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a b s t r a c t 

A mathematical model describing the dynamics of Corona virus disease 2019 (COVID-19) 

is constructed and studied. The model assessed the role of denial on the spread of the 

pandemic in the world. Dynamic stability analyzes show that the equilibria, disease-free 

equilibrium (DFE) and endemic equilibrium point (EEP) of the model are globally asymp- 

totically stable for R 0 < 1 and R 0 > 1 , respectively. Again, the model is shown via numeri- 

cal simulations to possess the backward bifurcation, where a stable DFE co-exists with one 

or more stable endemic equilibria when the control reproduction number, R 0 is less than 

unity and the rate of denial of COVID-19 is above its upper bound. We then apply the 

optimal control strategy for controlling the spread of the disease using the controllable 

variables such as COVID-19 prevention, hospitalization and maximum treatment effort s. 

Using the Pontryagin maximum principle, we derive analytically the optimal controls of 

the model. The aforementioned control strategies are performed numerically in the pres- 

ence of denial and without denial rate. Among such experiments, results without denial 

have shown to be more productive in ending the pandemic than others where the denial 

of the disease invalidates the effectiveness of the controls causing the disease to continue 

ravaging the globe. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

1. Introduction 

Coronavirus disease 2019 (COVID-19) is a respiratory disease of the Coronavidae family. The virus has four types of 

strains, namely; α-Coronavirus, β-Coronavirus, γ -Coronavirus and δ-Coronavirus. The first two affects humans and the last 

two are known majorly for birds infection [1] . The origin and the reservoir of the virus still remain uncertain, even though

Singh et al. [2] considers COVID-19 to be zoonotic disease and traced it to the bats family. COVID-19 is the 3rd novel coro-

navirus in the 21st century after SARS and MERS to have caused large epidemic that spread over 210 nations worldwide

[3] . 
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COVID-19 is a pandemic of all ages when compare to SARS and MERS. It can spread rapidly among the elderly and

individuals with underlying medical conditions, who are particularly a severe risk population [4] . Human-to-human trans- 

mission can occur when the respiratory droplets of an asymptomatic, pre-symptomatic and symptomatic person touches 

the nose, eyes or mouth of a susceptible individual on a closed contact [5] . The clinical symptoms of the disease such as

cough, breathing difficulty, fever among other malarial related signs begin to manifest within 5–6 days on average during 

the incubation period of the virus [6] . 

The cure for this disease is still a problem facing nations, and the hope for guaranteed vaccine formulation though not a

lost one but yet to be made available. As a result, an index case that began in Wuhan, China has spread to many countries

and is responsible for over 1 940 529 deaths globally, 72 834 deaths in Africa [7] and 1405 deaths in Nigeria [8] as of

January 14, 2021. 

In addition, the above number of human deaths in Nigeria is due to the lack of willingness of the populace to accept

the existence of COVID-19 [9] . Some are of the opinion that COVID-19 cases in Nigeria have been mutilated for political

gains. Based on such psychological thoughts, many vulnerable populations have lost confidence in getting protective mea- 

sures as recommended by World Health Organization (WHO) [4] and Nigeria Center for Disease Control(NCDC) [8] . From 

the past epidemics, transmission indices have shown that the denial of existence of a disease indeed stands a challenge

for epidemiologists in the fight against the disease prevention and control. See for example, the denial effect of HIV/AIDS 

[10,11] on susceptible population. Apart from denial, people who use both licit and illicit drugs pause a greater problem in

harm reduction interventions in the era of COVID-19 in Africa [12] . 

Non-linear incidence and treatment functions have been reported by several authors [13–15] to be invaluable tool used 

to reduce the spread of diseases, not limited to measles and tuberculosis. In epidemiological modelling of COVID-19, mass 

action function of the kind βSI, where β is the infection rate was applied in model of [16] and a saturated incidence rate,
αSI 

1+ βS 
was found in the models of [17,18] . On the other hand, the application of Beddington-De Angelis incidence rate of type

αSI 
1+ βS+ γ I 

was adopted in the works of [19–23] for non-COVID-19 models. 

Treatment has been the integral part of the solution of epidemic outbreak considered at different rates. So far, Adeniyi 

et al. [24] and Daniel [18] used a constant rate and Holling type II, βI 
1+ γ I respectively as treatment functions, in corona virus

transmission models. Other controls such as lock down strategy, social isolation on corona virus have been deliberated upon 

in the work of Ndam [16] without denial effect. A dual-purpose wheelchair was developed for containment of COVID-19 in 

paraplegic patients in Lagos, Nigeria [25] , and knowledge and attitudinal behaviour among Sudanese population was also 

observed to be key in eradicating the pandemic [26] . 

In this paper, we intend to assess the role of denial on the optimal control model for COVID-19 transmission dynamics

using Beddington-De Angelis incidence and treatment function of Holling type II. To the best knowledge of the authors, this 

has not been applied on any mathematical model as regards to COVID-19 pandemic. Our model made advances to existing 

works on COVID-19 in the following dimensions: 

(i) we incorporate denial as an erroneous human behaviour that triggers the spread of COVID-19 among Africans. In math- 

ematical sense, the consideration of this invaluable factor is a novelty. 

ii) The introduction of denial on Beddegton-De Angelis function is unique compared to other existing mathematical models 

on COVID-19. 

ii) The inclusion of a non-linear maximal treatment function as a pharmaceutical strategy in the control of COVID-19 is also 

a new idea compared to other models in literature. 

This paper is organized as follows: we introduce the model formulation in Section 2 . Equilibria analysis of the proposed

model is given in Sections 3 and 4 . An optimal control analysis is done in Section 5 . Meanwhile numerical results and

discussion are given in Section 6 . Section 7 describes the conclusion of the paper. 

2. Materials and methods 

2.1. Model formulation 

In this study, we propose a mathematical framework of generic SEIR model for COVID-19 transmission dynamics using 

the Beddington-De Angelis functional response and Holling type II treatment as applied in [15,16] on infectious model. The 

derivation of the differential equations is as a result of the under listed assumptions: 

a. The total population, N at any time, t, is divided into five classes: Susceptible people, S (who are under risk of contracting

COVID-19), Exposed people, E (who are in close contact with infected people, but not yet infected), Asymptomatic peo- 

ple, A (who harbour the corona virus without clinical symptoms but capable of transmitting the disease), Symptomatic 

people, I (who are infected with the corona virus with clinical symptoms and capable of transmitting the disease), Hospi- 

talized people, H (infectious people who are isolated for treatment) and Recovered people, R (who survived the COVID-19 

infection). Thus, N = S + E + A + I + H + R . 

b. The susceptible people are recruited at the constant rate, ˆ B and die naturally like others at a rate μ. 
2 
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Fig. 1. Schematic diagram for COVID-19 transmission dynamics. 

