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Abstract

Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical
discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require
innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data
analytics context, the value of network generation and algorithms has been widely underscored for addressing the
salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks
where identification of network modularity remains critical, for example, in delineating the ‘‘druggable’’ mo-
lecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the
performance of different network-generating tools for network cluster (NC) identification has been little inves-
tigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for
generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better
agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to
GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and bio-
markers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery,
and rational development of new analysis tools for optimal harnessing of omics data.
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Introduction

Transcriptome analysis is broadly advocated for
biomarker discovery, personalized medicine, and func-

tional understanding of complex biological systems in health
and disease states such as cancer (Karagoz et al., 2015;
Mirsafian et al., 2016; Waldron and Riester, 2016). However,
such analysis often faces considerable complexity, due to
interdependencies between gene entries.

Networks from transcriptome datasets reveal regulatory
relationships among biological entities, providing a systems
scale understanding of molecular mechanisms (Barabasi and
Oltvai, 2004). The importance of network generation has been
widely accepted for addressing biological questions, including
those in cancer pathogenesis (Aytes et al., 2014), and distinct

algorithms have also been introduced to study networks.
Broadly, there are two types of algorithms: signaling pathway
networks (SPNs) and gene regulatory networks (GRNs). While
many comparisons between GRN-generating algorithms have
been performed, such comparisons between SPNs and GRNs,
in terms of network clusters (NCs), have been little evaluated.

Network clustering provides clues for capturing important
regions within complex network topologies, in terms of densely
connected regions (i.e., ‘‘clusters’’) (Morris et al., 2011). To
obtain such clusters from high-throughput ‘‘omics’’ data, dif-
ferent frameworks can be used. While the SPN framework
utilizes both prior signaling knowledge and publically available
omics data, GRN uses only omics data, without prior infor-
mation. Further transformation of networks (from these two
frameworks) into clusters has not yet been attempted, in terms
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of which approach provides more informative NCs having
cancer-related functional contexts.

Knowledge of intracellular oncogenic signal transduction
reveals potential ‘‘druggable’’ molecular targets ( Jia et al.,
2009). Consequently, targeted cancer therapy requires a priori
understanding of the molecular mechanisms involved in tumor
pathogenesis (Barabasi and Oltvai, 2004; Berger and Iyengar,
2009; Jia et al., 2009). Since a network derived from high-
throughput (‘‘omics’’) technologies involves a highly complex
set of molecular mechanisms (Barabasi and Oltvai, 2004), it is
not computationally feasible to incorporate all the signaling
data from a particular network, for determining potential
therapeutic strategies. Thus, these data must be ‘‘narrowed
down’’ into subsets of molecular mechanisms, represented as
NCs. As expected, this filtering process assumes that densely
connected regions, or NCs, converge at functional ‘‘hubs’’ that
may subsequently align with potential carcinogenic molecular
mechanisms (Nam et al., 2012), for the potential discovery of
effective ‘‘targeted’’ therapeutics (Barabasi and Oltvai, 2004;
Berger and Iyengar, 2009; Goymer, 2008).

However, despite these promising approaches, it has yet to
be demonstrated whether SPN or GRN methods yield more
reliable NCs (in terms of cancer-functional contexts) (Morris
et al., 2011). In this study, we compared our previously de-
veloped algorithm, PATHOME ( pathway and transcriptome
information) (Nam et al., 2014), as an SPN method, with
ARACNE (Algorithm for the Reconstruction of Accurate
Cellular Networks) (Margolin et al., 2006), as a GRN
method, in terms of agreement between NCs with a reference
set (Futreal et al., 2004) of cancer-related functional contexts.
The results of this comparison indicated that NCs of PA-
THOME, compared to those of ARACNE, better aligned with
the reference set of cancer-functional contexts. We specifically
used gastric cancer (GC), the fourth most worldwide common
cancer type (Chang et al., 2016), as an example disease having
few effective targeted therapies, due to limited understanding
of its underlying biological bases (in terms of delineating net-
work biology and clusters).

