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Abstract

Raven’s Matrices test (RMT) is a non-verbal test designed to assess individuals’ ability to reason and solve new problems
without relying extensively on declarative knowledge derived from schooling or previous experience. Despite a large
number of behavioral studies that demonstrated gender differences in Raven’s Matrices reasoning ability, no neural
evidence supported this difference. In this study, voxel-based morphometry (VBM) was used in an attempt to uncover the
gender-specific neural basis of Raven’s Matrices reasoning ability as measured by the combined Raven’s Matrices test (CRT)
in 370 healthy young adults. The behavioral results showed no difference between males and females. However, the VBM
results showed that the relationship between reasoning ability and regional gray matter volume (rGMV) differed between
sexes. The association between CRT scores and rGMV in the dorsolateral prefrontal cortex (associated with visuospatial
ability) was significantly greater in males than in females, whereas the reverse was true for the inferior frontal cortex
(relating to verbal reasoning ability) and the medial frontal cortex (engaged in information binding) where the association
was greater in females. These findings suggest that males and females use differently structured brains in different ways to
achieve similar levels of overall Raven’s Matrices reasoning ability.
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Introduction

Raven’s Matrices Test (RMT) is a non-verbal test designed to

assess individuals’ ability to reason and solve new problems

without relying extensively on declarative knowledge derived from

schooling or previous experience [1]. These matrices are

composed of a series of nonverbal pictures, each with a missing

element that completes a pattern. Subjects are asked to identify the

missing element that completes the pattern. Good RMT

performance requires that subjects perceive the relationships

between cells in the matrices, determine the relationships between

the columns and rows of the matrices and then integrate this

information. The linguistically minimized nature of the RMT test

allows for the measurement of reasoning capacity without the

influence of language, education, and cultural factors. Thus, the

RMT is considered one of the best indexes of individual

differences in reasoning ability [2].

Sex differences in Raven’s Matrices reasoning ability are among

the most controversial and interesting topics in this area of study.

The results of studies to date have not allowed researchers to reach

a clear consensus regarding their conclusions. A number of

researchers contest that no gender differences exist in Raven’s

Matrices ability [3–5]. In particular, Lynn et al. (2004) reported

that no statistically significant difference existed between scores

obtained by boys and girls on the Standard Progressive Matrices

test for a sample of nine-hundred and twenty 7–10 year olds in

Mexico. Furthermore, a recent standardization of the Progressive

Matrices in Syria for people aged 7 to 18 years also found no sex

differences [3]. However, some investigations of sex differences in

the Raven’s Matrices test showed a male advantage [6–9]. Lynn

(1998) has analyzed data from England, Hawaii, and Belgium and

found that males outperformed females in the Standard Progres-

sive Matrices Test. This result was repeated in a study using the

Advanced Progressive Matrices [8]. Meanwhile, some other

studies have observed an advantage for females [3,10]. For

example, Khaleefa and Lynn (2008) reported on a large

standardization sample of 6–11 year olds who were tested using

the Colored Progressive Matrices test in the United Arab

Emirates. Girls performed significantly better than boys, but the

difference was only small. In another study, the Standard

Progressive Matrices was standardized on a sample of 6529 8–

15-year olds in Kuwait. The results showed that a small sex

difference favored girls [10].

A large body of functional magnetic resonance imaging (fMRI)

and positron emission tomography (PET) studies have tried to

investigate the neural mechanisms of Raven’s Matrices test [11–
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18]. Some PET studies have noted strong activation in the left

parieto-occipital region during Raven’s test performance [19,20].

Prabhakaran et al. (1997) examined brain activation during

solving the Raven’s Progressive Matrices problems in seven young

healthy participants. Right frontal and bilateral parietal regions of

the brain were activated more by the visuospatial reasoning

required by Raven’s test problems compared with control

problems. Another study independently manipulated relational

complexity and distractor demands in a RMT-like task and

observed that bilateral DLPFC activation, extending into FPC in

the left hemisphere, increased with relational complexity [15].

Generally, results from fMRI and PET studies suggest that

Raven’s Matrices reasoning is associated with activation of a

network of frontal and parietal brain regions, specifically the

dorsolateral prefrontal cortex (DLPFC), the superior parietal

lobule and intraparietal cortices [21].

To the best of our knowledge, no study has explored the gender-

specific neural mechanism of Raven’s Matrices reasoning ability.