 

 

 

 

 

 

c. COVID-19 is transmitted from Asymptomatic people, Symptomatic people, Hospitalized/isolated people to susceptible 

people by Beddington-De Angelis incidence rate in Eq. 1 , 

ˆ f = 

βS(c 1 A + c 2 I + c 3 H) 

1 + (η1 − d)(S + E + A ) + η2 I + η3 H 

, (1) 

where β is the average infection rate, c i , i = 1 , 2 , 3 ( c 1 > c 2 > c 3 ) is the contact rate of susceptible with A, I and H re-

spectively, d is the denial effect rate, η1 refers to the measure of inhibition effect of preventive protocols such as social 

distancing, use of face masks and hand sanitizers taken by both susceptible and exposed people. Meanwhile, η2 , η3 are 

measures of inhibition effect due to maximum treatment with respect to infectious people, I and H respectively. Note 

that 0 < η1 − d < η2 < η3 when denial of the disease exist. It is of great interest to reveal that, four kinds of incidence

rates can be obtainable from this Beddington-De Angelis incidence, (i. e; Eq. 1 ) in this proposed study: 

i. if we set η1 = d, η2 = η3 = 0 , then f̄ (S, A, I, H) = βS(c 1 A + c 2 I + c 3 H) , which is bilinear incidence rate (force of mass

action). 

ii. if we set η2 = η3 = c 2 = c 3 = 0 , then f̄ (S, E, A ) = 

βSc 1 A 

1+(η1 −d)(S+ E+ A ) , which is saturation incidence rate with the sum of

susceptible and exposed people (infectious of COVID-19 without symptoms). This inhibition effect is as a result of 

saturation parameter η1 which is the preventive protocol to control the spread of the pandemic. 

iii. if we set η1 = d, η3 = c 1 = c 3 = 0 , then f̄ (S, I) = 

βSc 2 I 
1+ η2 I 

, which is saturation incidence rate with infectious people (yet

to be isolated/hospitalized). Here, the contact between susceptible and infectious people, may saturate at high trans- 

mission level due to crowding of infectious people or protection from the susceptible people. 

iv. if we set η1 = d, η2 = c 1 = c 2 = 0 , then f̄ (S, H) = 

βSc 3 H 
1+ η3 H 

, which is saturation incidence rate with hospitalized/isolated

people. As in case (iii), the contact between isolated and susceptible people, may saturate at high transmission level 

due to crowding of isolated people or protection taken by the susceptible people. 

d. the hospitalized people recovered by saturated Holling type II treatment rate is given by Eq. 2 , 

ḡ (H) = 

γ H 

1 + εH 

, (2) 

with γ being the maximum treatment and ε measures the inhibition recovered rate due to long time response of hospi- 

talized people to treatment. Note that ε is a constant parameter that accounts for the limited resource available for the 

treatment of COVID-19. The Asymptomatic people may recover earlier at a rate, ν . 

e. The recovered people gain permanent immunity since no case of COVID-19 re-infection has been reported. 

f. COVID-19 is a fatal disease with a death rate, δ. 

g. The exposed progress to Asymptomatic class at a rate, ρ1 before further developing symptoms of the disease at a rate, 

ρ2 . This assumption is supported by the works of Alshammari [27] and Deressa and Duressa [28] . 

h. Asymptomatic individuals who are infected without symptoms also deny the existence of the disease. 

The summary of model parameter values and description is given in Table 1 below. 
3 
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2.2. The model 

Using the flow-diagram of the interacting population in Fig. 1 , we obtain the differential coefficient of the variables as

indicated in system 3 . 

dS 
dt 

= 

ˆ B − f̄ S − μS, 
dE 
dt 

= f̄ S − (μ + ρ1 ) E, 
dA 
dt 

= ρ1 E − (μ + ν + ρ2 ) A, 
dI 
dt 

= ρ2 A − (μ + δ + h ) I, 
dH 
dt 

= hI − ḡ (H) − (μ + δ) H, 
dR 
dt 

= νA + ḡ (H) − μR, 

(3) 

where f̄ and ḡ (H) are as in Eqs. 1 and 2 , with initial conditions 

S(0) = S 0 > 0 ; E(0) = E 0 ≥ 0 ; A (0) = A 0 ≥ 0 ; I(0) = I 0 ≥ 0 ; H(0) = H 0 ≥ 0 ; R (0) = R 0 ≥ 0 . 

It is obvious from Eq. 1 that once the dynamics of (S, E, A, I, H) are understood, then the dynamics of R immediately follows

from the Eq. 4 

dR 

dt 
= νA + ḡ (H) − μR. (4) 

Therefore, from onwards, our study shall be focused on the reduced system below 

dS 
dt 

= 

ˆ B − f̄ S − μS 
dE 
dt 

= f̄ S − (μ + ρ1 ) E 
dA 
dt 

= ρ1 E − (μ + ν + ρ2 ) A 

dI 
dt 

= ρ2 A − (μ + δ + h ) I 
dH 
dt 

= hI − ḡ (H) − (μ + δ) H 

(5) 

whose positivity and boundedness of solution can be verify in the next subsection. 

2.3. Existence and uniqueness of solution 

The epidemiological validity of the mathematical model in Eq. 5 rely on the solution of the dynamic system being posi-

tive and bounded for all time t > 0 . This is to be established in the following theorems. 

Theorem 2.1. (positivity) If t > 0 and the starting conditions 
(0) � 0 , where 


(t) = (S(t) > 0 , E(t) > 0 , A (0) > 0 , I(t) > 0 , H(0) > 0) , 

then the solution of Eq. 5 is non-negative provided they exist. 

Proof. With the method in Alshammari [27] , let t 1 = { t > 0 : 
(t) > 0 ∈ [0 , t] } , then it follows from the first Eq. 5 that 

dS 

dt 
= 

ˆ B −
(

βS(t)(c 1 A (t) + c 2 I(t) + c 3 H(t)) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(t) 

)
S(t) − μS(t) (6) 

Eq. 6 can be re-arranged as 

dS 

dt 

{ 

S(t) exp 

(
μt + β

∫ t 

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)} 

− ˆ B exp 

(
μt + β

∫ t 

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)
= 0 

Thus, 

S(t 1 ) exp 

(
μt 1 + β

∫ t 1 

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S( τ ) dτ

)
− S(0) 

= 

∫ t 1 

0 

ˆ B exp 

(
μλ + β

∫ λ

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)
dλ

from which we get 

S(t 1 ) = S(0) exp 

{ 

−
(
μt 1 + β

∫ t 1 

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)} 

+ exp 

{ 

−
(
μt 1 + β

∫ t 1 ( (c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)} 
0 

4 
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×
∫ t 1 

0 

ˆ B exp 

(
μλ + β

∫ λ

0 

(
(c 1 A (τ ) + c 2 I(τ ) + c 3 H(τ )) 

1 + (η1 − d)(S(t) + E(t) + A (t)) + η2 I(t) + η3 H(τ ) 

)
S(τ ) dτ

)
dλ > 0 . 

Therefore, S(t) is non-negative for t > 0 . In a similar fashion, it can be proven that E > 0 , A > 0 , I > 0 and H > 0 for

t > 0 . �

Theorem 2.2 ( boundedness ) . 