In sum, we applied PATHOME, and a network-clustering
algorithm (Morris et al., 2011), to derive GC network-
derived clusters (and potentially important therapeutic tar-
gets), in addition to improved mechanistic understanding of
GC etiology. Also, the new observations reported in this
study collectively inform future research on cancer tran-
scriptomics, drug discovery, and rational development of
new analysis tools for optimal harnessing of omics data.

Materials and Methods

Transcriptomic datasets

For comparing NCs, we obtained 3 GC RNA-Seq and mi-
croarray transcriptomic datasets, GEO (www.ncbi.nlm.nih.gov/

geo) accessions GSE37023 (Wu et al., 2013), consisting of
112 GC tumors and 39 normal tissues; GSE36968 (Kim et al.,
2012), containing 24 GC tumors and 6 noncancerous speci-
mens; and GSE27342 (Cui et al., 2011), comprising 80 GC tumor
samples and paired normal tissues (Table 1). These three data-
sets were used for constructing networks, as described below.

Construction of PATHOME and ARACNE networks

We first used ‘‘PATHOME’’ (Nam et al., 2014) to generate
SPNs (henceforth, ‘‘PATHOME networks’’) from analyzing
the three transcriptomic datasets, using the default option
( p < 0.05). Obtaining genes retained in the PATHOME net-
work, for each dataset, we applied ARACNE (Margolin
et al., 2006) to the matrix of expressed genes, to generate
GRNs (henceforth, ‘‘ARACNE networks’’) having different
connections between the genes. In application of ARACNE,
we used its default options.

PATHOME-derived NCs versus
ARACNE-derived NCs

For each dataset, NCs, from PATHOME and ARACNE
networks, were identified using the Markov Clustering al-
gorithm (MCL), implemented in clusterMaker (Morris et al.,
2011). Using the NCs obtained by the two approaches, we
performed two comparisons: first, whether the PATHOME or
ARACNE networks contained more NCs; and second, we
compared whether NCs derived from PATHOME networks
(henceforth, ‘‘PATHOME-NCs’’) or NCs derived from
ARACNE networks (henceforth, ‘‘ARACNE-NCs’’) con-
tained more cancer-related functional contexts, represented
matches to a set of Gene Ontology (GO) terms.

In the first comparison, since NCs represent functional
‘‘hubs’’ (i.e., convergence points for multiple pathways)
(Barabasi and Oltvai, 2004; Berger and Iyengar, 2009;
Goymer, 2008), the number of NCs included in any specific
network is important. In the first comparison, we compared
the number of PATHOME- and ARACNE-NCs (defined
above), for all three transcriptome datasets. We further ex-
amined the obtained number of NCs, according to the total
number of NC entries, using the two approaches.

For the second comparison, we set up a reference set of
cancer-functional contexts associated with specific GO
terms. By inputting the gene list (Futreal et al., 2004) of the
cancer Gene Census repository (cancer.sanger.ac.uk/cosmic/
census) into DAVID v6.7 (Huang et al., 2007) (under a sig-
nificance cutoff as default EASE (Huang et al., 2007) score
threshold of 0.1), we obtained 973 GO terms significantly
associated with the gene list. The 973 GO terms (henceforth,
reference GOs) were set as the reference set of cancer-related
functional contexts, including various cancer ‘‘hallmark’’
(Hanahan and Weinberg, 2011).

Table 1. Three Public Gastric Cancer Datasets in the Study

GEO accession Description Experiment References

GSE37023 Gastric tumors vs. nonneoplastic gastric mucosa Microarrays Wu et al. (2013)
GSE36968 Gastric tumor samples vs. noncancerous gastric tissue samples RNA-SEQ Kim et al. (2012)
GSE27342 Paired tumor and adjacent nonneoplastic tissues from GC patients Microarrays Cui et al. (2011)

We used the three GC transcriptome datasets for comparing network cluster identifications and describing GC network clusters.
GC, gastric cancer.
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To obtain significant reference GO terms associated with the
PATHOME-NCs of a dataset, we only considered NCs having
more than four genes. Collecting all the genes from such NCs, we
fed the genes into DAVID (under a significance cutoff as default
EASE (Huang et al., 2007), score threshold of 0.1), acquiring the
number of significant GO terms. We used the default back-
ground, provided by DAVID, for the GO assessment.