Some studies identified two general problem solving strategies that

could be used to solve the items of the Raven’s Matrices. One is

the visual strategy, which involves applying operations of visual

perception, such as the superimposition of images upon each

other. The other is the verbal strategy, which consists of applying

logical operations to features contained within the problem

elements [22,23]. Previous studies have already demonstrated

that males and females may use different approaches to solve

Raven’s Matrices spatial problems [24,25]. It is well known that

different brain regions underpin visual and verbal abilities [26–

35]. If males and females use different strategies to solve Raven’s

reasoning problems, it is reasonable to hypothesize that there will

be gender-specific neural correlates of Raven’s Matrices reasoning

ability [36]. Because functional imaging can only measure active

processing which is constrained by the task, it can’t identify the

neural substrates of sex-specific abilities. Structural imaging studies

are particularly useful for investigating the anatomical correlates of

personal characteristics involving a wide range of behaviors [37].

In this study, voxel-based morphometry (VBM) was used to

explore the gender-specific neural correlates of Raven’s Matrices

reasoning ability. Haier et al. [38] used the Wechsler Adult

Intelligence Scale (WAIS) to examine sex differences related to

general intelligence. The results showed that the correlation

between gray matter volume and general intelligence was stronger

in the frontal and parietal lobes for males, whereas a stronger

correlation was found in the frontal lobe along with Broca’s area

for females. It is well known that RMT has been widely accepted

as measurement of general intelligence [2,39–42]. Based on the

previous researches, we hypothesized that males with higher

reasoning scores may have an increased regional gray matter

volume (rGMV) in the parietal or frontal regions associated with

visuospatial ability, whereas females with higher reasoning scores

may have a larger rGMV in the inferior frontal regions associated

with verbal-related abilities.

Materials and Methods

Ethics Statement
The experiment was approved by the Academic Committee of

the School of Psychology and the Brain Imaging Center

Institutional Review Board of Southwest University in China.

All participants signed an informed consent form prior to their

inclusion in the study.

Participants
A total of 384 right-handed, healthy volunteers (194 females;

mean age: 19.8261.31; and 190 males; mean age: 20.2261.37)

from the Southwest University in China participated in this study,

as part of our ongoing project to examine the association among

brain imaging, creativity, and mental health. All participants were

native Chinese speakers, and had normal or corrected-to-normal

vision. Participants were screened to confirm healthy development

by a self-report questionnaire survey before the scanning, and thus,

those participants who had a history of psychiatric or neurological

disorders, received mental health treatment or taken psychiatric

medications were excluded. Among the participants, nine were

excluded because they did not take part in the behavioral portion

of the study. Another five participants were removed because of

excessive head motions. Therefore, 370 participants (190 females,

180 males) were included in the VBM analyses.

Behavioral Examination
Raven’s reasoning matrices are available in three different forms

for different aged participants: the Standard Progressive Matrices,

the Colored Progressive Matrices and the Advanced Progressive

Matrices [43]. In this study, we chose to use the Chinese version of

the RMT, the combined Raven’s matrices test (CRT) [44–46].

Participants had up to 40 minutes to finish this test. The CRT

consists of the Raven’s standard progressive Matrices (C, D and E

sets) and Raven’s colored progressive Matrices (A, B and AB sets).

Given that the Colored Progressive Matrices were designed for

children aged 5 to 11 years old, some researchers combined the

colored and standard Matrices to make the test generalizable to

more people. The CRT can be applied to people aged 5 to 75.

Image Acquisition
MR images were acquired on a 3.0-T Siemens Trio MRI

scanner (Siemens Medical, Erlangen, Germany). High-resolution

T1-weighted anatomical images were acquired using a magneti-

zation-prepared rapid gradient echo sequence [repetition time

(TR) = 1900 ms; echo time (TE) = 2.52 ms; inversion time

(TI) = 900 ms; flip angle = 9 degrees; resolution ma-

trix = 2566256; slices = 176; thickness = 1.0 mm; voxel si-

ze = 16161 mm].

Preprocessing of Structural Data
The MR images were processed using SPM8 (Wellcome

Department of Cognitive Neurology, London, UK; www.fil.ion.

ucl.ac.uk/spm/) implemented in Matlab 7.8 (MathWorks Inc.,

Natick, MA, USA). Each MR image was first displayed in SPM8

to screen for artifacts or gross anatomical abnormalities. For better

registration, the reorientation of the images was manually set to

the anterior commissure. The images were segmented into gray

matter (GM), white matter (WM), and cerebrospinal fluid by using

the new segmentation in SPM8. Subsequently, we performed

Diffeomorphic Anatomical Registration through Exponentiated

Lie (DARTEL) algebra in SPM8 for registration, normalization,

and modulation [47]. To ensure that regional differences in the

absolute amount of GM were conserved, the image intensity of

each voxel was modulated by the Jacobian determinants. Then,

registered images were transformed to Montreal Neurological

Institute (MNI) space. Finally, the normalized modulated images

(GM and WM images) were smoothed with a 10 mm full-width at

half-maximum Gaussian kernel to increase signal-to-noise ratio.