ˆ ψ = 

{ 

(S(t) , E(t) , A (t) , I(t) , H(t)) ∈ R 

5 
+ ∪ { 0 } : 0 < S(t) + E(t) + A (t) + I(t) + H(t) ≤

ˆ B 

μ

} 

is the positive feasible region of Eq. 5 containing non-negative starting conditions in R 5 + 

Proof. Assume N 1 = S(t) + E(t) + A (t) + I(t) + H(t) holds for t > 0 , then we obtain 

dS 

dt 
= 

ˆ B − μN 1 (t) − δ(I(t) + H(t)) − γ H(t) 

1 + εH(t) 
� 

ˆ B − μN 1 (t) (7) 

By integrating Eq. 7 , we get 

N 1 (t) � 

ˆ B 

μ
+ (N 1 (0) −

ˆ B 

μ
) exp (−μt) (8) 

Therefore lim t→∞ 

sup N 1 (t) � 

ˆ B 
μ . In addition, dN t 

dt 
< 0 if N 1 (0) > 

ˆ B 
μ . This indicates that all solutions of the model 5 remain in

ψ , which is uniformly bounded and well-behaved. �

Theorem 2.3 ( uniqueness ) . For the Model system 5 if the starting values S(0) > 0 , E(0) > 0 , A (0) > 0 , I(0) > 0 , H(0) > 0 and

t 0 > 0 , then for all t > 0 the solutions S(t) , E(t) , A (t) , I(t) and H(t) exist and is unique in R 5 + . 

Proof. Based on the methodology in Deressa and Duressa [28] , we rewrite the model system 5 in the form x ′ = g(x ) ,where 

x ′ = 

(
S(t) , E(t) , A (t) , I(t) , H(t)) T , 

g(x ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ˆ B − ( β(c 1 A + c 2 I+ c 3 H) 
1+(η1 −d)(S+ E+ A )+ η2 I+ η3 H 

) S − μS 

( β(c 1 A + c 2 I+ c 3 H) 
1+(η1 −d)(S+ E+ A )+ η2 I+ η3 H 

) S − ( μ + ρ1 ) E 

ρ1 E − ( μ + ν + ρ2 ) A 

ρ2 A − ( μ + δ + h ) I 

hI − γ H 
1+ εH 

− ( μ + δ) H 

⎞ 

⎟ ⎟ ⎟ ⎠ 

For a singular reason, that g has a continuous first derivative in R 5 + , it is locally Lipschitz. With the fundamental theorem

on existence and uniqueness of solution [30] and Theorems 2.1 and 2.2 established above, we can conclude that the Model

system 5 has a solution that is unique, positive and bounded in R 5 + . �

3. Equilibria analysis 

3.1. The disease-free equilibrium and the basic reproduction number 

At the steady state, the disease-free equilibrium D 0 (S 0 , E 0 , A 0 , I 0 , H 0 ) of the System 5 was found at the point COVID-19

does not persist, and is given by D 0 = ( 
ˆ B 
μ , 0 , 0 , 0 , 0) . Basic reproduction number which is computed at DFE is the strength of

stability analysis of an epidemiological model. It is an essential threshold that predicts whether the spread of an infection 

continues or discontinues in a population. For our study, basic reproduction number is the average number of COVID-19 

secondary cases generated by an index case when introduced in wholly COVID-19 virgin population. It is traditionally de- 

noted by, R 0 . For Model 5 , we compute R 0 with the use of the next generation matrix method [31] , focusing only on A, I, H

being the infected compartments. Based on the principle of this method, the infection matrix, F and the transition matrix, 

V, evaluated at DF E are given respectively in Eq. 9 

F = 

⎛ 

⎜ ⎝ 

0 

βS 0 c 1 
1+(η1 −d) S 0 

βS 0 c 2 
1+(η1 −d) S 0 

βS 0 c 3 
1+(η1 −d) S 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

and V = 

⎛ 

⎜ ⎝ 

μ + ρ1 0 0 0 

−ρ1 μ + ν + ρ2 0 0 

0 −ρ2 μ + δ + h 0 

0 0 −h μ + δ + γ

⎞ 

⎟ ⎠ 

(9) 
5 



R.I. Gweryina, C.E. Madubueze and F.S. Kaduna Scientific African 12 (2021) e00811 

 

 

 

 

 

 

 

With that, R 0 which is expressed mathematically as the spectral radius of the next generation matrix, F V −1 is given by

Eq. 10 

R 0 = ρ(F V 

−1 ) 

= 

βS 0 c 1 ρ1 

(μ+ ρ1 )(μ+ ν+ ρ2 )(1+(η1 −d) S 0 ) 
+ 

βS 0 c 2 ρ1 ρ2 

(μ+ ρ1 )(μ+ ν+ ρ2 )(μ+ δ+ h )(1+(η1 −d) S 0 ) 

+ 

βS 0 c 3 ρ1 ρ2 h 
(μ+ ρ1 )(μ+ ν+ ρ2 )(μ+ δ+ h )(μ+ δ+ γ )(1+(η1 −d) S 0 ) 

= R 0 A + R 0 I + R 0 H , 

(10) 

where the three components of R 0 in Eq. 10 measure the contribution of COVID-19 infection from asymptomatic to suscep- 

tible ( R 0 A ), symptomatic to susceptible ( R 0 I ) and hospitalized to susceptible ( R 0 H ), respectively. 

3.2. Local stability of disease-free equilibrium 

Theorem 3.1. The COVID-19 free equilibrium, D 0 = ( 
ˆ B 
μ , 0 , 0 , 0) is locally asymptomatically stable if R 0 < 1 and unstable when

R 0 > 1 . 

Proof. The community matrix of the Model system (5) at disease-free state is given by Eq. 11 . 

J(D 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−μ 0 − βS 0 c 1 
1+(η1 −d) S 0 

− βS 0 c 2 
1+(η1 −d) S 0 

− βS 0 c 3 
1+(η1 −d) S 0 

0 −σ1 
βS 0 c 1 

1+(η1 −d) S 0 

βS 0 c 2 
1+(η1 −d) S 0 

βS 0 c 3 
1+(η1 −d) S 0 

0 ρ1 −σ2 0 0 

0 0 ρ2 −σ3 0 

0 0 0 h −σ4 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (11) 

where 

σ1 = μ + ρ1 , σ2 = μ + ν + ρ2 , σ3 = μ + δ + h , σ4 = μ + δ + γ . 