We then assessed intersections between the significant GO
terms of the PATHOME-NCs and the reference GOs, obtaining
the number of cancer-functional contexts in PATHOME-NCs.
The intersections correspond to the number of detected ref-
erence GOs. The same procedure was then repeated for
obtaining and examining the number of cancer-functional
contexts in ARACNE-NCs. Then, we compared the number
of detected reference GOs between ARACNE-NCs and
PATHOME-NCs, as reference cancer-related functional
contexts.

Results

Topological difference between PATHOME-
and ARACNE-derived networks

A schematic of our approach, using the PATHOME and
ARACNE algorithms (Morris et al., 2011), is shown in
Figure 1. Briefly, our objective was to compare how the two
different network construction methods affected the identi-
fication of NCs (Fig. 1), based on each method’s topologies.
After network construction, we applied a Markov Clustering
algorithm (MCL) (Morris et al., 2011) for identifying clus-
ters (Fig. 1). We then inspected which method better reported
a reference set of cancer-functional contexts (Fig. 1).

First, we characterized the network topological parameters
[clustering coefficient, network centralization, network den-
sity, network diameter, network heterogeneity, and network
radius; see descriptions in Supplementary Table S1 (Doncheva
et al., 2012)] of the two methods, using the three above-
mentioned datasets (Supplementary Fig. S1 and Supplemen-
tary Table S1) and the Cytoscape Network Analyzer plugin
(Assenov et al., 2008). In terms of network diameter and het-
erogeneity, PATHOME (Nam et al., 2014) networks were
larger than those of ARACNE (Margolin et al., 2006), for the
three datasets (Supplementary Fig. S1 and Supplementary
Table S2). With regard to network radii, ARACNE networks
were larger than PATHOME networks, in the three datasets
(Supplementary Fig. S1), while the clustering coefficients of
PATHOME networks and ARACNE networks were nearly
identical in two of the datasets [GSE27342 (Cui et al., 2011)
and GSE36968 (Kim et al., 2012; Nam et al., 2014)], but dif-
fered for GSE37023 (Wu et al., 2013) (Supplementary Fig. S1).

Of additional interest, we observed that the GSE27342 and
GSE36968 datasets showed similar patterns of all topological
parameters, while GSE37023 (Wu et al., 2013) showed op-
posite patterns for clustering coefficient and network cen-
tralization (Supplementary Fig. S1), implying a different data
context for the dataset GSE37023 compared to the other two
datasets.

Comparison between PATHOME-
and ARACNE-derived NCs

We next characterized the PATHOME- and ARACNE-
NCs. Since topologically densely connected regions are often
regarded biologically critical cascades (Goymer, 2008;

FIG. 1. Overview of the study design and comparisons between PATHOME-NCs and ARACNE-NCs in analysis of three
GC transcriptome datasets. Network clustering results depend on network generation methods. In this study, we compared
the performance of two differently generated NCs, (PATHOME-NCs and ARACNE-NCs), using the algorithm MCL
(Morris et al., 2011). Using GC datasets as examples, we measured whether PATHOME-NCs or ARACNE-NCs detected
more cancer-related functional contexts, in terms of cancer-associated GO terms (equivalently, reference GOs). GC, gastric
cancer; MCL, Markov Clustering algorithm; GO, Gene Ontology; NC, network cluster.
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Morris et al., 2011), strongly associated with modes of dis-
ease mechanisms, acquisition of more NCs from a network is
a meaningful comparison for the identification of candidate
therapeutic targets (Berger and Iyengar, 2009). In our study,
densely connected regions (in networks) refer to NCs iden-
tified by the network-clustering algorithm, MCL (Morris
et al., 2011). Consequently, using MCL (Morris et al., 2011),
we extracted densely connected regions from networks, ob-
taining more PATHOME-NCs than ARACNE-NCs, from the
three real biological datasets: specifically, 81 versus 3, for
GSE36968 (Kim et al., 2012; Nam et al., 2014); 81 versus 46,
for GSE27342 (Cui et al., 2011); and 88 versus 57, for
GSE37023 (Wu et al., 2013) for PATHOME- and ARACNE-
NCs, respectively (Supplementary Table S3).