Sex Difference in General Intelligence
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Statistical Analysis
Statistical analyses of GMV data were performed using SPM8.

This study aimed to investigate whether the relationship between

rGMV and Raven’s reasoning scores differed between males and

females. Sex differences were tested using the condition by

covariate interaction analysis [37,48]. In the whole brain analysis,

sex was treated as a condition. To control for possible confounding

variables, age, scores of the CRT, and global volumes of GM were

entered as covariates into the model. Aside from total brain

volume, all covariates were modeled to make the unique

relationship of each covariate with rGMV evident for each sex.

The interaction effects between sex and the Raven’s reasoning

score on the rGMV was assessed using t-contrasts.

To avoid edge effects around the borders between GM and

WM, an absolute threshold masking of 0.2 was used, meaning that

voxels with gray matter values lower than 0.2 were excluded from

the analyses. For all analyses, the cluster-level statistical threshold

was set at P,0.05, and corrected at the non-stationary cluster

correction [49] with an underlying voxel level of P,0.001. This

was an exploratory study, therefore, we did not use the FDR or

FEW approaches for multiple comparison correction.

Results

Sample Descriptive Statistics
A total of 370 healthy participants (190 females, 180 males) were

included in the VBM analysis. The mean CRT scores were

(66.1363.13) for males and (66.4063.05) for females. No

significant gender difference (P.0.05) in CRT scores was found

between females and males.

VBM Results
A voxel-wise ANCOVA analysis showed that there was an

interaction effect between sex and CRT scores on GMV in the

following three regions: the first region was in and adjacent to the

right dorsolateral prefrontal cortex (DLPFC, BA9, cluster

size = 1130, t = 4.27), the second region was spread around the

left IFC (BA45,cluster size = 1106, t = 5.21), and the third region

was around the right medial frontal cortex (Medial FC, BA32,

cluster size = 2018, t = 4.82) (see Table 1). The CRT scores were

positively correlated with GMV in the right DLPFC (r = 0.217,

p = 0.006) for males, whereas no significant correlation was found

for the females in this region (r = 0.02, p = 0.776) (Figure 1A). The

CRT scores of females were positively correlated with the GMV in

one cluster adjacent to the left IFC (r = 0.176, p = 0.011), whereas

a negative correlation was found for males (r =20.284, p = 0.000)

(Figure 1B). In addition, the Raven test scores for females also

showed a positive correlation with the GMV in the cluster

adjacent to the right Medial FC (r = 0.184, p = 0.008), whereas the

scores for males were negatively correlated with the GMV of this

cluster (r =20.281, p = 0.000) (Figure1C). The scatterplot between

CRT scores and regional gray matter volume (rGMV) is shown for

illustration purpose. They likely overestimate the effects because

the signal of peak voxel was extracted.

Discussion

This study investigated the sex-specific neuroanatomical differ-

ences underlying the reasoning ability as measured by the CRT in

a large sample of participants. VBM analysis revealed distinct

differences in the contribution of various cortical regions to

Figure 1. Sex modulates the effect of reasoning ability on gray matter in the Dorsolateral prefrontal cortex (DLPFC), the Medial
frontal cortex (MFC), and the Inferior frontal cortex (IFC). The color density represents the T score. The scatter plot between CRT scores and
the rGMV is shown for illustration purpose only.
doi:10.1371/journal.pone.0093104.g001
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reasoning ability between males and females. Males’ reasoning

scores were positively correlated with the rGMV in the right

DLPFC, whereas females’ scores showed a positive correlation

with the rGMV in the left IFC and right Medial FC. Our results

may indicate that females and males appear to rely on different

neural substrates to achieve comparable reasoning performances

in the CRT. Some studies have suggested that Raven’s reasoning

Matrices may measure different abilities in males and females [24].

Our study provided a basis for explaining these findings in terms of

neurological structure substrates.