From the community matrix J(D 0 ) , we obtain the eigenvalue λ = −μ and Eq. 12 

λ4 + m 3 λ
3 + m 2 λ

2 + m 1 λ + m 0 = 0 , (12) 

where 

m 3 = σ1 + σ2 + σ3 + σ4 , 

m 2 = σ1 σ2 (1 − R 0 A ) + (σ1 + σ2 )(σ3 + σ4 ) + σ3 σ4 , 

m 1 = σ1 σ2 σ3 (1 − R 0 A − R 0 I ) + σ1 σ2 σ4 (1 − R 0 A ) + σ3 σ4 (σ1 + σ2 ) , 
m 0 = σ1 σ2 σ3 σ4 (1 − R 0 ) , 

(13) 

By Routh-Hurwitz criteria [32] , Eq. 12 has negative real roots if the coefficients m i , i = 0 , 1 , 2 , 3 and m 1 (m 2 m 3 − m 1 ) −
m 

2 
3 
m 0 are all positive. Clearly, it can be seen from Eq. 13 that m 3 > 0 , m 2 > 0 , m 1 > 0 and m 0 > 0 if R 0 < 1 . This implies that

R 0 A < 1 and R 0 A + R 0 I < 1 since R 0 is the sum of R 0 A , R 0 I and R 0 H . Intuitively, it follows that the disease-free equilibrium D 0 

is locally asymptotically stable provided m 1 (m 2 m 3 − m 1 ) − m 

2 
3 m 0 is strictly positive. Otherwise unstable. �

3.3. Threshold analysis 

To assess the impact of inhibition factor η1 adopted by susceptible, exposed and asymptomatic individuals, hospitaliza- 

tion of individuals with COVID-9 symptoms (h ) , treatment rate (γ ) and denial rate (d) of COVID-19, we compute the partial

derivatives of R 0 with respect to η1 , h, γ and d as presented below: 

∂R 0 

∂η1 

= −
( √ 

βS 0 

(1 + (η1 − d) S 0 ) 

)
2 
(

ρ1 c 1 
σ1 σ2 

+ 

ρ2 ρ1 c 2 
σ1 σ2 σ3 

+ 

hρ2 ρ1 c 3 
σ1 σ2 σ3 σ4 

)
, 

∂R 0 

∂h 

= 

βS 0 
(1 + (η1 − d) S 0 ) 

(
(μ + δ) c 3 − (μ + δ + γ ) c 2 

(μ + ρ1 )(μ + ν + ρ2 )(μ + δ + γ )(μ + δ + h ) 2 

)
, 

∂R 0 

∂γ
= − βS 0 

(1 + (η1 − d) S 0 ) 

(
hρ2 ρ1 c 3 

(μ + ρ1 )(μ + ν + ρ2 )(μ + δ + h )(μ + δ + γ ) 2 

)
, 

∂R 0 

∂d 
= 

( √ 

βS 0 

(1 + (η1 − d) S 0 ) 

)
2 
(

ρ1 c 1 
σ1 σ2 

+ 

ρ2 ρ1 c 2 
σ1 σ2 σ3 

+ 

hρ2 ρ1 c 3 
σ1 σ2 σ3 σ4 

)
. 

From the above analysis, we observe that 
∂R 0 
∂η1 

< 0 , 
∂R 0 
∂γ

< 0 , 
∂R 0 
∂h 

< 0 if (μ + δ) c 3 < (μ + δ + γ ) c 2 and 

∂R 0 
∂d 

> 0 . The last in-

equality clearly explains that the denial of COVID-19 existence will heavily contribute to the rapid spread of the virus and

challenged the process of the disease prevention. The first three inequalities show that inhibition factors, hospitalization and 

treatment by Holling type II curtail the outgrowing cases of COVID-19 pandemic. 

It is also invaluable to determine the upper bounds for infection and denial rates as well as the lower bound for inhibition

factors. 
6 
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If 

R 0 = 

βS 0 �

1 + (η1 − d) S 0 
< 1 , 

with � = 

ρ1 c 1 
σ1 σ2 

+ 

ρ2 ρ1 c 2 
σ1 σ2 σ3 

+ 

hρ2 ρ1 c 3 
σ1 σ2 σ3 σ4 

, 

then, 

β < 

1 + (η1 − d) S 0 
βS 0 �

, d < 

1 

S 0 
+ η1 (1 − β�

η1 

) 

and the lower bound for η1 is: 

η1 > − 1 

S 0 
+ d + β�. 

Using the values in Table 1 , we obtain the Figures SM1 and SM2. 

3.4. Existence of endemic equilibria and backward bifurcation 

Before assessing the global asymptotic dynamics of the DFE, it is important to find number of equilibrium solutions of 

system 5 . To do so, we can set the right hand sides of System 5 to zero (at steady state) to arrive at the following expressions

for the endemic equilibrium point (EEP), D ∗(S ∗, E ∗, A ∗, I ∗, H ∗) as: 

S ∗ = 

ˆ B hρ2 ρ1 (1 + εH ∗) − σ1 σ2 σ3 (γ + q + qεH ∗) H ∗
μhρ2 ρ1 (1 + εH ∗) 

, 

E ∗ = 

σ2 σ3 (γ + q + qεH ∗) H ∗
hρ2 ρ1 (1 + εH ∗) 

, 

A ∗ = 

σ3 (γ + q + qεH ∗) H ∗
hρ2 (1 + εH ∗) 

, 

I ∗ = 

(γ + q + qεH ∗) H ∗
h (1 + εH ∗) 

, 

and H ∗ is the root of the following cubic polynomial equation 

P H 

3 
∗ + QH 

2 
∗ + RH ∗ + U = 0 , (14) 

where 

P = σ1 σ2 σ3 q 
2 ε2 [ σ2 σ3 (η1 − d)(ν + ρ1 ) + μρ1 (σ3 (η1 − d) + ρ2 η2 + hρ2 η3 )] 

+ βσ1 σ2 σ3 qε
2 ρ1 (σ3 qc 1 + ρ2 qc 2 + hρ2 c 3 ) , 

Q = Q 1 − Q 2 , 

R = σ1 σ2 σ3 hρ2 ρ1 ε(γ + q )(μ + (η1 − d) ̂  B )(1 − R 0 ) − hρ2 ρ1 qε[ Q 3 − Q 4 ] , 

U = σ1 σ2 σ3 hρ2 ρ1 (γ + q )(μ + (η1 − d) ̂  B )(1 − R 0 ) , 

(15) 

with 

Q 1 = 

2 σ 2 
1 σ

2 
2 σ

2 
3 qε

2 

ˆ B 

(γ + q )(μ + (η1 − d) ̂  B ) R 0 + 2 σ1 σ2 σ3 μρ1 ε(γ + q )(σ3 q (η1 − d) + qρ2 η2 + hρ2 η3 ) 

+ σ1 σ2 σ3 hρ2 ρ1 ε(βγ c 3 + qε(μ + (η1 − d) ̂  B )) , 

Q 2 = μσ1 σ2 σ3 hρ2 ρ1 εγ η3 + 2 σ1 σ
2 
2 σ

2 
3 qε(η1 − d)(ν + ρ1 )(γ + q ) 

+ β ˆ B hq 2 ρ2 ρ
2 
1 (σ3 qc 1 + ρ2 qc 2 + hρ2 c 3 ) , 

Q 3 = β ˆ B ρ1 (σ3 qc 1 + ρ2 qc 2 + hρ2 c 3 ) , 

Q 4 = hρ2 ρ1 (μ + (η1 − d) ̂  B ) and 

q = μ + δ. 

It is obvious from Eq. 15 that P > 0 (since all the parameters of the model are non-negative with 0 ≤ d < η1 ) and U > 0

provided that R 0 < 1 . Therefore, the number of possible positive roots of Eq. 14 can depends on the signs of Q and R .

Following the work of Gumel and Sharomi [33] , this can be analyzed using the Descarte’s rule of signs on the cubic g(x ) =
P x 3 + Qx 2 + Rx + U , given Eq. 14 (with x = H ∗). The results ( Theorem 3.2 and Conjuncture 1 ) below follow from the various

cases listed in Table 2 . 