Therefore, PATHOME-NCs may reveal higher levels of
pathway signaling associated with potential therapeutic tar-
geting options, when compared to ARACNE. Also, further
dissecting the number of NCs, according to the number of NC
entries, PATHOME-NCs reported more NCs with entries
(or nodes) greater than or equal to 5, when compared to
ARACNE-NCs (Fig. 2A). This indicates that PATHOME-
NCs report NCs in a collective, but not fragmented, manner.

Comparing PATHOME- and ARACNE-derived
cancer-associated NCs

In addition to the previously described analyses, to identify
whether PATHOME- or ARACNE-NCs detected more
cancer-related functional contexts, we set reference GO
terms significantly associated with the cancer Gene Census
(Futreal et al., 2004) as the reference set of cancer-functional
contexts (reference GOs; see Materials and Methods section
in detail).

In the dataset GSE27342, PATHOME-NCs reported 1098
statistically significant GO terms, with 603 (Fig. 2B) over-
lapping with cancer reference GOs. In the same dataset,
ARACNE-NCs reported five significant GO terms, two
(Fig. 2B) of which matched the reference GOs. In dataset
GSE37023, by contrast, PATHOME-NCs reported 612 sig-
nificant GO terms, 404 of which overlapped reference GOs,
while ARACNE-NCs reported 451 significant GO terms,
with 292 overlapping the reference GOs (Fig. 2B). In dataset
GSE36968, ARACNE-NCs, having at least five nodes, were
not found, resulting in no GO terms; whereas PATHOME-
NCs having at least five nodes reported 1063 significant GO

FIG. 2. Comparisons between PATHOME-NCs and ARACNE-NCs in three GC transcriptome datasets. (A) x-axis
represents the number of entries in specific NCs, while the y-axis represents the number of NCs. For example, in the
GSE37023 dataset, the number of PATHOME-NCs, having five or more gene entries, was 23 (indicated by the black line).
As a whole, PATHOME-NCs had more NCs having cluster entries ‡5, compared to ARACNE-NCs, as derived from the
three datasets. These results indicate that PATHOME networks were fragmented into larger gene entry sizes of NCs,
compared to ARACNE networks, when the same MCL was applied. (B) In the three GC datasets, the graph represents
whether PATHOME-NCs or ARACNE-NCs detected (or contained) more reference cancer-functional GO terms (y-axis).
For example, in GSE37023, PATHOME-NCs detected 404 reference cancer-functional GO terms, and ARACNE-NCs
detected 292 reference GO terms.
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terms, with 620 of these overlapping the reference GOs
(Fig. 2B). Thus, PATHOME-NCs better matched the cancer-
functional contexts, compared to ARACNE-NCs, throughout
the comparisons, using the three independent datasets. We
confirmed that PATHOME network clustering showed better
cancer network identification performance compared to
ARACNE. We describe several PATHOME-NCs from the
three datasets in the Discussion section.

Discussion

There is a growing need for innovation in data analysis
algorithms and bioinformatics in the context of cancer tran-
scriptomics. As shown in the Supplementary Figure S1, to-
pology parameter differences between PATHOME and
ARACNE networks indicate different connectivity patterns.
In particular, network diameters (the longest distance be-
tween any two nodes) of PATHOME network were consis-
tently longer than those of ARACNE network. This may
partly be due to PATHOME’s consideration of paths con-
sisting of consecutive edges of more than two nodes (Nam
et al., 2014), while ARACNE only considers single edges
(without regard to consecutive single edges).

GC, with a worldwide incidence of 952,000 cases and
723,000 deaths (Torre et al., 2015), currently has few non-
surgical therapeutic options (Bang et al., 2010). Toward
improving these dire statistics, acquisition of GC-related NCs
(as we performed in this study) could facilitate the identifi-
cation of druggable signaling cascades/networks (Fig. 3).