The positive correlation between the rGMV of the DLPFC and

the reasoning scores for the male participants indicates that males

may rely more on the DLPFC to obtain higher reasoning scores

[50]. DLPFC has been documented to serve an important function

in maintaining spatial information and using this information to

guide a correct response [26,27,51–54]. fMRI studies have

revealed significant activation in the lateral prefrontal cortex

while subjects performed visuospatial tasks such as the spatial

navigation task, the delayed-response task, the mental rotation task

or some tasks that require the temporary maintenance of spatial

information [26,52,55–57]. Some evidence from visuospatial tasks

which requires spatial representation and memory, such as the

mental rotation task and the spatial navigation task, suggest that

males have an advantage in visuospatial ability [28,58–60]. Other

studies have demonstrated that visual strategies are important in

solving Raven’s matrices [22,23] and males tend to use their

visual-spatial ability while solving these items [8,22,61]. Males’

habitual use of this ability may cause an augmentation of the brain

regions which underpin it [36]. Our results may therefore indicate

that males rely more than females on the DLPFC associated with

the visuospatial ability to solve the Raven’s Matrices reasoning

problems.

The increased rGMV in the IFC for females may suggest that

females obtain higher reasoning scores as measured by the CRT

through verbal-analytic reasoning ability. A large body of

neuroimaging evidence has shown that the left IFC is engaged

in verbal correlated processes, such as phonologic and semantic

operations [62–65]. The mental logic theory of reasoning suggests

that reasoning relies on a language-like structure and should be

supported by the language areas [66,67]. Previous studies showed

that verbal-analytic reasoning was an important strategy in solving

spatial-format problems and females tend to use their verbal ability

when solving these reasoning problems [23,68]. This strategy

requires the existence of a verbal representation of the stimuli and

applies logical operations to features contained within elements of

the problem matrices [22,61]. Females’ frequent use of their verbal

ability may be the underlying cause of the positive correlation

between the reasoning ability and the rGMV of IFG, which is

thought to underpin this ability [36]. The increased rGMV in the

IFC also suggests that females rely more than males on the IFC

when solving spatial-format problems.

In addition, the results also showed that an increased rGMV for

females in the Medial FC was associated with a higher reasoning

score. Some studies showed that some answers to simple items in

the Raven’s Progressive Matrices tests are easily obtained by

perception of the pattern as a gestalt, such that the appropriate

piece for its completion can be identified without the use of

reasoning [69]. During this matching process, it is thought that

participants retain the original pattern in working memory and try

to judge whether the optional pattern can match the original one.

The initial pattern must be kept online, and these two

discontinuous events must be bound together for a conclusion to

be made. Some neuroimaging studies have shown that the Medial

FC is engaged in bounding items together to obtain a successful
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associative memory of information [70–72]. Thus, the positive

correlation for females between the rGMV of the Medial FC and

reasoning ability may suggest that females rely more on the ability

which binds separately presented items before making a decision.

In addition, some studies documented that females tend to

outperform males in perceptual tasks in which subjects must

rapidly identify matching items [73]. The negative correlation

between the males’ scores and the rGMV of the Medial FC may

also support this notion.

There were some similarities between the results of our study

and those of the first study which attempted to explore the sex

specific neural mechanisms of general intelligence conducted by

Haier et al. [38]. Haier’s study used the WAIS to assess general

intelligence and observed that the correlation between gray matter

volume and intelligence was stronger in the frontal and parietal

lobes (BA 8, 9, 39, and 40) for males, whereas a stronger

correlation was found in the frontal lobe (BA10) along with Broca’s

area for females. It is well known that the Raven’s Matrices test is

also a good assessment of general intelligence [2,39–42].

Therefore, although the two studies used different measures of

general intelligence, they both yielded results which support the

notion that males and females may use different brain structures in

different ways to achieve similar levels of general intelligence [39].

In conclusion, this study provided evidence supporting the

gender-specific neuroanatomical structure in reasoning perfor-

mance as measured by the CRT. The results suggest that males

rely more on the DLPFC associated with visuospatial ability to

achieve a high reasoning score, whereas females rely more on the

IFC connected to verbal processing ability and the medial FC

associated with information binding ability. No significant

differences between genders in the behavioral results of reasoning

performance as assessed by CRT were found. These results may

indicate that males and females use different brain structures in

different ways to achieve similar levels of overall Raven’s reasoning

performance. One limitation of this study was that participants

were college students who may all share a similar level of reasoning

performance. Thus, caution should be taken before generalizing

these explanations to a wider population.
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