Theorem 3.2. The COVID-19 Model 5 
7 
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Table 1 

Variables and parameters of the model . 

Variables Description Value Ref. 

S(t) Number of Susceptible individuals at time, t 200 × 10 6 [18] 

E(t) Number of Exposed individuals at time, t 1565 [Assumed] 

A (t) Number of Asymptomatic individuals at time, t 80 [Assumed] 

I(t) Number of Symptomatic individuals at time, t 20 [Assumed] 

H(t) Number of Hospitalized individuals at time, t 10 [Assumed] 

R (t) Number of Recovered individuals at time, t 0 [Assumed] 

Parameters Description Value Ref. 
ˆ B Recruitment rate into Susceptible individuals 22655 [18] 

β Infection rate 0.05 [Assumed] 

η1 , η2 , η3 Inhibition factors 0.55,0.3,0.5 [Assumed] 

c 1 , c 2 , c 3 Contact rates of susceptibles with A, I and H respectively 0.5,0.3,0.1 [Assumed] 

d Rate of the denial of the disease [0,0.4) [Assumed] 

μ Natural death rate 0.0182 [18] 

γ Maximum treatment rate of the hospitalized individuals 1 / 15 [18] 

ν Rate of recovery of the asymptomatic individuals 1 / 7 [29] 

δ Disease induced death rate 0.022 [18] 

ε Reduced transmission factor of recovered individuals 0.5 [Assumed] 

h Rate of hospitalization of Symptomatic individuals 0.025 [29] 

ρ1 Rate of progression from E to A individuals 1 / 5 . 1 [29] 

ρ2 Rate at which individuals in A develop symptoms 1 / 7 [18] 

Table 2 

Number of possible positive real roots of g(x ) for R 0 < 1 and R 0 > 1 . 

Cases P Q R U R 0 No. of sign changes No. of endemic Points 

1 + + + + R 0 < 1 0 0 

+ + + - R 0 > 1 1 1 

2 + - - + R 0 < 1 2 0, 2 

+ - - - R 0 > 1 1 1 

3 + + - + R 0 < 1 2 0, 2 

+ + - - R 0 > 1 1 1 

4 + - + + R 0 < 1 2 0, 2 

+ - + - R 0 > 1 3 1, 3 

(

(

(

 

 

 

 

 

a) has a unique endemic equilibrium point if R 0 > 1 and whenever the cases 1, 2 and 3 are satisfied; 

b) could have at least one endemic equilibrium point if R 0 > 1 and case 4 is satisfied; 

c) could have at least two endemic equilibria if R 0 < 1 and cases 2–4 are satisfied. 

Conjuncture 1. The COVID-19 Model 5 has more than one positive endemic equilibrium point when R 0 > 1 and could have

zero or two positive equilibria when R 0 < 1 . 

The occurrence of multiple endemic equilibria at R 0 < 1 (as indicated in Table 2 ) suggests the likelihood of backward

bifurcation (see [33] ), where the stable DFE co-exists with a stable endemic equilibrium point(EEP), in a scenario when 

the basic reproduction number is below unity. This is explored via numerical simulations (rigorous result can be obtained 

using centre manifold theory (see [34] ) as illustrated in the Fig. 2 and Figure SM3. Fig. 2 depicts the associated backward

bifurcation diagram. Furthermore Figure SM3 shows convergence to both the DFE and the EEP for the total asymptomatic 

and symptomatic individuals when R 0 < 1 depending on the initial sizes of the sub-populations. The biological consequence 

of this result is that the effective control of COVID-19 in a population (when R 0 < 1 ) is independent on the initial sizes of

the sub-populations of the Model 5 within the bounds of denial rate. 

4. Global analysis 

Theorem 4.1. The COVID-19-free equilibrium D 0 is globally asymptotically stable if R 0 < 1 . 

Proof. The work of Naji and Abdulateef [14] is the basis by which this theorem can be verified. Adopting a similiar real-

valued function 

L 0 = 

(S − S 0 ) 
2 

2 

+ E + A + I + H 

with the derivative 

L 
′ 
0 (t) = (S − S 0 ) 

dS + 

dE + 

dA + 

dI + 

dH 

. (16) 

dt dt dt dt dt 

8 
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Fig. 2. Bifurcation diagram for the Model 5 . Parameter values used are: β = 0 . 009 , ̂  B = 180 , δ = 0 . 8 and d = 0 . 51 (so that R 0 A = 0 . 3378752329 , R 0 I = 

0 . 03434622182 , R 0 H = 0 . 0 0 03234594838 and R 0 = 0 . 3725449142 ). All other parameter values are in Table 1 . It is essential to note that the values of the 

parameters were used for illustrative purpose only, and may not be realistic epidemiologically. 

 

Upon substitution of System 5 in Eq. 16 , we have 

L 
′ 
0 (t) = (S − S 0 )( ̂  B − f̄ S − μS) + ( ̄f S − (μ + ρ1 ) E) + (ρ1 E − (μ + ν + ρ2 ) A ) 

+ (ρ2 A − (μ + δ + h ) I) + (hI − ḡ (H) − (μ + δ) H) . 

Taking ˆ B = μS 0 , we obtain 

L 
′ 
0 (t) = −μ(S − S 0 ) 

2 − f̄ S 2 + (1 + S 0 ) ̄f S − μE − (μ + ν) A − (μ + δ) I 

−
(
μ + δ + 

γ

1 + εH 

)
H 

≤ −μ(S − S 0 ) 
2 + (1 + S 0 ) 

(
β(c 1 A + c 2 I + c 3 H) 

1 + ( η1 − d)( S + E + A ) + η2 I + η3 H 

)
S 

− (μ + ν) A − (μ + δ) I −
(
μ + δ + 

γ

1 + εH 

)
H 

If ā = min (η1 − d, η2 , η3 , η4 ) = η1 − d (by assumption), then 

L 
′ 
0 (t) = −μ(S − S 0 ) 

2 − f̄ S 2 + (1 + S 0 ) ̄f S − μE − (μ + ν) A − (μ + δ) I 

−
(
μ + δ + 

γ

1 + εH 

)
H 

≤ −μ(S − S 0 ) 
2 + (1 + S 0 ) 

(
β(c 1 A + c 2 I + c 3 H) 

1 + ā N 

)
S 

− (μ + ν) A − (μ + δ) I −
(
μ + δ + 

γ

1 + εH 

)
H. 

But, N(t) ≤ ˆ B 
ˆ μ
, S(t) ≤ ˆ B 

μ and S 0 = 

ˆ B 
μ

L 
′ 
0 (t) ≤ −μ(S − S 0 ) 

2 − (μ + ν) 
(

1 − βc 1 S 0 (μ+ ̂ B ) 

(μ+ ̄a ̂ B )(μ+ ν) 

)
A − (μ + δ) 

(
1 − βc 2 S 0 (μ+ ̂ B ) 

(μ+ ̄a ̂ B )(μ+ δ) 

)
I 

−(μ + δ + 

γ
1+ εH 

) 
(

1 − βc 3 S 0 (μ+ ̂ B ) 

(μ+ ̄a ̂ B )(μ+ δ+ γ
1+ εH ) 

)
H. 