The NC A was the largest NC ascertained from GSE36968
(transcriptome dataset of Asian GC tumors vs. noncancerous
tissues), implicating multiple STAT proteins and JAK family
kinases related to immune response and hematopoiesis (Ubel
et al., 2013). In this specific cluster, the JAK family kinase
genes TYK2 and JAK2 (among others) were upregulated
in GC, compared to normal, tissues. Upregulation of JAK
members has been well reported in breast, prostate, and
cervical cancers, playing diverse roles in differentiation and
cancer cell proliferation and survival (Rane and Reddy,
2000). Moreover, it was recently reported that JAK/STAT
pathways upregulate programmed death receptor ligand 1
(PD-L1) in cancer cells, an event that leads to evasion of T
cell-mediated antitumor immune responses (Ohaegbulam
et al., 2015; Ritprajak and Azuma, 2015). Thus, this cluster
suggests the feasibility of immunotherapy in GC as a new
therapeutic option, considering that GC has very limited ef-
fective targeted therapies (Bang et al., 2010).

In addition to NC A, NC B (as derived from GSE36968;
Fig. 3) showed upregulation of the proto-oncogenes KDR,
FLT1, EGFR, and MET in GC tumors, compared to normal
gastric tissues. Of these, KDR and FLT1 are both receptors
for VEGFA, the predominant mediator of angiogenesis in
tumor progression (Ferrara and Adamis, 2016; Slattery et al.,
2014). Thus, this finding links GC to VEGF signaling, a
common therapeutic target, in numerous other advanced
cancer types, over the last decade (Ferrara and Adamis, 2016;
Goel and Mercurio, 2013).

Moreover, tumor-synthesized VEGF is an important im-
munosuppressive cytokine for eluding immunosurveillant
cells (e.g., NK cells, T cells, and so on) (Dunn et al., 2006;
Matsueda and Graham, 2014; Nam and Park, 2012), and
MET and EGFR are also strong therapeutic target candidates

in numerous cancers, including those of the lung and color-
ectum (Cataisson et al., 2016; Gou et al., 2016; Misale et al.,
2014; Pietrantonio et al., 2016; Shida et al., 2004; Takahashi
et al., 2016). In metastatic colorectal cancer, amplification
and overexpression of MET is a key contributing factor
to resistance to anti-EGFR therapies (Misale et al., 2014;
Takahashi et al., 2016). Furthermore, dual inhibition of MET
and EGFR by ‘‘biseptic’’ antibodies, or combined inhibitors,
demonstrated effective inhibition of tumor growth in vitro
and in vivo (Castoldi et al., 2013; Lee et al., 2016a; Xu et al.,
2011), in accord with our findings in GC cluster B. Recently,
another dual inhibition of MET and EGFR in GC cells has
emerged, based on inhibition of sphingosine 1-phosphate
(S1P), a G protein-coupled receptor ligand (Shida et al.,
2004).

Clusters C and D (Fig. 3), from the GSE36968 tran-
scriptome dataset, contained both upregulated upstream and
downstream WNT pathway effector genes, including WNT5A,
TCF7L2, and LEF1, in accord with our previous studies
(Chang et al., 2016; Nam et al., 2014). In addition, it has been
found that WNT5A is an emerging druggable GC signal me-
diator, through transcriptional regulation by HNF4a (Chang
et al., 2016; Nam et al., 2014), while another study (Chang
et al., 2016) indicated poor prognosis of WNT5A high-
expressing patients, in particular, in Lauren-classified diffuse-
type GC patients. That study (Chang et al., 2016) further
demonstrated WNT5A-mediated signal inhibition, through
HNF4a antagonism by various ‘‘rationally designed’’ small
compounds. That finding agrees with our results in this study,
showing clusters C and D to associate with druggable GC
signaling, as well as showing promising utility as biomarkers.

MCL analysis of PATHOME-delineated networks from
GC tumor versus paired adjacent normal tissue tran-
scriptomes (GEO: GSE27342) resulted in the identification
of 35 NCs. The largest cluster (cluster F in Fig. 3) showed
upregulation of multiple kinase genes (Fleuren et al., 2016),
including PRKCI, INSR, RPS6KA1, CDK4, and MAPK1
(encoding the mitogen ERK2). These five gene products as-
sociate with the receptor tyrosine kinase pathways PI3K-
mTOR and MAPK, mediating the cell cycle and numerous
core cellular processes and pathways (Fleuren et al., 2016).

