehydrogenase (SDH). Patients with SDH subunit B (SDHB)-mutated PHEO/PGL exhibit a higher
likelihood of developing metastatic disease, which can be partially explained by the metabolic cell
reprogramming and redox imbalance caused by the mutation. Reactive oxygen species (ROS) are
highly reactive molecules involved in a multitude of important signaling pathways. A moderate level
of ROS production can help regulate cellular physiology; however, an excessive level of oxidative
stress can lead to tumorigenic processes including stimulation of growth factor-dependent pathways
and the induction of genetic instability. Tumor cells effectively exploit antioxidant enzymes in
order to protect themselves against harmful intracellular ROS accumulation, which highlights the
essential balance between ROS production and scavenging. Exploiting ROS accumulation can be
used as a possible therapeutic strategy in ROS-scavenging tumor cells. Here, we focus on the
role of ROS production in PHEO and PGL, predominantly in SDHB-mutated cases. We discuss
potential strategies and approaches to anticancer therapies by enhancing ROS production in these
difficult-to-treat tumors.

Keywords: reactive oxygen species; succinate dehydrogenase; metastatic pheochromocytoma; paraganglioma

1. Introduction

Reactive oxygen species (ROS) are oxygen-containing molecules with high reactivity
including hydroxyl and superoxide radicals as well as superoxide non-radical molecules
such as hydrogen peroxide. In eukaryotic cells, ROS are typically produced aerobically in
mitochondria. Alternatively, ROS can be generated in peroxisomes via ß-oxidation of fatty
acids and in the endoplasmic reticulum via protein oxidation (Figure 1).
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Figure 1. Main sources of reactive oxygen species (ROS) in cells. ROS are primarily generated by
electron leaks from mitochondrial complexes I–III (CI–CIII) and ROS-producing enzymes: NADPH
oxidases, cyclooxygenases, and lipoxygenases that catalyze the oxygenation of polyunsaturated fatty
acids (PUFA). Additionally, protein oxidation on the endoplasmic reticulum (ER) and ER-related
stress add to the ROS pool.

Growing evidence suggests that ROS (usually considered a metabolic waste) could
serve as regulators of essential signaling and metabolic pathways. Continuous ROS produc-
tion helps maintain control of cell proliferation and differentiation. Antioxidant enzymes
closely regulate ROS production based on a scavenging system that is crucial for protecting
eukaryotic cells from oxidative damage and other pathological processes including tu-
morigenesis [1–3]. Although cancer cells thrive on slightly higher levels of ROS compared
to normal cells [3–6], cancer cells are more sensitive to external stimuli, which leads to
significant redox adaptation and cell death induction [5,7]. Currently, anticancer therapy
agents used to induce levels of ROS have been introduced in pancreatic, breast, colon,
rectal, bladder, lung, and prostate cancers as well as melanoma, glioblastoma, and lym-
phoma (reviewed in [8]). From this perspective, we will focus on ROS production in
pheochromocytoma (PHEO) and paraganglioma (PGL) and explore potential opportunities
to therapeutically target ROS production in these rare tumors.

2. ROS in PHEO and PGL

PHEO and PGL are rare neuroendocrine neoplasms derived from chromaffin cells [9].
These tumors have a strong genetic disposition including variants in many Krebs cy-
cle enzymes such as succinate dehydrogenase (SDH), fumarate hydratase, and malate
dehydrogenase, which affect energy homeostasis and hypoxia signaling in cells [9,10].
Such defects in the Krebs cycle can result in accumulation of succinate and fumarate, which
contribute to cancer development [11]. SDH mutations are found in approximately 17–28%
of PHEO/PGL cases [12–18]. In particular, SDH subunit B (SDHB)-mutated PHEO/PGL is
associated with a more aggressive tumor behavior and higher rates of metastatic disease
when compared to all other PHEO/PGL cases (reviewed in [19]). These mutations alter the
function of mitochondrial complex II and result in succinate accumulation, thus directly
modifying oxidative phosphorylation and increasing ROS production in the SDHx-mutated
tumor [20]. Currently, treatments for metastatic SDHB-related PHEO/PGL are palliative
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with very limited clinical benefit. There is an urgent need for more transformative ther-
apies in order to improve disease outcomes in patients with SDHB-related PHEO/PGL.
Recently, Moog et al. suggested angiogenesis, pseudohypoxia, epigenetics, metabolic
reprogramming, and redox imbalance as therapeutic target options for the treatment of
SDH-deficient PGLs [21].