(17) 

Now replacing βc 1 S 0 , βc 2 S 0 and βc 3 S 0 in terms of R 0 into Eq. 17 , we have 

L 
′ 
0 (t) ≤ −μ(S − S 0 ) 

2 − (μ + ν) 
(

1 − R 0 A 

(μ + 

ˆ B ) 

(μ + ā ̂  B )(μ + ν) 

)
A − (μ + δ) 

(
1 − R 0 I 

(μ + 

ˆ B ) 

(μ + ā ̂  B )(μ + δ) 

)
I 

− (μ + δ + 

γ

1 + εH 

) 
(

1 − R 0 H 
(μ + 

ˆ B ) 

(μ + ā ̂  B )(μ + δ + 

γ
1+ εH 

) 

)
H. 

Therefore, L 
′ 
0 (t) < 0 if R 0 A < 1 , R 0 I < 1 , R 0 H < 1 implying that R 0 < 1 and L 

′ 
0 (t) = 0 if A = I = H = 0 and S = S 0 = 

ˆ B 
μ . 

We conclude that the largest compact invariant set in { (S, E, A, I, H) ∈ 

ˆ ψ : L 
′ 
0 
(t) = 0 } is the only set { D 0 } . By La Salle’s

invariance principle [35] , the COVID-19-free equilibrium is globally asymptotically stable if R < 1 �
0 

9 
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The time series plots showing the number of exposed, asymptomatic, symptomatic and hospitalized people when the 

condition R 0 < 1 in the above theorem is given by Figure SM4. 

Theorem 4.2. The endemic equilibrium point D ∗ is globally asymptotically stable if R 0 > 1 and γ = 0 . 

Proof. Using the work in [36] , let λ(I) = (C 1 A + C 2 I + C 3 H)�(I) , and �(H) = 

1 
1+ εH , where �(I) = 

1 
1+(η1 −d)(S+ E+ A )+ η2 I+ η3 H 

Then, we adopt the following Lyapunov function 

L (x ) = (S − S ∗ − S ∗ ln 

S 
S ∗

) + (E − E ∗ − E ∗ ln 

E 
E ∗

) + 

λ(I ∗) βS ∗
ρ1 E ∗

(A − A ∗ − A ∗ ln 

A 
A ∗

) 

+ 

λ(I ∗) βS ∗
ρ2 A ∗

(I − I ∗ − I ∗ ln 

I 
I ∗
) + 

λ(I ∗) βS ∗
hI ∗

(H − H ∗ − H ∗ ln 

H 
H ∗

) . 
(18) 

Putting System 5 into the derivative of the Lyapunov function in Eq. 18 gives 

L ′ = (1 − S ∗
S 
) 
(

ˆ B − λ(I) βS − μS 

)
+ (1 − E ∗

E 
) 
(
λ(I) βS − (μ + ρ1 ) E 

)
+ 

λ(I ∗) βS ∗
ρ1 E ∗

(1 − A ∗
A 

) 
(
ρ1 E − (μ + ν + ρ2 ) A 

)
+ 

λ(I ∗) βS ∗
ρ2 A ∗

(1 − I ∗
I 
) 
(
ρ2 A − (μ + δ + h ) I 

)
+ 

λ(I ∗) βS ∗
hI ∗

(1 − H ∗
H 

) 
(

hI − γ H �(H ) − (μ + δ) H 

)
. 

(19) 

At equilibrium state 

ˆ B = λ(I ∗) βS ∗ + μS ∗, μ + ρ1 = 

λ(I ∗) βS ∗
E ∗

, μ + ν + ρ2 = 

ρ1 E ∗
A ∗

, 

μ + δ + h = 

ρ2 A ∗
I ∗

, μ + δ = 

hI ∗
H ∗

− γ�(H ∗) . 

Expanding Eq. 19 at endemic equilibrium point and after simplifying, we get 

L ′ = μS ∗(2 − S ∗
S 

− S 

S ∗
) + βS ∗λ(I ∗) 

[ 
5 + 

λ(I) 

λ(I ∗) 
− S ∗

S 
− S 

S ∗

E ∗
E 

λ(I) 

λ(I ∗) 
− E 

E ∗

A ∗
A 

− A 

A ∗

I ∗
I 

− H 

H ∗
− I 

I ∗

H ∗
H 

] 
+ 

λ(I ∗) βS ∗
hI ∗

γ H ∗�(H ∗) 
[ 

− 1 + 

H 

H ∗
− H 

H ∗

�(H) 

�(H ∗) 
+ 

�(H) 

�(H ∗) 

] 
But, setting γ = 0 and 

λ(I) 
λ(I ∗) 

≤ 1 , since λ(I) is an increasing function, we have 

L ′ = μS ∗(2 − S ∗
S 

− S 

S ∗
) + βS ∗λ(I ∗) 

[ 
6 − S ∗

S 
− S 

S ∗

E ∗
E 

− E 

E ∗

A ∗
A 

− A 

A ∗

I ∗
I 

− H 

H ∗
− I 

I ∗

H ∗
H 

] 
By arithmetic-geometric theorem, 

2 ≤ S ∗
S 

+ 

S 

S ∗
, 6 ≤ S ∗

S 
+ 

S 

S ∗

E ∗
E 

+ 

E 

E ∗

A ∗
A 

+ 

A 

A ∗

I ∗
I 

+ 

H 

H ∗
+ 

I 

I ∗

H ∗
H 

. 

Therefore, L ′ ≤ 0 . Hence, the System 5 is globally asymptotically stable if R 0 > 1 by La Salle invariance principle. �

The biological significance of the above result is that, in the absence of maximum treatment for the hospitalized people 

(γ = 0) , COVID-19 pandemic will not be eliminated from the community if the basic reproduction number, R 0 rise above

unity. 

5. Optimal control analysis 

In this section, we denote mathematically the three time series controls as ξ1 (t) , ξ2 (t) = h (t) and ξ3 (t) = γ (t) for t ∈
[0 , t f ] , where t f is the time period of the intervention to represent the additional preventive protocol(creation of awareness

about COVID-19) for the susceptible and exposed, testing and isolation (hospitalization) and treatment interventions. The 

application of preventive protocol reduces the force of COVID-19 infection as modelled in Eq. 20 

f̄ 0 (t) = 

β(1 − ξ1 (t))(c 1 A + c 2 I + c 3 H) 

1 + (η1 − d)(S + E + A ) + η2 I + η3 H 

. (20) 

The testing boost the chances of hospitalization and medical care of the infected people while treatment program may lead 

to their recovery. Our main motive which is to minimize the number of COVID-19 cases and the cost of control measures in-

volved, can be mathematically translated into finding piecewise continuous controls ξ ∗
1 , ξ

∗
2 , ξ

∗
3 and associated state variables 

S ∗, E ∗, A 

∗, I ∗, H 

∗ and R ∗ that minimize the objective functional J given by Eq. 21 

J(ξ ∗
1 , ξ

∗
2 , ξ

∗
3 ) = 

∫ t f 

0 

(
kE + pA + qI + rH + 

m 1 

2 

ξ 2 
1 + 

m 2 

2 

ξ 2 
2 + 

m 3 

2 

ξ 2 
3 

)
dt, (21) 

where m i > 0 for i = 1 , 2 , 3 weighs constants that balance the optimal controls. The terms m 1 ξ
2 
1 
, m 2 ξ

2 
2 

and m 3 ξ
2 
3 

are the cost

associated with preventive protocols for susceptible and exposed, testing and hospitalization for symptomatic individuals 
10 
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Step 
and attaining maximum treatment for hospitalized, respectively. Therefore, greater values of m 1 , m 2 and m 3 will indicate 

higher implementation costs for the preventive protocols, testing and hospitalization and maximum treatment for COVID- 

19, respectively. The above terms are assumed non-linear and quadratic due to denial in observing preventive protocols, cost 

of testing and hospitalizing symptomatic individuals and achieving maximum treatment for the hospitalized individuals. 