Moreover, since ‘‘omics’’ profiling of kinases revealed
context-specific functions, according to cancer tissue types
(Fleuren et al., 2016), cluster F may associate with specific
GC tumor-oriented kinome characteristics. Also, inhibitors
of kinases found upregulated in this cluster could be re-
purposed, from other cancers, to GC. For example, the signal
transducers, RPS6KA1 and MAPK1, found in cluster F, also
associate with other cancer tissue types (Kyriakis and Av-
ruch, 2001; Lara et al., 2011; Salhi et al., 2015; Zhao et al.,
1995). Of these, ERK2 (encoded by the gene MAPK1) was
reported to increase the activity and phosphorylation of the
oncoprotein RPS6KA1 (ribosomal protein S6 kinase, 90 kDa,
polypeptide A1), leading to cancer cell proliferation (Kyr-
iakis and Avruch, 2001; Zhao et al., 1995). RPS6KA1 has
also been recognized as a therapeutic target in lung cancer
(Lara et al., 2011) and nodular type melanoma (Salhi et al.,
2015).

NCs E and G (Fig. 3), derived from the GSE27342 dataset
(GC tumors vs. adjacent normal tissues), revealed involve-
ment of the mitogenic Syk/Lyn and JAK/STAT pathways,
respectively. Specifically, the spleen tyrosine kinase (SYK,
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in cluster E), expressed in majority of hematopoietic cells,
has been recognized as a therapeutic target in autoimmune
diseases such as rheumatoid arthritis (Geahlen, 2014).

In addition, SYK has been recently recognized as a pro-
survival factor in breast cancers, as well as hematopoietic
malignancies (Lee et al., 2016b), representing a strong can-
didate for anticancer therapy (Geahlen, 2014). In fact, fos-
tamatinib, cerdulatinib, and entospletinib, as Syk inhibitors,
are under clinical investigation as single or adjuvant agents,
in certain types of leukemia (Coffey et al., 2014; Sharman

et al., 2015). LAT (Linker For Activation Of T-Cells), in this
same cluster, is a downstream effector of Syk signaling, and
in vitro LAT knockdown decreased proliferation, as well as
migration, of GC cell lines (Wang et al., 2013).

Moreover, cluster E revealed a potentially druggable GC
target, including possible ‘‘repurposing’’ of cerdulatinib, a
dual inhibitor of Syk and JAK/STAT signaling in certain
types of diffuse large B cell lymphoma cell lines (Ma et al.,
2015). This suggests likely GC association with NC G, also
consisting JAK/STAT signaling. Therefore, a synergistic

FIG. 3. Several selected NCs from the GC datasets by PATHOME network-derived network clustering method. NCs A–D
were derived from GSE36968, and NCs E–G were obtained from GSE27342. The red node colors indicate upregulated
genes in GC tumors (compared to normal tissue), while the green node colors represent downregulated genes.
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effect, by downregulation of NCs E and G, should be estab-
lished for developing new GC therapeutic strategies.

We also identified the consensus genes of the PATHOME-
NCs among the three datasets. Restricting to PATHOME-
NCs containing greater than or equal to five genes, we
compared the genes for the PATHOME-NCs between the
three datasets. As a result, we found 153 consensus genes
(Supplementary Fig. S2). Out of the 153 genes (Supple-
mentary Table S4), EGFR, JAK2, JAK3, MAPK1, TYK2, and
WNT5A resided in the aforementioned NCs. Again, those
genes associated with JAK/STAT as well as WNT signaling.

Conclusions

The use of PATHOME-NCs showed better relevance to
cancer, in agreement with a reference set of cancer-functional
contexts, compared to ARACNE-NCs. The JAK/STAT sig-
naling, in GC PATHOME-NCs, has now been revealed in the
pathogenesis of many diverse cancer types, holding promise
for the application of effective targeted GC therapies or per-
sonalized medicine in this devastating type of cancer. Fur-
thermore, rigorous analytical comparisons (Abu-Asab et al.,
2008) and experimental validation are necessary to advance
this line of research on cancer transcriptome data analysis.
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