Mitochondrial complex II significantly contributes to ROS production directly and
indirectly via reverse electron transfer in CI [20,22–25], suggesting that this pathway
could be used as a potential target in tumors with compromised SDH (Figure 2). Indeed,
pharmacologic inhibition of SDHB in rat PHEO cells (PC12 cells) led to increased ROS
production [26], which is consistent with findings from transgenic mouse cell line (NIH3T3
cells) with SDHC mutations [27] and Chinese hamster models of fibroblasts expressing
truncated SDHC protein [28]. These findings resulted in the discovery of mitochondrial
complex II as a target for cancer therapy [29,30]. Additionally, SDHD-mutated cDNA
introduced into Chinese hamster fibroblasts resulted in increases of superoxide production
with subsequent increases in mutation frequency and rate. This demonstrates the role of
SDH-produced ROS in genomic instability within mammalian cells [31]. Furthermore,
Guzy et al. found that SDHB inhibition (Hep3B human hepatoma cells, A549 human
alveolar epithelium-derived tumor cells, and 143B human osteosarcoma cells) led to the
accumulation of ROS [32], which was later confirmed by SDHB silencing in rat PHEO cells
(PC12 cells) [33], mouse PHEO cells (MPC cells) [34,35], immortalized mouse chromaffin
cells [36], and human hPheo1 cells [34,35]. Moreover, an increase in mitochondrial ROS
production was observed in our model of the SDHB knock-out in human PHEO cell line
(hPheo1, unpublished data).

Figure 2. ROS production from SDH under physiological and pathophysiological conditions.
The SDHA subunit covalently binds flavin adenine dinucleotide (FAD), which removes electrons
from succinate to form fumarate. SDHB then transfers electrons via three iron–sulfur (FeS) clusters to
the ubiquinone molecule (Q) located in the ubiquinone-binding site, formed by the SDHB, SDHC,
and SDHD subunit. Ubiquinone is further reduced to ubiquinol, fueling CIII and CIV (dashed arrow).
(A) At high succinate concentrations (≥5 mM), succinate-derived electrons reduce the ubiquinone
pool and electrons are forced backward to CI in a process called reverse electron transfer (RET),
which leads to indirect ROS production. (B) At physiological succinate concentrations, ROS can be
produced directly. FAD is reduced to FADH2, which then reacts with oxygen within an unoccupied
binding site to form ROS. (C) In cases of SDHB mutation, incorrect assembly of SDH can result in
ROS production directly from reactions between oxygen and FADH2 or exposed FeS clusters.

3. Targeting of ROS Production in PHEO and PGL

Recently, several studies have uncovered ways to suppress PHEO/PGL cell growth
by ROS manipulation. Inhibition of pyruvate dehydrogenase kinase, either alone or in
combination with an inhibitor of mitochondrial complex I (CI) metformin, resulted in
oxidative metabolism promotion and intracellular ROS accumulation in immortalized head
and neck PGL cell cultures from two patients carrying the SDHC and SDHD mutations [37].
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This treatment promoted cell cycle arrest and apoptosis, which are the processes previously
associated with ROS accumulation [37]. The increase in oxidative stress was confirmed in
SDHB-silenced PHEO mouse models (MPC cells) and resulted in an increased demand for
antioxidative defense [35]. In this study, the authors targeted glutathione (GSH) de novo
synthesis with a nuclear factor erythroid-2 related factor 2 (NRF2) inhibitor. The targeted
disruption of ROS homeostasis with the NRF2 inhibitor, brusatol, suppressed the growth
of metastatic lesions from SDHB-silenced mouse PHEO cells (MPC) in vivo and prolonged
overall survival of mice [35]. In addition to the significant ROS production, SDHB-silenced
tumor cell lines (MPC and human pheochromocytoma precursor cells; hPheo1) accumu-
late iron, whereby treatment with ascorbic acid disrupts redox hemostasis, leading to
ROS overload. This ultimately results in cell death in vitro and delays tumor growth
in vivo [34]. Recently, dysregulation of iron homeostasis and ascorbate-induced accumu-
lation of ROS resulting in cell death has been observed in SDHB-mutated immortalized
chromaffin cells [36].

Interestingly, Pang et al. found that SDHB-mutated PHEO/PGL tumor tissue and
SDHBKD PHEO cell culture (mouse metastatic tumor tissue; MTT) had increased mitochon-
drial complex I activity, which catalyzes the first step of the electron transport chain and
oxidizes NADH to NAD+ [38]. NAD+ activates poly (ADP-ribose) polymerase (PARP),
which stimulates DNA repair mechanisms and protects against DNA damage-associated
cell death [39]. Inhibition and depletion of PARP activity leads to DNA damage and ROS
induction [40]. Indeed, in SDHB-silenced PHEO models (MTT cells), PARP inhibition
with olaparib in combination with a chemotherapeutic agent effectively reduced tumor
proliferation, metastasis, and aggressive phenotypes in vivo [38]. These studies suggest
that both increasing ROS accumulation to override the tolerated ROS pool and/or targeting
the protective antioxidant mechanisms can suppress PHEO/PGL progression.