Optimal control problem is to minimize the objective functional subject to the non-linear system in Eq. 22 

dS 
dt 

= 

ˆ B − f̄ 0 (t) S − μS, 
dE 
dt 

= f̄ 0 (t) S − (μ + ρ1 ) E, 
dA 
dt 

= ρ1 E − (μ + ν + ρ2 ) A, 
dI 
dt 

= ρ2 A − (μ + δ + ξ2 (t)) I, 
dH 
dt 

= ξ2 (t) I − ξ3 (t) H 
1+ εH 

− (μ + δ) H, 
dR 
dt 

= νA + 

ξ3 (t) H 
1+ εH 

− μR. 

(22) 

We set the optimal controls ξ ∗
i 
, ξ ∗

2 
and ξ ∗

3 
such that 

J(ξ ∗
i , ξ

∗
2 , ξ

∗
3 ) = min ︸︷︷︸ 


 
J(ξi , ξ2 , ξ3 ) , (23) 

where � = { (ξi , ξ2 , ξ3 ) | 0 � ξi (t) � 1 , i = 1 , 2 , 3 } is the set for the controls. 

Remark 1. In this set � , when the rate of a control is zero, then no investment in control has been made. On the other

hand, when the value of a control is one, then a control effort has been achieved maximally. 

At this point, we employ the Pontryagin’s maximum principle to obtain the necessary conditions for getting optimal 

controls ξ ∗
i 
, ξ ∗

2 and ξ ∗
3 that satisfy Eq. 23 with constraint model in Eq. 22 . The principle converts Eqs. 21 - 23 into a mini-

mization problem of Hamiltonian function H̄ α in terms of (ξi , ξ2 , ξ3 ) 

H̄ α = kE(t) + pA (t) + qI(t) + rH(t) + 

3 ∑ 

i =1 

m i 

2 

ξ 2 
i (t) + 

6 ∑ 

i =1 

ζi g i , 

where g i denote the ith right side in Eq. 22 and ζi is the ith adjoint that satisfy the co-state functions given in Eq. 24 

ζ ′ 
1 = − ∂ ̄H α

∂S 
= (ζ1 − ζ2 ) β(1 − ξ1 (t)) 

(
L 1 L 2 
T 2 

)
+ μζ1 , 

ζ ′ 
2 = − ∂ ̄H α

∂E 
= −k + (ζ2 − ζ1 ) β(1 − ξ1 (t))(η1 − d) S 

(
L 1 
T 2 

)
+ (ζ2 − ζ3 ) ρ1 + μζ2 , 

ζ ′ 
3 = − ∂ ̄H α

∂A 
= −p + (ζ1 − ζ2 ) β(1 − ξ1 (t)) S 

(
L 3 
T 2 

)
+ (ζ3 − ζ4 ) ρ2 + (ζ3 − ζ6 ) ν + μζ3 , 

ζ ′ 
4 = − ∂ ̄H α

∂ I 
= −q + (ζ1 − ζ2 ) β(1 − ξ1 (t)) S 

(
L 4 
T 2 

)
+ (ζ4 − ζ5 ) ξ2 (t) + (μ + δ) ζ4 , 

ζ ′ 
5 = − ∂ ̄H α

∂H 
= −r + (ζ1 − ζ2 ) β(1 − ξ1 (t)) S 

(
L 5 
T 2 

)
+ (ζ5 − ζ6 ) 

ξ3 (t) 
(1+ εH) 2 

+ (μ + δ) ζ5 , 

ζ ′ 
6 = − ∂ ̄H α

∂R 
= μζ6 , 

(24) 

where 

L 1 = c 1 A 

∗ + c 2 I 
∗ + c 3 H 

∗, L 2 = 1 + (η1 − d)(E ∗ + A 

∗) + η2 I 
∗ + η3 H 

∗

L 3 = c 1 (1 + (η1 − d)(S ∗ + E ∗)) + (η2 c 1 − (η1 − d) c 2 ) I 
∗ + (η3 c 1 − (η1 − d) c 3 ) H 

∗

L 4 = c 2 (1 + (η1 − d)(S ∗ + E ∗)) + ((η1 − d) c 2 − η2 c 1 ) A 

∗ + (η3 c 2 − η2 c 3 ) H 

∗

L 5 = c 3 (1 + (η1 − d)(S ∗ + E ∗)) + ((η1 − d) c 3 − η3 c 1 ) A 

∗ + (η2 c 3 − η3 c 2 ) I 
∗

T = 1 + (η1 − d)(S ∗ + E ∗ + A 

∗) + η2 I 
∗ + η3 H 

∗

and final time conditions ζi (t f ) = 0 , i = 1 , 2 , . . . , 6 . 

The procedure for obtaining the optimal controls ξ = (ξ ∗
i 
, ξ ∗

2 
, ξ ∗

3 
) are mentioned below [37] . 

1. Minimize the Hamiltonian function H̄ α with respect to ξ , we get 

ξ ∗
1 = 

⎧ ⎨ 

⎩ 

0 , if ξ1 � 0 

(ζ2 −ζ1 ) β(c 1 A 
∗+ c 2 I ∗+ c 3 H ∗) 

m 1 (1+(η1 −d)(S ∗+ E ∗+ A ∗)+ η2 I ∗+ η3 H ∗) 
, if 0 < ξ1 < 1 

1 , if ξ1 � 1 
11 
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Fig. 3. Profile of optimal controls, ξ ∗
1 , ξ

∗
2 and ξ ∗

3 , when d = 0 (Figure on the left) and d = 0 . 55 (Figure on the right). Parameter values are as given in 

Table 1 . 

Step  

Step 

 

ξ ∗
2 = 

{ 

0 , if ξ2 � 0 

(ζ4 −ζ5 ) I 
∗

m 2 
, if 0 < ξ2 < 1 

1 , if ξ2 � 1 

ξ ∗
3 = 

⎧ ⎨ 

⎩ 

0 , if ξ3 � 0 

(ζ5 −ζ6 ) H 
∗

m 3 (1+ εH ∗) , if 0 < ξ3 < 1 

1 , if ξ3 � 1 

2. Obtain the solutions of the system 

dx 
dt 

= 

∂ ̄H α
∂ζ

, where x = (S, E, A, I, H, R ) , ζ = (ζ1 , ζ2 , . . . , ζ6 ) using the initial condition

x 0 = (S(0) , E(0) , A (0) , I(0) , H(0) , R (0)) . 

3. Determine the solution of the co-state system 

dζ
dt 

= − ∂ ̄H α
∂x 

with the final time conditions ζi (t f ) = 0 , i = 1 , 2 , . . . , 6 . 

In line with the above procedure, the optimal control (ξ ∗
i 
, ξ ∗

2 , ξ
∗
3 ) is given in the next theorem. 

Theorem 5.1. The optimal controls (ξ ∗
i 
, ξ ∗

2 , ξ
∗
3 ) that minimizes the cost function J(ξi , ξ2 , ξ3 ) on � subject to the system in Eq.

22 is: 

ξ ∗
1 = max 

{ 

0 , min 

{ 

1 , 
(ζ2 − ζ1 ) β(c 1 A 

∗ + c 2 I 
∗ + c 3 H 

∗) 
m 1 ( 1 + ( η1 − d)( S ∗ + E ∗ + A 

∗) + η2 I ∗ + η3 H 

∗) 

} } 

, 

ξ ∗
2 = max 

{ 

0 , min 

{ 

1 , 
(ζ4 − ζ5 ) I 

∗

m 2 

} } 

, 

ξ ∗
3 = max 

{ 

0 , min 

{ 

1 , 
(ζ5 − ζ6 ) H 

∗

m 3 (1 + εH 

∗) 

} } 

, 
where ζi , i = 1 , 2 , . . . , 6 remain the solutions of the co-state system in Eq. 24 . 
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Fig. 4. The population dynamics of (a) Exposed, (b) Asymptomatic and (c) Symptomatic individuals to COVID-19 using optimal controls, ξ ∗
1 , ξ

∗
2 and ξ ∗

3 , with 

denial effect. Parameter values are as given in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

6. Numerical results and discussions 

In this section, numerical simulations are carried out using the parameters values in Table 1 . We make the comparison

of the optimal control system in Eq. 22 in terms of denial and without denial. The fourth-order Runge-Kutta (RK4) scheme

is employed to solve the optimal control strategy; and adopted the forward RK4 scheme and backward RK4 scheme to 

solve the state system and co-state system, respectively. Apart from the initial conditions and other parameters values given 

in Table 1 , we take m 3 = 50 , m 2 = 30 and m 1 = 15 since the cost of treating hospitalized people is higher than the cost

of isolating symptomatic people which in turn is higher than the cost of protecting susceptible. We also consider k = p =
0 . 1 , q = 0 . 15 and r = 0 . 015 for the numerical simulations. 

It is evident from Figure SM1 that cases of COVID-19 grow exponentially in the population when denial rate exceeds 

0.45 since R 0 > 1 . However, when d satisfy the inequality 0 ≤ d < 0 . 45 , R 0 < 1 and the disease can be curtailed. Figure SM2

displays the level set of R 0 in β and d planes. They show that the number of cases of COVID-19 increases as d increases. This

implies that with denial: preventable strategies, hospitalization and treatment measures may not be enough for crumbing 

COVID-19. 

The profile of the optimal controls ξ ∗
1 
, ξ ∗

2 
, ξ ∗

3 
is given by Fig. 3 . Implementation of this strategy without denial, COVID-19

prevention, hospitalization and treatment of symptomatic individuals should be done intensively for almost 50, 200 and 600 

days, respectively, and then decline to the lower bound. However, with denial we observed from the graph on the right in

Fig. 3 that each control needed to be applied seriously for 600 days. Likewise, Fig. 4 shows that each population; Exposed,

Asymptomatic and Symptomatic has been reduced successfully without the denial of the disease. On the other hand, denial 

of the pandemic has rendered these controls ineffective since the number of infectives Asymptomatic, Symptomatic and the 

exposed persist uniformly. This means that control in the presence of denial cannot eliminate the ongoing COVID-19 pan- 

demic. This result is consistent with the outcome of the work by Sayedahmed et al. [26] that says good level of knowledge

(awareness creation) is associated with good practice towards COVID-19 elimination. The outcome is also in line with the 

report on the effect of denial on other diseases like HIV/AIDS [10,11] that says denial triggers the spread of HIV/AIDS. We

observed from Figure SM4 that in the presence of maximum treatment and preventive protocols (i.e. use of face masks, 

hand sanitizers, social distancing) with out denial actually reduced the number of COVID-19 cases recorded against exposed, 

asymptomatic, symptomatic and hospitalized people. This result coincides with the work of Deressa and Duressa [28] that 

emphasises that public health education, protective measures and treatment of hospitalized are effective to significantly 
13 
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decrease the number of COVID-19 cases among the infected population. Furthermore, We display in Figure SM5 the neces- 

sity of time in eradicating COVID-19 in the population. These figures show that the number of Exposed, Asymptomatic and 

Symptomatic individuals (E(t), A(t), I(t)) will decrease drastically when the controls are time-dependent compare to when 

the controls are constant (do not dependent on time). This implies that even when tested control strategies are in place, it

is crucial to implement them on time in order to gain effective outcome. For instance, hospitalization of Symptomatic indi- 

viduals on time will prevent them from infecting susceptible individuals while treating them urgently will avert deaths that 

could have been recorded. This conforms to the result of Madubueze et al. [38] that says time dependent interventions re-

duced the number of exposed and infected individuals compared to constant interventions. From our findings, we conclude 

that people should accept the fact that COVID-19 exists, and take necessary preventive protocols, and maximum treatment 

for the hospitalized people. Since human altitude towards disease outbreak can not completely changed, the denial rate of 

COVID-19 existence should be less than 0.45 in order to control the spread of the pandemic. 

7. Conclusion 

In this paper, we assess the role of denial on the spread of COVID-19 pandemic through the construction of an opti-

mal control model with Beddington-De Angelis incidence function. From our analyzes, we derived the control reproduction 

number that determines the existence and stability of the model equilibria. Also, we found that to put the pandemic under

control, the infection and denial rates should not exceed the upper bounds 0.15 and 0.45 on average. By implication, the

disease will continue to live with us if 45 people in every 100 deny the existence of the disease. The presence of denial rate

in the system induces backward bifurcation that causes complexity in the disease control even if the control reproduction 

number is less than unity. We simulated the optimal control system with respect to denial and without denial. The numer-

ical examples show that strategies with inhibition factors (without denial effect) are capable of reducing corona virus in 

the population. However, introducing denial into the system destabilizes it and renders the controls ineffective. Again, the 

results obtain from the comparison of the optimal control with constant control systems shows that timely implementation 

of these strategies is key in controlling the rapid spread of Corona virus disease. In Africa, COVID-19 is erroneously assumed

to be a disease of White men and rich men who travel abroad. Thus most people in urban slums and rural areas refuse

to adhere to control measures such as social distancing, wearing face masks, hand washing with water and soups, hand 

sanitizers e.t.c. This poses a challenge to the control of COVID-19 in Africa. It is therefore advocate that governments at all

levels should carry out public health education to dispel this erroneous behaviour of their citizens that drive the spread of

COVID-19. Eradicating the denial of the existence of COVID-19 is the first line of control before any form of interventions

that will help to limit the spread of the disease. 
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