4. Future Directions

Elevated levels of ROS are common hallmarks of cancer progression and resistance
to treatment [41,42]. High ROS burden in SDHB deficient solid tumors offers a promising
target for treatment. Although there are several pathways that activate ROS production,
at the present time, there is little evidence to prove its effectiveness as an antiprolifera-
tive approach in SDHB-silenced PHEOs/PGLs in vitro and in animal models [34,35,37].
The benefits of high-dose ascorbic acid treatment in SDHBKD models resulting in the Fenton
reaction (due to iron accumulation and consequent ROS production [34]) is a potential way
to disrupt redox imbalance. For example, doxorubicin can induce iron-mediated increases
in ROS [43], and this drug was previously found to limit in vitro growth of MTT cells
that are considered to be a more aggressive model [44]. Fliedner et al. suggested that
this may be linked to increased ROS production if compared to MPC cells [45]. However,
the authors focused on the hypoxia signaling pathway rather than ROS production in
the doxorubicin study [46], and thus the effectiveness of the drug in SDHx-models has
yet to be verified. Other iron-dependent ROS generators such as dihydroartemisinin,
erastin, and sulfasalazine [47], and/or the combination of these drugs with a high-dose
ascorbic acid treatment, could potentially serve as a future iron/ROS-targeted strategy for
SDHx-mutated tumors (Figure 3).
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Figure 3. Targeting different mechanisms to induce and enhance ROS production in PHEO/PGL. ROS are generated by
mitochondrial complex CI–CIII dysfunction, which may be further supported by CI, CII, and CIII inhibitors. Similarly,
decreasing the membrane potential can lead to ROS accumulation. CII-related ROS production can be enhanced by
increasing the iron pool and consequently increasing ROS production under ascorbate (AA) treatment. Downregulating
glutathione (GSH) synthesis can decrease antioxidant protection with other antioxidative enzyme inhibitors including
peroxidases (PRx), superoxide dismutase (SOD), and glutathione peroxidase (GPx).

Tyrosine kinase inhibitors (TKIs) have been extensively studied for their antitumoral
properties. TKIs target functions of different cellular compartments and signaling pathways.
Certain TKIs induce mitochondrial dysfunction (i.e., uncoupling components of the electron
transport chain), resulting in a drop in mitochondrial membrane potential and increased
ROS production [48–52]. Treatment with certain TKIs such as imatinib or erlotinib was
not effective in PHEO/PGL [53]. However, the insignificant findings of this study may
be partially explained by the limited number of PHEO/PGL cases and lack of cases
with SDHB mutations associated with ROS-mediated anticancer effects as well as by the
specificity of certain TKIs. Indeed, treatment with a different inhibitor, sunitinib, led to a
reduction in tumor size, stabilization of disease, and improvement in hypertension among
SDHB-mutated PHEO/PGL patients [54], warranting further evaluation of this compound.
While mitochondrial complexes I and III are relevant producers of ROS themselves [3],
targeted disruption of oxidative phosphorylation was shown to increase ROS levels in
several cancer models [55–61]. Targeting CI with metformin in rat PHEO cells (PC12 cells)
revealed the antiproliferative potential of this drug [62,63] in vitro, however, these results
have yet to be confirmed in vivo. Similarly, Florio et al. showed that metformin treatment
promoted oxidative metabolism and decreased proliferation in cells isolated from SDHC-
and SDHD-mutated patients [37]. Furthermore, rotenone, an inhibitor of CI, induced
rat PHEO cell (PC12 cells) apoptosis by ROS production [64]. Even though these drugs
have not been extensively tested in SDHx-mutated models, further accumulation of ROS
could lead to ROS overload in mutated cells, resulting in cell apoptosis. Other CI and CIII
inhibitors have yet to be tested (Figure 3).

NRF2 was found to be a promising therapeutic target in other neoplasms [65]. Target-
ing NRF2-dependent GSH synthesis was effective in the metastatic model of SDHB-silenced
PHEO/PGL [35], thus, more strategies to prevent the overall production and/or availabil-
ity of GSH in tumor cells may be beneficial in future PHEO/PGL therapies. Buthionine
sulfoximine, an inhibitor of the enzyme glutamate cysteine ligase (required for GSH syn-



Cancers 2021, 13, 3769 6 of 9

thesis), depletes GSH, and exhibits anticancer activity [6]. When considering the benefits
of GSH synthesis disruption in SDHBKD cells, we hypothesize that targeting other antiox-
idant pathways could be a potential strategy to expose cells to endogenously produced
ROS. For example, it has been shown that MTT cells, more aggressive mouse PHEO
cells derived from MPC cells, produce higher amounts of ROS when compared to MPC
cells. This is accompanied by an increase in superoxide dismutase 1 [45] and such an
increase in antioxidant protection can thus be hypothesized as a consequence of ROS accu-
mulation in SDHx-mutated PHEO/PGL models. Similarly, SDHB-mutated PHEO/PGL
showed increased expression of superoxide dismutase 2 when compared to VHL-mutated
PHEO/PGL [45], which may play a role in the malignancy rates of patients with these mu-
tations [66]. Thus, enzyme inhibitors may enable overproduction of ROS with consequent
tumor cell death (Figure 3).

5. Conclusions

In conclusion, patients with SDHB-mutated PHEO/PGL have a higher likelihood
of metastatic disease with limited therapeutic options and poor prognosis. Data regard-
ing anticancer ROS-related drugs as potential therapeutic candidates for SDHB-mutated
PHEO/PGL are still very limited. More studies are needed to evaluate the effectiveness
and safety of these drugs in PHEO/PGL patients. Given the accumulation of promising
evidence, ROS targeting may become an effective anticancer therapy in PHEO/PGL as
well as other tumor types in the near future.
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